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(B) Artificial

 - 🔃 Processing icon
 - 🔊 Sound effect

(C) Natural
   - 🤔Gestural filler
   - 🔊Voice line

(A) None
   - No visual feedback
   - No audio feedback

Hmm, let me
think about that...

Hmm, let me
think about 
that... 🔊

Figure 1: In this paper, we investigated response delays with intelligent virtual agents and the effects of conversational fillers:
(A) None: The user receives no feedback while waiting on the agent; (B) Artificial: The user receives a processing icon and sound
effect; and (C) Natural: The user receives feedback in the form of social interaction cues (gesture and voice).

ABSTRACT
We investigated the challenges of mitigating response delays in
free-form conversations with virtual agents powered by Large Lan-
guage Models (LLMs) within Virtual Reality (VR). For this, we used
conversational fillers, such as gestures and verbal cues, to bridge
delays between user input and system responses and evaluate their
effectiveness across various latency levels and interaction scenar-
ios. We found that latency above 4 seconds degrades quality of
experience, while natural conversational fillers improve perceived
response time, especially in high-delay conditions. Our findings
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provide insights for practitioners and researchers to optimize user
engagement whenever conversational systems’ responses are de-
layed by network limitations or slow hardware. We also contribute
an open-source pipeline that streamlines deploying conversational
agents in virtual environments.
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1 INTRODUCTION
Advancements in artificial intelligence (AI), particularly in large
language models (LLMs), automatic speech recognition (ASR) and
text-to-speech (TTS), catalyzed the integration of intelligent virtual
agents (IVAs) into mainstream systems [84, 97, 98]. These advance-
ments make IVAs more accessible and capable than ever before,
evolving beyond simple scripted responses. They offer personalized
interactions that adapt in real-time, recall past conversations, and
provide a truly realistic and engaging user experience (UX). The
usefulness of these intelligent agents extends beyond entertain-
ment [15, 76, 97] to encompass medical [1, 18, 62, 80, 87], educa-
tional [24, 37, 77, 93, 98], personal [3, 104, 108] and social [79, 84]
applications.

More recent applications of IVAs emphasize the support of free-
from conversation. To achieve this, most modern architectures for
IVAs rely on TTS to vocalize LLM-generated responses to speech
transcribed with ASR [7, 15, 31, 37, 62, 66, 84, 86, 97, 98, 104, 108].
These components are computationally demanding, and when run-
ning locally, they compete for system resources with graphics and
physics simulations [72], leading to system response time (SRT)
that exceeds the natural duration of silence between interlocutors’
turns. To alleviate this, most prior architectures offload processing
to cloud-based models. However, cloud solutions are inherently
unpredictable, prone to network congestion, connection instability,
and system downtime, all of which exacerbate latency. Whether due
to hardware limitations, cloud infrastructure, or local system con-
tention, conversational systems’ response latency remains a signifi-
cant challenge, degrading Quality of Experience (QoE) [57, 65, 81].

Long response times from virtual humans, robots, and voice
assistants cause impatience [73, 105], frustration [53, 69, 105], and
general dissatisfaction [12, 30, 41]. However, findings on response
latency and its mitigation in conversations with virtual agents
relied on scripted questions and answers [12, 49, 53], used WoZ
protocol [29, 83, 101], or rated pre-recorded conversations [64, 74],
limiting their generalization to real-time interactions. Addressing
this, our work is the first to examine the effects of response latency
with truly interactive conversational agents powered by LLMs to
support free-form conversations, and we aim to answer the fol-
lowing research questions: (1) Do prior findings on perception of
latency remain consistent when using free-form conversational IVAs?
(2) Do natural conversational fillers mitigate the negative effects of
latency when interacting with free-form IVAs? (3) Do artificial wait
indicators mitigate the negative effects of latency when interacting
with free-form IVAs?

We investigated the effects of response latency and conversa-
tional fillers on perceived response time and broader dimensions of
user experience in free-form task-guided voice conversations with

LLM-based IVAs in Virtual Reality (VR). Participants experienced
three virtual worlds, conversing with a total of 9 virtual agents
under three filler types: None, Artificial, and Natural (see Figure 1),
along with three response latency levels: Low (1.5s), Medium (4.0s),
and High (6.5s) (see subsubsection 3.1.1). We used an LLM and TTS
to generate responses to users’ speech transcribed with ASR in real-
time. Latency was simulated by delaying the agents’ response onset
to study the effect of different conversational fillers and response
latencies on users’ perception of the agents.

We found that delay significantly worsened participants’ per-
ceived response time and broader perception metrics, and was
less bearable beyond 4 seconds. Natural conversational fillers miti-
gated some of these effects, however Artificial wait indicators did
not significantly affect user experience. To streamline voice-based
conversational agent studies, we provide an open-source library1,
which includes a system that uses natural language processing,
capable of real-time analysis of conversation history to identify
and manage task transitions seamlessly. Overall, our contributions
inform the design of IVAs and embodied conversational agents
(ECAs) applicable to inherently virtual, as well as physical agents,
digital twins of which can be rendered in VR.

2 RELATEDWORK
Latency in conversations (response delay) refers to the delay be-
tween one speaker’s utterance and the other’s response. In human
communication, brief delays and silences are natural [20, 48], yet
research suggests that response times beyond two seconds begin
to feel unnatural, and silences exceeding four seconds can disrupt
conversational flow, signaling a breakdown in communication [70].
Studies on turn-taking in vocal conversations report sub-second
latency on average [38, 50, 88], and show that faster response times
signal greater social connection [92]. They also show that in natural
dialogues, some responses begin even before the previous speaker
has finished [38, 58, 88]. In conversational user interfaces, fast,
seamless interactions improve engagement, while excessive delays
can cause frustration, disrupt the conversational flow, and reduce
trust in the system. This underscores the importance of minimizing
response latency in human-computer interactions.

When designing virtual agents that rely on ASR, LLMs, and TTS
systems, latency poses an even greater challenge due to compu-
tational constraints. While techniques like incremental response
generation [85, 94] exist, they are not always viable — a useful
response often depends on the information contained at the end
of the user’s turn, which has not been fully processed before the
agent starts responding. Considering delays caused by external
factors unrelated to the process of response generation, we focus
on latency mitigation through UI-based strategies, drawing from
research in domains where delays are an inherent constraint: web
and mobile user interfaces, text-based chat interfaces, and embod-
ied human-agent (HAI) and human-robot interactions (HRI). In the
following subsections, we outline the strategies used to reduce the
perceived delay across various interface types.

1github.com/ISUE/iva-cui

https://doi.org/10.1145/3719160.3736636
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2.1 Latency Mitigation in 2D Interfaces
Overestimation of wait times by users is a persistent UI design
concern [42], so traditional research on delays in human-computer
interfaces recommends always displaying a visual progress indica-
tor to show the system is processing a task [71].

In web browser applications, user satisfaction significantly de-
creases when response times exceed 12 seconds, often leading users
to abandon the application [43]. To address this, some research fo-
cused on progress bars behaviors, which significantly impact users’
perceived wait times on websites [13, 35], although results regard-
ing the optimal progress indicator speed are mixed. Some work
shows that indicators that start fast and end slow induce encour-
agement, reducing abandonment rates [21, 51, 96] and increasing
satisfaction rate [60]. Faster initial countdown intervals [52] and
animated ribbing moving backward while decelerating [36] can
reduce perceived wait duration. Conversely, other work found that
users are more tolerant of initial negative progress with an observed
preference for linear progress bars, which lead to shorter perceived
wait times [2, 13, 35]. Furthermore, interactive animations substan-
tially reduce perceived wait times by distracting user attention,
making wait times feel shorter, and increasing user satisfaction in
contrast with passive animations and standard progress bars [39].

In mobile applications, interactive and color-changing loading
screens improve user satisfaction by shrinking perceived wait times
compared to passive ones [17]. A study comparing bar and cartoon-
bar indicators at constant, accelerating, and decelerating speeds
found that decelerating progress bars reduced perceived wait time,
and cartoon-bars increased user acceptance and satisfaction [61].

2.2 Latency in Text-based Chat Interfaces
Much research on human-to-human text chats and instant messag-
ing (IM) has explored response latency. Users prefer seeing a typing
indication (speech bubble or live typing) over nothing while waiting
for a reply [47]. However, under time pressure, users rated their
partners as less involved, reporting frustration even in the presence
of a typing indicator [46]. Interestingly, third-party observers were
more forgiving of delayed responses in support chats, as long as
the conversation felt contingent [59]. While typos are common in
human messages, chatbots were rated as less human when their
replies contained typos in a WoZ study [100].

In text chatbot interfaces, users prefer short delay over long delay
or zero delay, because they perceive it as more realistic [4, 32, 40, 82],
and presence of a typing indicator during response generation in-
creased the feeling of social presence for novice users [33]. Inspired
by chatbot interfaces familiar to users, LLM-powered text chat in-
terfaces adopted similar approaches to mitigate response delays,
accompanied by the live appearance of response text as it is being
generated. Systems like ChatGPT2, Claude3, Gemini4, MetaAI5,
and Perplexity AI6 employ distinct loading feedback mechanisms
to enhance user experience: ChatGPT uses a pulsating black dot;
Claude employs a pulsing star-like object; Gemini utilizes progress
indicators including a rotating star and sequential progress bars;
2chatgpt.com (Accessed May 6, 2025)
3anthropic.com/claude (Accessed May 6, 2025)
4gemini.google.com (Accessed May 6, 2025)
5meta.ai (Accessed May 6, 2025)
6perplexity.ai (Accessed May 6, 2025)

Perplexity AI uses a rotating ellipsis resembling pages of a book;
MetaAI integrates a spinning wheel. These techniques inform the
user about the ongoing process of response generation, potentially
reducing the perceived wait time.

2.3 Latency Mitigation for Embodied Agents
An embodied agent interacts with its physical/virtual environment
through physical/virtual body and, unlike text-based chat interfaces,
must manage both verbal and visual cues to maintain engagement
despite response delays. Excessively long latencies negatively im-
pact UX and users’ perception of virtual agents and robots, often
leading to user discomfort [8, 12, 30, 41] and assumptions that an
error has occurred [30]. Wait times of 4.5 to 5 seconds can also be
thought of as negative responses [78]. During task-solving with
robots, delays lead to increased frustration and anger, and decreased
satisfaction and future use intention [105]. Additionally, quicker
rather than delayed responses from a robot receptionist lead to
increased tolerance and reported interaction quality in users [73].

Research on mitigating response delays has identified conver-
sational fillers [49, 63, 64, 83] common in everyday speech as a
promising direction. These fillers (e.g. ‘uh...’ and ‘uhm...’) serve
several para-linguistic functions [9], including turn-taking manage-
ment [89], social approval [19], and co-creation of pragmatic and
discourse [90], making them essential for smooth and successful
natural conversations [11, 91]. While simple fillers can reduce a
robot’s perceived intelligence and likability [49], more complex
ones mitigate delay effects without harming perceptions of intel-
ligence [101] or virtual agent’s competence [53]. These complex
fillers include pensive fillers (e.g., ‘let me think’ paired with gestures
like chin-scratching) and acknowledgment fillers (e.g., ‘aha’ with
rapid head-nodding). Systems using such fillers — whether generic
("uh") or context-aware ("I’ve found a flight for you") – were rated
as more appropriate than silent systems, even with equal delay [64].

While the literature is clear on the negative effects of latency on
UX, studies in perception of conversational agents relied on prede-
termined sets of questions and responses [12, 49, 53], followedWoZ
protocol [29, 83, 101], or rated pre-recorded conversations [64, 74].
This limits their generalization to cases where virtual agents are
truly interactive, afforded by recent advancements in the speed
and quality of speech and text processing models. Addressing this,
we explored how latency affects the perceived virtual agent re-
sponsiveness and whether its negative effects can be mitigated by
conversation fillers through a study where agents responded to any
free-form queries in real-time across multiple scenarios.

3 METHODOLOGY
This study involved immersive VR scenarios where participants
interacted with virtual agents using their speech, under varied re-
sponse delays and multiple delay mitigation strategies. We selected
VR as a medium for our study to make it easily reproducible [75]
and to reduce external factors and distractions [54], focusing on
variables of interest [22]. We expect research on embodied con-
versational agents to continue expanding, given the rise of VR
social applications where users interact with embodied virtual
avatars [67], and indications that immersive VR induces greater

https://chatgpt.com/
https://www.anthropic.com/claude
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social influence from virtual characters compared to standard desk-
top applications [5, 55]. The remainder of this section outlines key
components of the experiment design, conditions, system imple-
mentation, apparatus, participants, and the collected data.

3.1 Experiment Design
The experiment included three delay levels: Low (1.5s), Medium
(4.0s),High (6.5s), and three latency mitigation types: None, Artificial
Wait Indicator, Natural Conversational Filler, leading to a total of 9
conditions. This matched the number of IVAs present in our study.
The order of IVAs was the same across all participants, and the
order of conditions was counter-balanced using Balanced Latin
Square (18 orders). This way, the conditions applied to IVAs varied
across participants.

3.1.1 Delay Levels. Our design included three delay levels: (1) Fast
at 1.5 seconds, (2)Medium at 4.0 seconds, (3) Slow at 6.5 seconds. Un-
der Low (1.5s) latency, responses were played as soon as they were
generated (SRT average). The longer delays increased in 2.5-second
steps: Medium (4.0s) matched the comfortable silence threshold
reported in prior work, while High (6.5s) exceeded it (see section 2).

3.1.2 Filler Types. For latencymitigation, we used three filler types:
(1) None with no filler; (2) Artificial Wait Indicator (WI) with a
loading icon and sound; and (3) Natural Conversational Filler (CF)
with a thinking gesture and a voice line (see Figure 1). BothArtificial
and Natural fillers combined visual and auditory cues. We treated
these as unified conditions, as prior work showed that multimodal
fillers work outperform unimodal ones (see subsection 2.3). Fillers
appeared during the wait period (varying by delay level) between
the end of participant speech and the agent’s response.

In the None condition (baseline), agents provided no visual or
auditory cues during the delay. They remained in the ‘attentive
idle’ animation, facing the participant, and began speaking once
the delay elapsed.

In the Artificial condition, a rotating visual indicator (concentric
quarter-circles) appeared above the agent’s head, accompanied by a
continuous processing sound (similar to the ChatGPT mobile app).
The agents stayed in the ‘attentive idle’ state throughout. Both the
icon and sound ended when the delay expired.

In the Natural condition, each agent randomly selected from
three ‘thinking’ gestures and six filler voice lines at runtime. To
simulate deliberation, agents turned their head, touched their chin
or the back of their head, and said a conversational filler. They held
this pose with subtle breathing motion until the delay ended, then
returned to ‘attentive idle’ before responding. Fillers were inspired
by prior work [53, 101] and included: "Hmm, let’s see...", "Okay,
hmm...", "Uhmmm...", "Ah...", "Hmm, one moment...", "Hmmm...".

3.1.3 Hypotheses. We derived six hypotheses from prior work:
(H1a, H1b) on the negative effects of high latency on user expe-
rience (section 2); (H2a, H2b) on the benefits of conversational
fillers in mitigating perceived delay (subsection 2.3); and (H3a,
H3b) on the role of loading indicators in improving perceived la-
tency in classical UIs (subsection 2.1). These hypotheses guided our
investigation into how latency and conversational fillers affect the
perception of embodied IVAs responding to free-form queries in
immersive VR:

H1a: Latency degrades perceived response time of conversational agents.
H1b: Latency degrades broader perception dimensions of conversational

agents.
H2a: Under latency, Natural conversational fillers improve perceived

response time of conversational agents.
H2b: Under latency, Natural conversational fillers improve broader per-

ception dimensions of conversational agents.
H3a: Under latency, Artificial wait indicators improve perceived response

time of conversational agents.
H3b: Under latency, Artificial wait indicators improve broader perception

dimensions of conversational agents.

3.2 Study Questionnaires
To test our hypotheses and gather additional insights into user per-
ception, we created two custom questionnaires informed by prior
literature, as no standardized survey exists for interface latency and
its mitigation. The first was administered after each condition, and
the second after completing all experimental conditions.

3.2.1 Post-conditionQuestions. After each agent interaction, par-
ticipants completed an in-VR survey by selecting from five labeled
response options: Agree, Somewhat Agree, Neutral, Somewhat Dis-
agree, and Disagree. Q1 assessed perceived response latency and
included the word "meaningfully" to avoid bias toward Natural
fillers that included speech. Q2–Q6 measured other perception
dimensions, drawn from prior literature [14, 49, 53, 64] and our
study objectives. Q4 and Q5 were adapted from the Robotic Social
Attributes Scale (RoSAS) [14], corresponding to discomfort and
competence dimensions.
(Q1) Response Time: From the moment I stopped talking, the agent

was quick to start responding meaningfully.
(Q2) Engagement: I felt absorbed during my interaction with this virtual

agent.
(Q3) Good Impression: The virtual agent left a good impression on me.
(Q4) Discomfort: I felt awkward, scared, and strange when talking to

this agent.
(Q5) Competence: This agent was reliable, competent, and interactive.
(Q6) Willingness to Interact Again: I would be willing to interact and

spend time with this virtual agent again.

3.2.2 Post-studyQuestions. After completing the VR experience,
participants filled out a post-study survey (Table 1). The first six
questions assessed their overall impressions of the agents and
whether they noticed the study conditions (i.e., filler types). Par-
ticipants then watched a 40-second video showing a single agent
performing each of the three fillers at Medium (4.0s) to clarify dif-
ferences in case they had gone unnoticed. All participants viewed
the same video to ensure a consistent comparison baseline. This
was shown after the initial questions to avoid bias. The final four
questions focused on perceptions of the filler types and depended
on participants’ awareness of them. While PSQ10 resembled PSQ4
and PSQ5 (future use intent), it was placed after the video to reflect
informed responses.

3.3 Interaction Scenarios
Participants interacted with nine virtual agents across three envi-
ronments (Figure 2) corresponding to distinct scenarios: Store,Ho-
tel, Museum. Each condition targeted at least five conversational
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Table 1: Questions ordered as they appeared in the post-VR survey. Rank-order question order was randomly initialized. ★: text
entry answer justification required; ★★: optional.

Label Question Response anchors

PSQ1 Overall, which agent did you like the most? ★ Each of 9 agents
PSQ2 Overall, which agent did you like the least? ★ Each of 9 agents
PSQ3 I felt like the agents understood me. ★ Agree → Disagree
PSQ4 I would use a system where agents replied fastest. ★ Agree → Disagree
PSQ5 I would use a system where agents replied slowest. ★ Agree→ Disagree
PSQ6 Did you notice any conversational fillers that different agents had? ★★ Yes, Maybe, No

Video explanation of the three filler types.
PSQ7 Rank the conversational fillers that you saw in terms of your preference for future applications. Natural, Artificial, None
PSQ8 For Natural fillers, were gestures or voice lines more helpful to fill conversations? ★★ Gestures, Voice lines, Same
PSQ9 For Artificial fillers, were wait indicators or sound effects more helpful to fill conversations? ★★ Indicators, Sounds, Same
PSQ10 I would use a system where agents replied slowest with conversational fillers. ★ Agree → Disagree

Figure 2: Intelligent Embodied Virtual Agents in their corresponding virtual environments.

turns to ensure the study conditions were noticeable [12], influenc-
ing participants’ survey responses. To maintain engagement, the
scenarios were designed with a gamified structure (similar to video
game quests) and clear objectives, encouraging free-form conver-
sations. Agents’ responses were generated at runtime using LLM
prompts (see project repository) and user queries, and supported
small-talk (e.g., greetings, environment awareness). When queried
with off-topic or role-breaking input, agents naturally redirected
the conversation back to the scenario context. Participants were
free to explore each environment and speak with agents, guided
by an on-hand UI that updated after the transition-check system
(Figure 3) detected relevant dialogue context in the message history.

In the Store scenario, participants retrieved a shirt from the
Friend agent and returned it to a store across the street. There, the
Clerk directed them to the Manager for approval, as he was still in
training. In the Hotel scenario, participants checked in with the
Receptionist, then visited their room where Maintenance worker in-
formed them it wasn’t ready. The worker apologized and redirected
them back to the receptionist to receive a complimentary dinner
voucher. At the restaurant, theWaiter asked about food preferences,
dietary restrictions, and the voucher. In theMuseum scenario, par-
ticipants played a student working on a school assignment about
human rights. They obtained a ticket from the Host agent, then
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spoke with Volunteer 1 about the Cyrus Cylinder7 and Volunteer 2
about the U.S. civil rights movement.

3.3.1 Intelligent Agents’ Avatars. Agents were represented using
avatars that matched the visual fidelity of our virtual environments
(VEs). Figure 2 shows the agents in context, with race and gen-
der distributions reflecting our university’s student demographics.
While we initially considered Rocketbox avatars [34], we selected
avatars from the VALID library [25] due to their validation through
user perception studies, ensuring accurate and representative char-
acter design. Agent outfits aligned with scenario roles and the visual
style of each VE. Avatar folder names and corresponding Edge-TTS
voices are listed in Table 2.

Table 2: Scenarios, roles, avatars, and abbreviated TTS voices
used for avatars in our experiment. Full Edge-TTS voice iden-
tifiers are available in the source code repository.

Scenario Role VALID Avatar Voice

Store Friend Black_F_2_Casual Ava
Store Clerk White_M_3_Casual Andrew
Store Manager Hispanic_F_1_Busi Aria
Hotel Receptionist Hispanic_F_2_Casual Michelle
Hotel Maintenance Hispanic_M_2_Util Guy
Hotel Waiter MENA_M_2_Casual Brian
Museum Host White_F_2_Busi Emma
Museum Volunteer 1 White_M_1_Casual Florian
Museum Volunteer 2 Asian_F_1_Casual Yan

3.3.2 Agent Animations. Each agent performed a scenario-specific
‘busy’ animation until first addressed by the user. For example,
Waiter andHost interacted with small displays,Maintenanceworker
manipulated wires on an electrical panel, and the Receptionist and
Manager alternated between typing and looking at a monitor. Upon
user interaction, agents transitioned to an ‘attentive idle’ state
(passive listening pose with subtle breathing). While users spoke,
agents turned their heads toward them. Interactions were only
possible within a defined proximity; agents would look away and
return to their ‘busy’ animation once the user exited this area.

3.4 Conversational System Implementation
Our system (see Figure 3) was implemented as a Unity application
connected via HTTP requests to a local server that served the Au-
tomatic Speech Recognition (ASR) and LLM engines. When a user
spoke within the agent’s defined area, the user’s voice was tran-
scribed with the FasterWhisper8 medium model, then added to the
message history of that agent, and then sent to the locally-hosted
Llama3.1-8b-Q5 LLM9 to generate a response from the agent’s per-
spective (ran on an RTX4090 GPU on Pop!_OS2210). This text was
then passed to the Edge-TTS API11, which generated an audio file,
7en.wikipedia.org/wiki/Cyrus_Cylinder (Accessed May 6, 2025)
8github.com/SYSTRAN/faster-whisper (Accessed May 6, 2025)
9huggingface.co/bullerwins/Meta-Llama-3.1-8B-Instruct-GGUF Llama 3.1 achieves
state of the art performance on a number of benchmarks at the time of our research
(Accessed May 6, 2025)
10pop.system76.com (Accessed May 6, 2025)
11github.com/rany2/edge-tts (Accessed May 6, 2025)

storing it on our local server, and returning a static download link
to Unity. The audio was then downloaded by the application and
played from an audio source on the agent, with OVR Lipsync12
used to animate the agent’s mouth movements. The average sys-
tem response time (SRT) was approximately 1.5 seconds (𝜇 = 1.47,
𝜎 = .23), constrained by the processing time of the locally hosted
ASR, LLM, and TTS components (see Figure 4 for a breakdown).
This value defined the Low (1.5s) condition in our experiment.

3.5 Apparatus
We used a Meta Quest Pro HMD, with a resolution of 1800 × 1920
pixels per eye and a FOV of 106◦ × 96◦ connected to a PC running
the Unity 2022 LTS application. We developed the VR interactions
using the XR Interaction Toolkit package13. Our application ran
at constant 70 frames per second (FPS). Participants wore sani-
tized earphones, and navigated the VE using the Quest Touch Pro
controllers. The thumbsticks controlled movement and turning,
the back trigger selected in-VR survey responses, the grip button
selected objects within the VE, and the ‘A’ button on the right
controller activated the microphone.

3.6 Participants
We used G*Power [28] to estimate a minimum required sample
size of 33 participants, assuming a medium-to-large effect size
(0.3), a within-subjects design, and repeated measures ANOVA
with 9 measurements. To increase statistical power and accom-
modate counterbalancing, our final participant pool included 54
university participants (three full rotations of the 18-order Latin
square), comprising 23 females (43%) and 31 males (57%), aged 18-56
(𝑥 = 22.07, 𝑠 = 6.55). Participants self-reported varying experiences:
• VR use: Daily: 2, Weekly: 6, Monthly: 11, Yearly: 18, Never: 17
• Gaming: Daily: 16, Weekly: 16, Monthly: 12, Yearly: 7, Never: 3
• Social VR14:Daily: 0,Weekly: 2, Monthly: 13, Yearly: 8, Never: 31
All participants could read and speak English, wore an HMD for
35 minutes while seated, used both hands for controllers, and had
normal or corrected vision. Those with glasses or contact lenses
kept them on during the study. No participants reported color
blindness, neurological conditions, or physical disabilities.

3.7 Procedure
Participants arrived at the study location and were screened for eli-
gibility. After confirming eligibility, the consent process was admin-
istered, including answering any participant questions. Participants
were then asked to complete a demographics survey electronically.
Following this, participants were assisted in wearing the VR head-
set while seated. We adjusted the participants’ seated in-VR height
to their real-world standing height to make their conversations
with the agents feel more natural. Before starting each scenario,
we presented participants with a brief introduction, outlining the
scenario’s theme without revealing the outcome. In each scenario,
participants had to navigate the environment and engage in con-
versations with three agents, totaling nine virtual agents across all

12developers.meta.com/horizon/documentation/unity/audio-ovrlipsync-unity/ (Ac-
cessed May 6, 2025)
13Unity Docs | XR Interaction Toolkit (Accessed May 6, 2025)
14VRChat (vrchat.com), Meta Horizon (horizon.meta.com) (Accessed May 6, 2025)

https://en.wikipedia.org/wiki/Cyrus_Cylinder
https://github.com/SYSTRAN/faster-whisper
https://huggingface.co/bullerwins/Meta-Llama-3.1-8B-Instruct-GGUF/tree/828492ca0d7e7efd4b316e75af8d9cd582fdec34
https://pop.system76.com/
https://github.com/rany2/edge-tts
https://developers.meta.com/horizon/documentation/unity/audio-ovrlipsync-unity/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.5/manual/index.html
https://vrchat.com/
https://horizon.meta.com/
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Figure 3: System architecture: speech is recorded in Unity, passed to the ASR model, combined with the message history, passed
to an LLM, the generated response from which updates message history and checks for transitions. Generated text is then
passed to TTS, and the generated voice is played from an audio source that controls OVR lip-sync in Unity.
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Figure 4: Breakdown of latencies achieved in our system.
Latency is the time between the user finishing their micro-
phone input (by pressing the ‘A’ button) and when the agent
starts responding with the LLM-generated text in voice.

scenarios (see subsection 3.1). To facilitate the exploring of the en-
vironment, participants had access to an on-hand task list attached
to their left hand. This list only gave participants an overview of
their active task without providing hints about the conversation
flow. Once completed, a new task appeared, while the previous task
remained as strike-through. Upon completing the 3 in-VR scenarios,
participants removed the HMD and filled out a web-based post-
study survey. We paid participants $10 and thanked them for their
time.

4 RESULTS
4.1 Post-condition Responses
Since our data consists of Likert-scale responses, the Aligned Rank
Transform (ART) [102] was used for a 3×3 full-factorial repeated-
measures ANOVA. This analysis examined main and interaction
effects across three delay levels (Low (1.5s), Medium (4.0s), and
High (6.5s)) and three filler types (None, Artificial Wait Indicator,
and Natural Conversational Filler). Post-hoc ART-C tests [27] were
conducted to test the hypotheses, with p-values adjusted for 36 com-
parisons using the Holm-Bonferroni correction. Responses were
coded from −2 (Disagree) to 2 (Agree), and error bars in Figure 5
and Figure 6 show ±1 SEM based on this scale.

Delay had a significant main effect on (Q1) Response Time, (Q2)
Engagement, (Q3) Good Impression, (Q5) Competence, and (Q6)
Willingness to Interact Again (all 𝑝 < 0.0001). It also significantly
affected (Q4) Discomfort (𝑝 < 0.05). The main effect of fillers was

Table 3: Repeated-Measures ANOVA on ART-Transformed
Data. 𝜂2

𝑝 is the effect size of a specific independent variable
on the dependent variable (metric measured by the question),
while controlling for effects of other independent variables.

Question Factor Df F p Sig. 𝜂2
𝑝

(Q1) Response Time
Delay (2, 424) 154.55 p < 0.0001 **** 0.422
Filler (2, 424) 18.61 p < 0.0001 **** 0.081
Delay x Filler (4, 424) 4.66 p < 0.01 ** 0.042

(Q2) Engagement
Delay (2, 424) 25.33 p < 0.0001 **** 0.107
Filler (2, 424) 4.68 p < 0.01 ** 0.022
Delay x Filler (4, 424) 1.08 p = 0.365 0.010

(Q3)
Good
Impression

Delay (2, 424) 30.92 p < 0.0001 **** 0.127
Filler (2, 424) 5.03 p < 0.01 ** 0.023
Delay x Filler (4, 424) 0.36 p = 0.834 0.003

(Q4) Discomfort
Delay (2, 424) 4.65 p < 0.05 * 0.021
Filler (2, 424) 1.28 p = 0.280 0.006
Delay x Filler (4, 424) 1.55 p = 0.187 0.014

(Q5) Competence
Delay (2, 424) 14.74 p < 0.0001 **** 0.065
Filler (2, 424) 3.74 p < 0.05 * 0.017
Delay x Filler (4, 424) 1.18 p = 0.320 0.011

(Q6)
Willingness to
Interact Again

Delay (2, 424) 16.93 p < 0.0001 **** 0.074
Filler (2, 424) 2.26 p = 0.106 0.011
Delay x Filler (4, 424) 0.42 p = 0.791 0.004

significant for (Q1) Response Time (𝑝 < 0.0001), (Q2) Engagement
(𝑝 < 0.01), (Q3) Good Impression (𝑝 < 0.01), and (Q5) Competence
(𝑝 < 0.05). Interactions between latency levels and Fillers were
significant only for (Q1) Response Time (𝑝 < 0.01).

Post-hoc pairwise comparisons between delay levels in the ab-
sence of fillers (Figure 5) revealed significant differences in (Q1)
Response Time across all conditions (𝑝 < 0.0001), supporting H1a.
For other metrics, participants’ responses significantly differed be-
tween Low (1.5s) and High (6.5s) delay levels on (Q2) Engagement
(𝑝 < 0.0001), (Q3) Good Impression (𝑝 < 0.01), (Q4) Discomfort
(𝑝 < 0.01), (Q5) Competence (𝑝 < 0.01), and (Q6) Willingness to
Interact Again (𝑝 < 0.001), supporting H1b. Additionally, (Q2) En-
gagement differed significantly between Medium (4.0s) and High
(6.5s) delays (𝑝 < 0.05).

Pairwise comparisons between filler types at fixed delay lev-
els (Figure 6) showed significant differences between Natural and
None fillers on (Q1) Response Time at Medium (4.0s) (𝑝 < 0.01)
and High (6.5s) (𝑝 < 0.0001) delays, supporting H2a. Natural and
Artificial fillers also significantly differed at High (6.5s) delay on
(Q1) Response Time (𝑝 < 0.05). However, no support was found
for H2b, H3a, or H3b. We discuss implications of these results
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in subsection 5.1, and a full report of all main effects and pairwise
comparisons is available in the supplementary material.

4.2 Post-study Responses
4.2.1 Preference for agents depending on response speed. The first
two post-study questions assessed whether participants preferred
agents that responded quickly. The frequency of each speed condi-
tion was recorded for agent selections. Among the agents partici-
pants liked the most (PSQ1), Low (1.5s) responses occurred 31 times
(57.41%), Medium (4.0s) 12 times (22.22%), and High (6.5s) 11 times

(20.37%), (𝜒2
2 (𝑁 = 54) = 14.12, 𝑝 < 0.0001). Among the agents

participants liked the least (PSQ2), Low (1.5s) responses occurred
9 times (16.67%), Medium (4.0s) 12 times , and High (6.5s) 33 times
(61.11%), (𝜒2

2 (𝑁 = 54) = 19.0, 𝑝 < 0.0001).

4.2.2 Agents’ understanding and noticeability of conversational
fillers. Overall, 49 participants (90.74%) indicated that the agents un-
derstood them through answers to PSQ3 (Strongly Agree: 22, Agree:
27, Neither agree nor disagree: 3, Disagree: 2, Strongly disagree: 0).
A chi-square test revealed a significant difference from a uniform
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* * * *

* * * *
* * * *
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Figure 5: Effect of response delay on user perception of intelligent embodied virtual agents in the None filler condition, collected
through post-condition survey responses. H1a – Significant effect of delay on (Q1) Response Time; H1b – Significant effect of
delay on other perception dimensions. Error bars show 1 SEM (standard error of the mean). Significance annotations [16] from
ART-C pairwise comparisons adjusted using Holm-Bonferroni (* = 𝑝 < 0.05, ** = 𝑝 < 0.01, *** = 𝑝 < 0.001, **** = 𝑝 < 0.0001).
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Figure 6: Effect of delay with all filler types on user perception of intelligent embodied virtual agents. H2a – Significant effect
of Natural Conversational Fillers on (Q1) Response Time; Error bars show 1 SEM (standard error of the mean). Significance
annotations [16] from ART-C pairwise comparisons adjusted using Holm-Bonferroni (* = 𝑝 < 0.05, ** = 𝑝 < 0.01, *** = 𝑝 < 0.001).
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Figure 7: Number of times each filler was ranked in terms of
preference of seeing it in future applications.

choice distribution (𝜒2
4 (𝑁 = 54) = 36.82, 𝑝 < 0.0001). Before being

introduced to the filler types through a video, most participants re-
ported noticing them on PSQ6 (Yes: 33,Maybe: 11, No: 10), with non-
uniform responses distribution (𝜒2

2 (𝑁 = 54) = 18.78, 𝑝 < 0.0001).

4.2.3 Preference for filler types in future applications. In PSQ7, Par-
ticipants ranked the three types of fillers based on their preference
for their use in future applications. Figure 7 shows that the majority
of participants (35/54, 64.81%) selected Natural filler as the most
preferred, while 12 participants (22.22%) favored the Artificial fillers
instead. Seven (12.96%) participants chose None (no filler) as their
top preference.

4.2.4 Helpfulness of visual and auditory modalities of fillers. For
Natural fillers (PSQ8), 16 participants (29.70%) found gestures more
helpful, 14 (25.93%) chose voice lines, and 24 (44.44%) rated both
equally (𝜒2

2 (𝑁 = 54) = 3.12, 𝑝 = 0.21). For Artificial fillers (PSQ9),
19 participants (35.18%) preferred the visual wait indicator, 10
(18.52%) preferred sound effects, and 25 (46.30%) reported that both
contributed equally (𝜒2

2 (𝑁 = 54) = 6.34, 𝑝 < 0.05).

4.2.5 Statements about using the system depending on the speed of
agent’s responses. In PSQ4, PSQ5 and PSQ10, participants responded
to whether they would use the system with agents at different re-
sponse latencies and with or without conversational fillers (see Fig-
ure 8). A chi-square test revealed that the distribution of choices for
the use of the fastest agents (𝜒2

4 (𝑁 = 54) = 65.81, 𝑝 < 0.001), slow-
est agents (𝜒2

4 (𝑁 = 54) = 104.33, 𝑝 < 0.001), and slowest agents
with conversational fillers (𝜒2

4 (𝑁 = 54) = 9.89, 𝑝 < 0.05) were not
uniform. A comparison of participants’ willingness to use the slow-
est system with and without conversational fillers revealed greater
acceptance when fillers were present (𝜒2

4 (𝑁 = 54) = 61.56, 𝑝 <

0.001).

4.2.6 Analysis of text justifications. To analyze participants’ text
justifications of their post-study questionnaire answers, we con-
ducted a preliminary inductive analysis using in vivo excerpts and
descriptive coding to generate general thematic insights [10], and
counted the frequencies of similar statements across participants.

5 DISCUSSION
To our knowledge, our study is the first to vary both response
latency and conversational fillers in an experiment where conver-
sational virtual agents were truly interactive, leveraging ASR, LLM
and TTS to support free-form conversations. Previous research
on latency mitigation has largely studied it in isolation, rather

than including it as an explicit factor in studies with fully inter-
active embodied conversational agents. We found that response
latency significantly degrades user perceptions of the agents, and
that conversational fillers improve perceived response latency in
Medium (4.0s) and High (6.5s) delay levels. These findings align
with prior work that investigated conversational fillers in WoZ
studies [12, 29, 49, 53, 83, 101] and those that used pre-recorded
human-agent conversations [64, 74]. This section addresses our
research questions by interpreting participants’ post-condition re-
sponses to evaluate hypotheses (subsection 5.1, subsection 5.2). We
then interpret the remaining data to derive insights about accept-
able response latency in subsection 5.3, effect of human-likeness of
agents in subsection 5.4, visual and auditory modalities in subsec-
tion 5.5, and implications on future work in subsection 5.6, inform-
ing future studies and the design of human-agent conversational
user interfaces.

5.1 Effects of Response Latency
Response latency had a significant negative impact on perceived
(Q1) Response Time (Figure 5), with all pairwise comparisons be-
tween delay conditions showing significant differences (𝑝 < 0.0001),
confirming H1a. This aligns with prior research on response de-
lays in human-computer interaction [12, 29, 49, 53, 64, 74, 83, 101],
reinforcing that conversational latency directly impacts perceived
system efficiency. Additionally, our results support H1b — higher
response latency was associated with lower (Q2) Engagement, (Q3)
Good Impression, (Q5) Competence, (Q6) Willingness to Interact
Again, as well as increased (Q4) Discomfort. These findings suggest
that beyond perceived response time, delays in responses affect user
trust and willingness to continue interacting with virtual agents,
which is consistent with earlier work on conversational interrup-
tions and delay tolerance [53].

Post-study responses to PSQ1 and PSQ2 revealed that most par-
ticipants favored agents that corresponded to the Low (1.5s) latency
(31/54, 57.41%), and disliked agents that corresponded to High (6.5s)
latency (33/54, 61.11%). Given that Delay-Filler conditions applied
to agents were counterbalanced between participants (implying
an equal distribution (18/54, 33.33%) per delay level if chosen ran-
domly), these preferences suggest that latency shaped participants’
impressions of agents, even though they were not explicitly in-
formed about response speeds. In text justifications for these two
questions, 25/54 (46.29%) participants directly mentioned fast re-
sponse times as the main reason behind choosing their favorite
agent, and 22/54 (40.74%) participants mentioned slow response
times as the reason for choosing an agent as their least favorite.
Results from PSQ4 and PSQ5 (Figure 8) suggest that response speed
was a key determinant in participants’ system preference. Most
participants indicated that they would use a system with the fastest
response times, but rejected systems that responded slowest, which
aligns with literature indicating that increased delay reduces future
use intent [43]. These findings should be further validated through
future studies involving conversational systems, through question-
naires containing concrete latency reference points and use case
scenarios.



CUI ’25, July 8–10, 2025, Waterloo, ON, Canada Maslych et al.

Fastest

Slowest with CFs

Slowest

32

12

16

1

17

2

3

14

3

10

6

1

40

5

Strongly Agree Agree Neither agree nor disagree Disagree Strongly Disagree

Participant willingness to use the system in three conditions: 
 'I would use a system where agents replied...'

Figure 8: Participants’ responses to question on whether they would use the system depending on the speed of agents’ responses
(PSQ4, PSQ5) and presence of conversational fillers (PSQ10).

5.2 Effects of Natural and Artificial Fillers
Natural conversational fillers significantly improved participants’
ratings on (Q1) Response Time at Medium (4.0s) and High (6.5s)
latency levels (𝑝 < 0.01, 𝑝 < 0.0001, respectively), supporting H2a.
This finding is consistent with prior studies indicating that con-
versational fillers facilitate smoother interactions and reduce the
cognitive burden of waiting [12, 53]. Although Natural fillers im-
proved average ratings on broader user experience dimensions over
no fillers (None filler condition), enhancements in Engagement,
Good Impression, Discomfort, Competence, or Willingness to Inter-
act Again were not significant. Therefore, H2b was not supported,
suggesting that while Natural conversational fillers improve per-
ceived response latency, they do not mitigate its broader effects on
user experience.

Although average Response Time ratings were slightly higher
with Artificial fillers at Medium (4.0s) and High (6.5s) latency levels,
they were not significantly different from the None condition (see
Figure 6). This result does not support H3a. Similarly, participants’
ratings on broader perception dimensions were not significantly
different from None fillers, so H3b was also not supported. These
findings suggest that passive visual and auditory wait indicators
(e.g., visual loading icons and sounds) are not engaging enough to
mitigate response latency or improve user experience on broader
dimensions.

Responses to PSQ7 showed that Natural fillers ranked highest
among the participants (35/54, 64.81%), as compared to Artificial
fillers and no fillers present (see Figure 7). Most participants also
rejected the idea of using a system where agents responded slowest
(PSQ5). However, theyweremore open to such systemwhen conver-
sational fillers were present (PSQ10), with a statistically significant
shift in responses (𝜒2

4 (𝑁 = 54) = 61.56, 𝑝 < 0.001). While this
suggests that fillers can improve tolerance for delayed responses,
participants still showed an overall preference for faster responses.

5.3 Insights on Acceptable Response Latency
Through our study, we empirically demonstrated that response
latency above 4 seconds significantly degrades user experi-
ence in conversations with intelligent embodied virtual agents: (1)
perceived latency degraded at Medium (4.0s) and High (6.5s) laten-
cies (Figure 5); (2) future use intent was lowest under high-delay
conditions (Figure 8); (3) agents with slowest response times were

disproportionally ranked lowest in the post-study survey (subsec-
tion 5.1). These findings are especially relevant amid the grow-
ing adoption of conversational user interfaces powered by ASR,
LLM, and TTS pipelines. Recent studies using similar pipelines for
free-form interaction frequently omit explicit reporting of system
response speed, despite descriptions suggesting relatively high la-
tencies [31, 106, 108]. Based on our results, we recommend that
future studies minimize and mitigate response delays, aiming for
latencies under 4 seconds. Failing to do so risks negatively biasing
participants’ perceptions of conversational agents and degrading
overall system usability.

While incremental response generation techniques [85, 94] can
improve perceived response time, they are not always viable —
critical information at the end of a user’s turn may require a com-
plete restructuring of the generated response. LLM-to-TTS transfer,
where voice generation can begin as soon as the first sentence is
produced, is the most parallelizable component in recent pipelines.
Advancements, such as OpenAI’s GPT-4o15, demonstrate the po-
tential for responses with negligible latency by processing input
and output directly in speech form, bypassing sequential steps that
involve text. However, these advancements do not address latency
introduced by network instability or hardware limitations, which
persistently cause latency in real-world deployments.

Despite ongoing efforts to accelerate response generation through
model optimization and hardware improvements, the demand for
more advanced reasoning capabilities inherently increases compu-
tational overhead. Techniques such as retrieval-augmented genera-
tion (RAG) and web search integration improve factual accuracy
by dynamically incorporating external knowledge, but at the cost
of additional processing time. Similarly, chain-of-thought (CoT)
reasoning enhances logical inference by explicitly generating multi-
step responses, while test-time optimization (TTO) adapts model
outputs based on recent interactions — both substantially increas-
ing SRT. These reasoning techniques are crucial in areas where
accuracy outweighs speed, such as medical, legal, financial, and
educational domains. However, their computational costs under-
score a repeating pattern: as systems become faster, expectations
rise, and increasingly complex compute causes latency to reemerge.
Thus, mitigating IVA response latency at the user interface level —
through adaptive UI design and conversational fillers — is just as
critical as optimizing SRT. Rather than treating response delay as
a purely technical limitation, future work should treat latency as
15openai.com/index/hello-gpt-4o (Accessed May 6, 2025)

https://openai.com/index/hello-gpt-4o/
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an inevitable factor in high-quality conversational AI and design
interactions that minimize its negative perceptual impact.

5.4 Participants’ Preference for
Human-likeness of Avatars

When designing our study, we focused on making the agents ap-
pear, behave, and sound human-like (natural). For this reason, we
used VALID avatars (see subsubsection 3.3.1), animated all agents
with ‘busy’, ‘attentive idle’, and ‘thinking’ states, as well as used
a TTS engine that generated realistic voices for responses. In ad-
dition, conditions with Natural fillers included a thinking gesture
and a voice line while agents generated their responses. In justifi-
cations for choosing their favorite agent, a majority of participants
(38/54, 70.37%) included naturalness and relatability of conversa-
tions, in addition to quick responses. Some participant quotes pro-
videmore insight: (1) "She responded surprisingly quickly and her
answers felt lifelike compared to most of the other AIs I interacted
with", (2) "The agent was very personable and acted like an actual
friend would. The most natural of all of the agents". Conversely,
participants who selected specific agents as their least favorite often
cited issues related to the lack of human-likeness: unnaturalness
(20/54, 37.03%), awkwardness (11/54, 20.37%), and lack of motion
during wait time (20/54, 37.03%). For example: (1) "Felt the most
robot like of the agents, with delayed responses and the dialogue
did not feel smooth", (2) "It was fast but creepy".

While participants favored human-like avatars, presence of Nat-
ural fillers at Low (1.5s) latency did not significantly change percep-
tion on neither (Q1) Response Time, nor the broader dimensions
of perception of the agents. This suggests that when agents are
quick to respond, designers should prioritize delay being filled with
animations consistent with agent’s behavior, as execution of Natu-
ral fillers in a short time frame could be perceived as rushed and
exaggerated. Moreover, in medical and other high-stakes scenar-
ios, human tendency to trust and be more forgiving of anthropo-
morphized AI [44, 45, 99] may discourage users from scrutinizing
accuracy. Future work should further investigate the relationship
between filler anthropomorphism and risk profile: richer, natural
cues for social or entertainment settings; more neutral or artificial
signals where critical judgment matters.

5.5 Relative Importance of Visual and Audio
Modalities

Responses on the different modalities of the Natural and Artificial
fillers revealed that many participants felt they contributed simi-
larly (see subsubsection 4.2.4). However, quotes from participants
with opposing opinions provide interesting insights. For Natural
fillers, quotes in favor of gestures include: (1) "Gestures are a nor-
mal motion people do when prompted with questions or problems. So
seeing the agents do it made it more of a real world experience.", (2) "It
made me subconsciously realize they were thinking. But I preferred
when they made a short hmm and a gesture". On the other hand,
some participants favored voice fillers over gestures, reasoning
about higher naturalness, giving agents a buffer time to think, and
confirming that the agents heard them; sample quotes include: (1)
"It seemed unrealistic and almost cartoony that the AI would go into a
thinking pose every time I said something to them. The filler voice line,

however, was surprising at first, though it felt like a natural buffer to
give them time to think that you would see in a regular person.", and
(2) "It let me know that the agent heard me. If they just used gestures,
I would assume it’s an idle animation.".

For Artificial filler conditions, participants favored visual cues
because of familiarity, for example: "I’m used to the loading UI
because it appears on websites, but the sound effect I’m not used to.
I like the spinning UI because it appears exactly when I finish and
disappears when they respond, so it’s easy to tell that the world is
generating message". As for participants who chose auditory cues,
they believed it was better as it confirmed the agent heard them,
was less distracting, and helped reduce silence awkwardness when
the agent was thinking. Some example quotes: (1) "the spinning ui
feels off, although it lets the user know the agent is thinking, it feels a
bit inhuman", (2) "Because it let me know the response was loading
through audio". Two participants also mentioned thinking that a
system error has occurred when they saw the visual wait indicator
element of the Artificial filler for the first time.

The split in participants’ opinions on the relative importance of
auditory and visual filler modalities (subsubsection 4.2.4) suggests
that no one specific set of features will work for every user, despite
prior work indicating that the combination of gestures and voice
utterances is best on average [53]. We recommend that researchers
allow participants to choose their preferred filler modality as long
as it is not a factor in their study, and that practitioners allow
users to personalize conversational fillers for IVAs. While Artificial
fillers effectively signaled that the system was processing input,
future studies should explore more communicative and socially
expressive indicators, such as familiar icons that users associate
with thinking, or sequences that represent distinct stages of the
response generation process.

5.6 Implications for Research and Design
Based on our findings, we distilled recommendations applicable to
future research and design of embodied conversational agents.

Minimize response latency.Minimizing the turn-taking delay
in agents’ responses is crucial for sustainably-high QoE. Response
delays of over 4 seconds worsen participants’ perception on broader
metrics about embodied agents, skewing collected data and limiting
its generalizability.

Choose fillers consistent with the system’s purpose.While
Natural conversational fillers improve perceived system response
time, their appropriateness depends on the system’s purpose. If
accuracy is more important than response speed or being liked by
users, Artificial fillers or no fillers could fit better.

Allow response filler personalization. Presenting different con-
versational filler options and allowing users to select among them
will account for preferences in visual and auditory modalities. This
extends to the granularity of individual animations and phrases, as
cultural backgrounds influence the interpretation of gestures.

Maintain participant engagement. Keeping participants en-
gaged for the entire duration of a user study is important for collect-
ing quality data [107]. Designing quest-like scenarios and minimiz-
ing response latency are possible ways to maintain high participant
engagement in experiments.
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Select a medium that minimizes distractions. Immersive
VR environments can reduce external visual and auditory distrac-
tions [54], making them well-suited for studies involving embodied
conversational agents. In our experiment, this helped ensure that
participant responses were influenced by agent behavior rather
than uncontrolled environmental factors.

6 LIMITATIONS AND FUTUREWORK
While the questions that we used in our experiment served us to
get insight into user perception of IVAs, we acknowledge the need
for a more standardized survey to collect perception metrics in this
context. Our results serve as an initial comparison point with future
work on IVAs. This is apparent in post-condition questions, where
all aspects of discomfort and competence metrics from RoSAS [14]
were aggregated into Q4 and Q5, respectively. This may have re-
duced the probability of detecting significant differences between
conditions. Post-study questions PSQ4, PSQ5 and PSQ10 gauged
future use intent; however, the order in which they were presented
and the absence of clear application scenarios or reference points
may have inadvertently influenced participants’ responses. We rec-
ommend future work to consider such nuances when designing
questionnaires.

The Natural and Artificial fillers used in our study were context-
neutral and appropriate for the chosen scenarios. However, in seri-
ous scenarios (e.g., medical), a "laugh" filler would be less appropri-
ate than "let me check your record", and the opposite applies in a
playful scenario where human-likeness is more valued. In conversa-
tions between humans, prosodic features [38], conversational fillers,
body gestures, and facial expressions, appear before an interlocu-
tor finishes responding [6, 26, 68]. The challenge of adding these
features to IVAs is rooted in the same reason that IVA response
delays exists — it takes time to predict the appropriate voice line,
gesture, and facial expression. Prior work integrated contextual
animations for virtual agents, however, they were only triggered
after multiple responses of the same type were generated, thus
being played too late to mitigate response delay [108]. Future work
should address this by designing fast NLP-based models that would
process conversation history within a time shorter than 300ms [88],
or potentially even before the user finishes speaking.

Applying conversational fillers to other applications of embodied
conversational agents could yield valuable insights. For instance,
conversational IVAs could interrupt humans, mimicking the natural
flow of human-human dialogue [38, 58, 88]. As LLMs gain stronger
multilingual capabilities [95], fillers could be adapted for culturally-
sensitive timing in language learning scenarios [24, 93], potentially
increasing IVA acceptance. Time-sensitive settingsmay also amplify
the effects of latency: urgency can compress users’ tolerance for
delay [73, 105] and increase cognitive load [103]. While our study
avoided time pressure by allowing participants to proceed at their
own pace, future work should evaluate fillers in high-stakes or time-
constrained contexts, such as a desert survival task [56], where
embodied assistants have been shown to ease cognitive load [23].
Lastly, we find that research on conversational agents is increasingly
conducted in immersive VR, however, there is a need for a more
scrutinized evaluation of virtual mediums that can be used for
studying ECAs.

7 CONCLUSION
We explored conversational fillers’ impact on mitigating response
delays in free-form conversations with LLM-powered embodied
conversational agents in VR. We found that Natural fillers enhance
VR user experience by significantly improving participants’ per-
ceived response time and reducing latency’s negative repercussions.
Our findings also indicate that Artificial fillers, namely wait indica-
tors and processing sound effects, were not effective at reducing
perceived response time. Our results contribute to the nascent work
in optimizing user experiences with LLM-powered virtual agents,
where network latency or hardware constraints inflate conversa-
tional system response time, especially in VR simulations of HRI
and HAI scenarios. We outline design recommendations based on
our findings and contribute an open-source pipeline as a solution
to deploy LLM-based intelligent virtual agents in VR, advancing
research efforts in developing more immersive and human-like
interactions in VR.
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