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ABSTRACT

State-of-the-art domestic robot assistants are essentially autonomous mobile manipulators

capable of exerting human-scale precision grasps. To maximize utility and economy, non-

technical end-users would need to be nearly as efficient as trained roboticists in control and

collaboration of manipulation task behaviors. However, it remains a significant challenge

given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics,

and computer science for rapid task modeling and recovery. But research on robot-centric

collaboration has garnered momentum in recent years; robots are now planning in partially

observable environments that maintain geometries and semantic maps, presenting opportuni-

ties for non-experts to cooperatively control task behavior with autonomous-planning agents

exploiting the knowledge. However, as autonomous systems are not immune to errors under

perceptual difficulty, a human-in-the-loop is needed to bias autonomous-planning towards

recovery conditions that resume the task and avoid similar errors.

In this work, we explore interactive techniques allowing non-technical users to model task

behaviors and perceive cooperatively with a service robot under robot-centric collabora-

tion. We evaluate stylus and touch modalities that users can intuitively and effectively

convey natural abstractions of high-level tasks, semantic revisions, and geometries about the

world. Experiments are conducted with ‘pick-and-place’ tasks in an ideal ‘Blocks World’
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environment using a Kinova JACO six degree-of-freedom manipulator. Possibilities for the

architecture and interface are demonstrated with the following features; (1) Semantic ‘Ob-

ject’ and ‘Location’ grounding that describe function and ambiguous geometries (2) Task

specification with an unordered list of goal predicates, and (3) Guiding task recovery with

implied scene geometries and trajectory via symmetry cues and configuration space (Cspace)

abstraction. Empirical results from four user studies show our interface was much preferred

than the control condition, demonstrating high learnability and ease-of-use that enable our

non-technical participants to model complex tasks, provide effective recovery assistance, and

teleoperative control.
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CHAPTER 1
INTRODUCTION

Robots For the Home

Robot manipulators have been extensively used in the manufacturing industry since the 60s’.

Common uses are found in assembly, palletizing, cargo handling, while complex examples

include metal-working such as welding, deburring, grinding, polishing and spray-painting

[Mil87]. They are also found in medical and military operations, such as remote surgery

and assistive grasping, while the military use mobile manipulators typically for search-&-

rescue and bomb-disposal under hazardous environments. Without a doubt, domestic robot

manipulators have enormous potential, but they are difficult to utilize for two main reasons.

First, household environments are dynamic and unstructured; without full observability,

manipulator actions become error-prone and unsafe, necessitating re-programming or a re-

plan of the affected tasks. It becomes unfeasible for home use as the domestic user may not

be properly equipped to handle the stoppages. Second, users at home are very unlikely to

be technically adept to task a robot; programming a manipulator competently for domestic

chores inside unstructured and partially observable environments can be a huge challenge to

overcome for non-technical users. Without a wide variety of tasks, the robot becomes under-

utilized and no longer economical. These facts necessitate most robots at home today to be
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generally inexpensive ‘turn-key’ solutions1 (switch-on-and-run) with little to no manipulation

abilities, executing standard and simple pre-programmed tasks that require no intervention

from a user.

Robot Manipulators For the Home

Robot manipulators offer more potential for performing a wide variety of tasks. They are

operationally generic, capable of manipulating novel objects, and grasping tools for a variety

of tasks (e.g. cleaning with a broom). Significant examples of mobile manipulators can be

found in the PR22 and HERB3. In an on-line survey about where and how users would like

to use robot manipulators [WMO12], household chores are the most common task category

(46%) where cooking and cleaning activities are prominent. And coming in after workplace

tasks are desktop or working-surface activities (e.g. writing a letter, clearing and cleaning

a desk). The survey results underscored high expectations perceived of domestic mobile

manipulators, but they seem commonplace only in manufacturing. Besides the possible pro-

hibitive cost of owning a service robot4, household chores are complex problems that require

constant attention from a skilled roboticist. Deceptively simple manipulator tasks, such as

taking apart an Oreo cookie5, can require many iterations of planning and simulation before

fruition. Industry manipulators usually operate under a controlled and fully-known environ-

1http://www.robotshop.com/en/personal-domestic-robots.html
2https://www.willowgarage.com/pages/pr2/overview
3www.cmu.edu/herb-robot
4In this work, ‘service robot’ shall be interchangeable with ‘service manipulators’ or ‘mobile manipulators’.
5http://www.cmu.edu/homepage/computing/2013/winter/cookie-vs-creme-a-robotic-twist.shtml
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ment under expert guidance; whereas household robots, on the other hand, are tasked by

normal users using ‘the same plan that may not work under different circumstances’. As the

Oreo cookie demonstration shows, home users implicitly know what actions robot manipula-

tors should do in a task, and more importantly, what is the final goal (that accomplishes the

task) by relating to their own experience of doing that same task. Positing the hypothesis

that a user’s superior cognition can enhance service robot productivity, the main challenges

are to (1) Identify user interfaces that allow users to transfer their task experience, and (2)

Design systems that assist robots to negotiate task-spaces by leveraging human observations.

Perceptual Modeling For Autonomous Operation

Robots that operate autonomously need constant adaptation to their changing environment

in order to perform their actions reliably. Meeting this requirement requires constant learning

of geometric and semantic models which represent their perception of the operating space

[KMM12]. Building and updating the perceptual models require geometric data sensing of

the physical space, followed by recognition of shape and semantics of the artifacts inferred

in that space.
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Geometric Mapping

Synthetic mapping is an important resource for planning and decision making in robots.

The progress of physical geometry acquisition with laser range-finders or time-of-flight tech-

niques such as LIDAR (Light Detection And Ranging), concomitant with Robot Localiza-

tion (SLAM) and 3-D surface reconstruction has allowed mobile manipulators to navigate

collision-free around their operating environment [BD06]. Geometric mapping models are

also very useful for robot teleoperation in shared control scenarios. By modeling user tele-

operative behaviors with context to their detected geometries, machine intelligence can be

trained to analyze and augment manipulator trajectories helpful to the controlling user even

as they maintain control of speed and direction using avateering [KPL14], [DS13]. Perceiv-

ing 3-D models of geometries and navigational maps, however, are insufficient conditions for

autonomous agents to execute complex household tasks [PSB11].

Semantic Mapping

Robots also need to infer meaningful relationships between objects and environment spaces

in order to plan the required manipulative actions. Geometric 3-D models would require

useful semantic labels such that they can be expressed through a language understood by

both humans and robots about their manipulative transforms in a task [SYC14]. Semantic

information can additionally provide manipulation rules and constraints that apply to the
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recognized artifacts. For example, an agent would infer it should not attempt to grasp a

glass object, or whether handle geometries should be located for grasping, or to desist from

stacking any more books into a fully-occupied shelf, or not to serve coffee with a bowl even

though it is physically permissible. Modern information technologies could be leveraged to

enhance robot awareness and understanding about their task space; the practical improve-

ments will be significant if they can assist more effective decision making in automatic task

and grasp planning. As state-of-the-art object recognition and semantic frameworks are not

yet viable for production-oriented application [MCS10], [HCB13], [PPT12], optimal decision

making will require a combination of both human and machine reasoning [PSB11]. Effective

human assistance can give autonomous agents competitive advantages by overcoming their

limitations in both spatial and semantic cognition.

Sketch-based Abstractions For Robot-centric Manipulator Control

Mobile Natural User Interfaces (NUI) with sketch-based modalities can allow users to explore

ideas visually and anywhere; with inclusion of other modalities such as touch, voice, and

arm and hand gestures, messages can be communicated intuitively to intelligent agents that

analyze the abstract input’s perceptual features and taking appropriate actions through a

service robot. Although NUIs’ as communication channels have been actively studied in

HRI, current literature are essentially user-centric, or human-centric, collaborative models;

delegating ‘low-level’ processes to autonomy that are agnostic to the task goal, while human

5



users control high-level supervisory functions that plan and monitor the required actions

performed by autonomy [CBH11]. Multi-modal systems for Human-Robot Interaction (HRI)

[CWF10], [TFC12] follow three requirements for supervisory control [She92]; Autonomy,

High-level commands, and Situational Awareness. A typical interaction scenario would have

the human user maintain situational and decision control of the task by providing a plan,

or course of action, whose workload is partitioned out to ‘low-level’ autonomies, or robot(s),

trusted [CBH11] to complete the actions; when any robot reports an exception, the user

either teleoperates or re-assign alternative actions to recover task progress, rather than the

autonomy (or robot) that performs the action. Instead, human knowledge could be applied

through robot-centric collaborative models with sketch-based modalities to assist ‘low-level’

autonomies [PSW00] at (1) Information Acquisition and (2) Analysis, (3) Decision Selection,

and (4) Task Implementation. It has been shown that humans can supplement, or partially

replace, robots in object selection (category: Information Analysis) when the state-of-the-

art is inadequate [PSB11]. This dissertation work therefore differs from supervisory systems;

besides presenting intuitive channels that relay high-level commands, the work explores

abstractions that support robot-centric interactions cooperating with robot autonomies in

task, grasp, and motion trajectory behaviors using Parasuraman’s [PSW00] four categories

of autonomy. We introduce example scenarios under each category in the following sections

where user intervention could be helpful in assisting a normally autonomous process;
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Assisting Information Acquisition

Complete information about the robot and environment states is crucial for motion and grasp

planning, but sensors typically acquire incomplete information about the task surroundings.

Geometrical mapping with laser scans contain hidden or mismatched geometries with the

ground-truth due to noisy sensors, self-occlusions, or less than ideal conditions of surface

materials [BJL11]. Gaps appear inside spatial mesh reconstructions due to under-sampling,

inaccurate, or missing point clusters (Figure 1.1). Humans are excellent at predicting unob-

served or undetectable scene structures using controlled scene continuation based on users’

prior visual experience and presented evidence [BF05], [BJL11]. A simple, intuitive strategy

is for users to assist in acquiring geometric information based on their own visual observa-

tions of the same objects or space. For example, a robot could present a user its perceived

spatial model of the object they would be grasping for cooperative modeling (e.g. a 3-D

point cloud or mesh); and rather than correcting, or predicating, the shape or size of the

presented model, a user instead provides geometric cues an intelligent agent can validate

and extrapolate further spatial information ordinarily not detected by hardware sensors.

Referring back to Figure 1.1, gaps in the point cloud could reasonably be restored by cloning

existing geometries and relocating the copies into the gaps. One example geometric cue is

an axial plane of symmetry, which can be extremely memory and time-consuming to model

through automatic means [BJL11], [QMG15]; users can present this cue very quickly to a

simple algorithm that fill the gaps by extrapolating a circle of points around the presented
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axis (Chapter 5). With a simple user cue or hypothesis, a robot can enhance the quality of

its grasps with a small time cost but no loss to its grasp-planning autonomy, as compared

against doing the same on its own that may not reach either a feasible solution or terminal

condition.

Figure 1.1: (Clockwise from Top-Left) Matching RGB image; point cloud from a typical
viewpoint looking into an experimental desk set-up; side view of the cylinder and cube
surface scans.

Assisting Information Analysis

Unprocessed data in robotics literature are provided as raw sensor readings, such as point

clouds from LIDAR scans, or kinematic data from accelerometers. For point clouds, they are

further organized into meshes, analogous to measuring 3-D position, orientation, and velocity

with any inertial-based systems such as accelerometers. Given a set of meshes, robots need
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to perform object segmentation within the scanned geometries in order to infer the targets

localized by the task instruction6. Reliable recognition and selection of objects, especially

in cluttered scenes, is a hard task that largely remains unsolved in full autonomy [PSB11].

Groups of objects can appear as a single continuous mesh, especially in cluttered scenes with

objects of similar textures or texture-less objects [HBP13]. An intuitive strategy is for users

to assist through sketched annotations. Figure 1.2 illustrates an example of how it could

be performed; sketched partitions, lassos, and labels can help to outline, disambiguate, or

localize the target object’s spatial boundaries and geometries inside the scene (e.g. Block,

Shelf), or alternatively, provide training data for machine-learned models. Secondly, a user

could also interact locally within the manipulators’ task space with pointing gestures and

voice commands to annotate the object, [GSR14] (e.g. user provides a label by pointing

towards an object with arm gestures followed by a voice call-out of ‘Vase’), while wearing any

Mixed Reality Head Mounted Display (HMD), such as the HTC Vive7, Hololens8, or Google

Cardboard9; this alternative interaction will be left as future project work for interested

readers. Localized vertices by user annotations can also back-project to pixels in the 2-

D image, isolating the sub-window at image plane coordinates and their descriptors which

can be used for alternative recognition with 2-D features instead, such as SIFT and SURF,

when there is absence of sufficient or accurate features in 3-D [TS10], [MCS10]. Labels also

6For example, an instruction of “Placing This Book on That Shelf”, requires locating targets ‘Book’ and
‘Shelf’ in the 3-D world before any manipulation can take place.

7http://www.htcvive.com/us
8http://www.microsoft.com/microsoft-hololens/en-us
9http://vr.google.com/cardboard
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function as semantic descriptors to predicates in the expression of quadruples inside classical

planning [SYC14].

Figure 1.2: (A) ‘Block’ labels three objects (B) ‘Shelf’ labels on top of the card box (C)
Line stroke that represents a plane-cut separation of smaller block with the larger block (D)
Lasso and line strokes that represent arbitrary location ‘Spot’

Decision-Making Through Shared Perceptual Spaces

A task action by a robot has to be consistent with the decision it makes before committing

that action [PSW00]. Humans collaborating inside robot-centric team tasks are inadvertent

co-participants of the robot’s perceptual and action choices. For example, robots often

have more than one choice or solution, sometimes having no solutions at all, to motion and

grasps it could use for an action. Users can bias grasp planning by recommending spatial or

mesh regions of interest (ROI) around the targeted object; ROI could represent one of the
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following: (1) where manipulators should reference for grasp points in tool center alignment

(TCP) [BJL11], (2) as approach vectors using surface-point normals and (3) as alternative

landing points when placing the object. ROI themselves could also be labeled with semantics

(e.g. ‘Hard’ or ‘Soft’) that suggest a recommended grasping force. For path-planning, users

can either sketch virtual obstacles into a scene that limit motion trajectory choices of robot

manipulators [GSR14], or indicate passable way-points in the absence of a motion plan; a

situation which is a common occurring motion-planning challenge inside confined workspaces

[SES14a].

Modeling Tasks & Voice Commands

High-level tasks can be represented, or modeled, with goal-states achieved as a result of exe-

cuting ‘low-level’ actuator actions from the current-state, known a-priori by default [SYC14].

User annotations can provide symbols, predicates, and effects (or goal-states) to a task ex-

ecutive that assemble the high-level task undertaken by the service robot. For example, a

user could model a task with the single effect of placing a Lego block on a shelf (‘Place Block

on Shelf’) as a goal predicate by linking between an annotated Lego block and specific shelf

(Figures 1.2 & 1.3); the annotations help planning agents semantically ground the block

and shelf as a new object and location respectively using spatial descriptors isolated by the

annotative strokes (Figure 1.2). Multiple goal predicates can be further coalesced together
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(Figure 1.3) into a compound task10; modeling the task as an unordered list of goals that

abstracts away user consideration of the actions and iterations needed to an autonomous

pipeline (Chapters 3, 4). Using Figure 1.3 as an illustrative example, the user is not required

to consider whether a clean shelf should be achieved ahead of the blocks being relocated to

the shelf. Additionally, Figure 1.3 further illustrates how a user can tag a descriptive verb,

which also imply the grammar for a voice command, to a compound task of three sub-goals.

Figure 1.3: A compound task with the description ‘Put Away Blocks’ comprising of three
sub-tasks (1) Place two lego blocks on the shelf (2 Place a large lego block at a location
labeled ‘Spot’. (3) Wipe the shelf. Task descriptions can be used as voice commands.

10A task with multiple sub-goals, or effects.
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Service Robot Utility

Service robots can become commonplace at home when their utility is maximized through

technological accessibility. A wider variety of manipulation tasks becomes available when

non-technical users are granted effective access to a service robot’s controller architectures

governing autonomous task, grasp, and motion planning (Chapters 3 to 5). Robots can

become more efficient when their task autonomy can be recovered at home or away without

expert robotics knowledge. These however, remain significant challenges given that in many

state-of-the-art WIMP-style tools, a superficial understanding in robotics, 3D graphics, and

computer science is still needed for many task modeling and recovery activities.

Thesis Statement

With stylus and touch modalities, a user can convey natural abstractions of high-level tasks,

semantic revisions, and environment geometries to a service robot without breaking auton-

omy. When the service robot is unable to accomplish a task through autonomous means,

teleoperative recovery is possible with natural modalities of body gestures and speech.
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Research Objectives

This work introduces a mobile and teleoperative interface schematic to allow cooperative

modeling and recovery of a high-level task performed by a service robot under a shared per-

ceptual autonomy. The main hypothesis posited is that free-form modalities of sketch, touch,

and body gestures not only provide an intuitive channel for new instruction, it presents a

mobile, natural, and powerful device for collaborating effective task behavior and recov-

ery assistance amenable for non-expert users. This is an important design requirement;

even though users are not expected to be technically qualified, they can maximize utility

by cooperating anywhere with a service robot’s autonomous planning without unnecessary

intervention and severe neglect. Shraft [SM06] cites three requirements for robotics to be

practical in small-scale production for small and medium-sized enterprises (SMEs), (1) new

users who can program the robot in a day, (2) easy re-programming under slightly varied

task environments, and (3) the time required to program new tasks should be significantly

reduced compared with the default. Though these requirements were addressed for industry,

the context is highly relevant; in order for domestic robotics to be practical, the modeling and

recovery of complex manipulation tasks would need to be made accessible for non-technical

users.

A first question we would need to ask is how a user could interact with a service manipulator

as a robotics novice; and perhaps, the interaction could also be used outside the home

maximizing mobility and usage? We shall examine state-of-the-art pipeline architectures in
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literature that implement task autonomies, and how stylus with touch modalities and gesture

recognition available in commodity mobile devices and wearables11 can be accommodated to

provide rapid modeling and recovery assistance in these autonomies. Entailing questions we

ask are where and when in a general pipeline architecture could the non-expert user provide

cooperative and teleoperative inputs that are both effective and easily understood.

The second question we would explore is whether implementing robot-centric interactions

for our user to the service robot’s task, grasp, and motion planning pipeline could provide

both productive and qualitative benefits in comfort, ease of use, and learnability with our

non-technical participants. We shall examine how a manipulation task is programmed or re-

covered in literature, and how explicit programming can be minimized by abstracting the user

away from the actions that perform the task. We shall further examine manipulator grasp

and motion trajectory planning to evaluate our alternative interactions of recovering task,

grasp, and trajectory autonomies that minimize the need for teleoperative recovery. Fur-

thermore, we shall examine how teleoperation can be immersive and intuitive when needed

as a last resort. If the cooperative and teleoperative interactions we provide demonstrate

significant user performance benefits, we can leverage the prevalence of mobile devices to

provide a portable and intuitive interface that non-experts are amenable with to control and

recover service robots.

11Our ideal interface is a constitution of any mobile device with optional stylus support, and a HMD
leveraging on the mobile device hardware, such as Google Cardboard.
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Approach

To address these questions, we devised a service framework (Chapter 3) under the RAP

system (Robots, Agents, and People) [SJP02] for an empirical platform to evaluate our

proposed interactions through a prototype (Figure 3.3). The framework encapsulates our

model architecture supporting a service robot’s manipulation planning from the high-level

task to the actuator primitives of grasping and trajectories needed for each action. With

reference to the framework, we conducted four studies, each proposing a human-in-the-loop

collaboration within the model architecture, to evaluate performance and perception from a

novice user perspective.

In our first user study (Chapter 4), we explore and evaluate abstract sketches for symbol

grounding and semantic revisions in both modeling and recovery of high-level manipulator

tasks. Though our framework is generic enough to be used under any manipulation plan-

ning domain, we limit our discussion to ‘pick and place’ tasks in a ‘Blocks World’ scenario

[GN92], [NGT04]. The assumption facilitates simple color-based feature recognition (for the

blocks) and removes the complex requirement for low-level grasp planning. The main pur-

pose was to evaluate cooperative modeling and recovery with automated task planning in

an unstructured and partially observable domain through stylus-based modalities available

on commodity mobile devices. We compared the interaction against desktop-based model-

ing with a simple visual programming language that require full knowledge about the task

domain. Our prototype that supported the interaction was well-received by a sample of non-
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expert participants, significantly outperforming the control in quantitative measures of task

completion time and mean error. We observed also that recovering the task with symbol

grounding will be insufficient to ensure a successful manipulation.

For the second study (Chapter 5), we focus on how users could address the grasp-planning

challenge of partially cognizant 3-D geometries after either an interactive grounding (from

the first study) or automated recognition. We evaluate the use of symmetry as a global

descriptor, or cue, for a user to express an estimated hypothesis about the actual 3-D shape.

Using simulated single-view depth measurements of common household object meshes taken

inside a virtual environment, we assume the user is providing grasp recovery by expressing

a hypothesis that allow extrapolation of further spatial primitives through symmetry com-

pletion rules. We compared similarity of the extrapolated point clouds to the ground-truth

model, receiving a mean normalized Hausdorff distance of 4.16% across seven tasks from a

sample of twelve participants with little experience in 3-D modeling and computer graphics.

Participants appreciated the ease and utility of symmetry descriptors that could express

global spatial aspects of the object shape.

In our third study, we moved our focus to interactions that participate in autonomous trajec-

tory planning. In any ‘pick-and-place’ manipulation, it is quite common for a motion planner

to return no feasible trajectories to the end-effector poses either in a ‘pick’ (pre-grasp) or

‘place’ action (Chapter 5, Section ‘Theoretical Framework: Collaborating with Cspace Explo-

ration in Motion Planning’ ). Reusing the empirical set-up of the first study, we evaluate

the interaction of artifact point-selection; each labeled artifact servicing as a trajectory way-
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point, or region, that stimulate further configuration free space Cfree samples. It is posited

that teleoperative recovery either with interactive markers (Chapter 5, Figure 5.4) or avateer-

ing (Chapter 6) can be minimized by improving the odds of finding a feasible path through

a user’s cooperative influence in a motion plan. However, full teleoperative recovery is still

unavoidable; there will be times when a user must take full control of the manipulator due

to safety, robot malfunction, or task expedition.

In the fourth study, we examine the use of skeletal-joint tracking in teleoperating the grasp

by leveraging on human-robot anthropomorphic similarities, termed avateering. Avateering

offers a more natural, free, and intuitive approach by teleoperating through egocentric immer-

sion and proprioception [KPL14]. However, free avateering is often inadequate in precision

grasps due to latency, viewpoint, human error, and lack of informative tactile feedback. An

intelligent agent can enhance the user’s teleoperative input through a predictive-arbitration

loop according to the observed trajectories around scene geometries. We found the avateer-

ing metaphor greatly benefited from an assistive agent providing non-obtrusive arbitration

without disrupting the teleoperative experience and expectation of the user.

The main contributions include the following:

1: Natural User Interfaces of stylus, touch and body gesture modalities applied to Sheri-

dan’s Four-Stage model of human information processing to assist autonomous plan-

ning. The system comprises of: (1) cooperative stylus and touch inputs on 2-D video

and 3-D models in the task environment that augment a service robot’s geometric and
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semantic understanding for effective grasp and motion recovery, (2) annotations that

transfer user expectations into abstract models of new tasks, and (3) gestures & voice

input for remote teleoperative recovery. Users can transfer new knowledge, communi-

cate new tasks, and become collaborative partners in helping robots gain better scene

understanding for optimal planning.

2: A study of the effects of the proposed interface on users’ qualitative and quantitative

performance when collaborating with automatic methods in high-level task planning

and recovery (e.g. sequences of pick-and-place tasks in a workspace with unknown

artifacts). Whenever the robot encounters physical and semantic obstacles that stall a

task, the current plan is usually invalidated in order to initiate a new plan accommo-

dating the environment changes; or the user acquires full teleoperative control. The

user studies provide valuable insight on the proposed system, evaluating cooperative

planning models that promote plan re-use or minimal modification such that tasks

under unstructured and partially observable environments are able to complete with

less attention.

Reader’s Guide

Chapter 2 provides a review of the literature in shared autonomy and sketch-based NUIs for

Human-Robot Interaction (HRI) and Human-Robot Team (HRT) collaboration. In Chapter

3, we propose the system architecture and user interface specifications for robot-centric col-
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laboration. Chapter 4 provides a discussion of our theoretical framework behind cooperative

modeling and recovery. The chapter also details a user study of our prototype which is an

implementation of our theoretical framework for picking and placing (‘pick and place’) tasks

in a ‘Blocks World’ planning domain. Chapter 5 explores the design and evaluation of two

further cooperative abstractions that allow users to provide recovery for grasp and motion

planning. Chapter 6 explores the requirements and design of autonomous agents for as-

sisted teleoperation, followed by a user study evaluating the agents’ effect on free avateering.

Finally, we discuss our findings, opportunities for future work, and concluding remarks in

Chapter 7.
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CHAPTER 2
GUIDING ROBOTS IN SHARED PERCEPTUAL TASKS

Perceptual Shared Control in Human-Robot Teams (HRT)

Studies of team dynamics between Human and Robot Agents collaborating as teams

have been growing steadily recently, with psychologists and roboticists in much agreement

about the productive benefits mixed collaborative teams have over human-only or only fully

autonomous teams. Humans and robots can help each other by leveraging upon and compen-

sating for each other’s cognitive or compute strengths and weaknesses. The polar-opposite

characteristics between human (cognition) and robot (compute) have implicitly defined or

constrained tasks that can be shared or done individually; tasks are assigned whether they

could be better performed either by higher cognition or compute ability. Concomitantly,

research about human-robot team design has also become an interesting topic due to the

cognitive-compute disparities between humans and robots [She92], [PSW00].

HRI research spans across multiple fields, such as adjustable autonomy [SPT01],

mixed initiative control [BFB05], and cognitive workload modeling [FY07] that study task

collaboration between machine and human agents ranging from full autonomy to human tele-

operation [DS13]. The works report findings where human users apply their cognition advan-
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tage enabling autonomous processes to perform, such as abstract perception and reasoning

[PSB11], modeling collaborative strategies that prefer human-centricity. Humans agents are

imposed supervisory roles which grant high-level task assignment and control, monitoring

and assisting with sub-task executions delegated to reactive and compute-intensive agents.

However, current prior art machine learning have enabled intelligent agents to model towards

human-like analysis and decision-making, performing admirably in tasks requiring human-

scale cognition and manipulation [KMD10]. It is still an open problem that autonomous

processes have cognitive limitations that require human agents for essential intervention

(or the task remains incomplete) and information (or task state either remain unknown or

incorrectly perceived), though the ideal collaboration scenario is to model HRTs’ towards

robot-centricity [Fon01].

Robot-centric teams model robots to behave more like fellow human peers in the

team, requiring little or no human assistance with their assigned high-level tasks or to be

instructed for new task instances during collaboration. Additionally, their task behavior can

be augmented by users during collaboration in order to improve overall team performance.

There is surprisingly little research in prior robotics literature that study and develop systems

for robot-centric models. Perhaps mainly due to accepted paradigms of cognitive-compute

differences between human and machine agents, nearly all well-studied team scenarios have

been the opposite. Robots in human-centric teams complement human tasks either by

observing and reacting to their actions, or by predicting their behavior temporally and react

according to the prediction [IPK03], [SWW11], [LTS13]. Another common human-centric
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collaborative theme is based on human-agents acting as leaders; directing and supervising

robots at sub-task level without requirement for any artificial agent to be aware of the overall

team goal. When reporting progress, robots communicate back their sub-task status in set-

timed intervals, or when encountering difficulty that may require the leader to teleoperate

or re-assign [CBH11], [PSA01]. There is also very little reported work regarding human

agents aiding and co-participating unobtrusively with autonomous robots at their sub-tasks.

Human co-participation, ideally, should be kept minimal and non-explicit; a user should

assist with implicit guidance, rather than manually taking over all autonomous function,

by leveraging on the robot’s perceptual intelligence and compute advantages. The robot

should also interrupt the user for assistance only when it is really essential in order to divert

valuable human attention elsewhere.

Regardless the model, HRT research centers around the accepted idea that control

and execution can be shared and exchanged between humans and robots for the same task,

since both taxonomies are observing the same workspace, but perceiving and understanding

that space differently. The levels and types of perceptual collaboration in robot-centric

schemes can be modeled after Parasuraman’s four categories of autonomy, occurring during

a robot’s (1) Information Acquisition, (2) Information Analysis, (3) Decision and (4) Action

Selection [PSW00].
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Figure 2.1: Collaborative control system model (Fong, 2001)

Figure 2.2: Retrieving an object based on Sheridan’s 4-stage model of human information
processing. Assisted selection is highlighted where human input intervenes (Pitzer, Styer,
Bersch, DuHadway & Becker, 2011)
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Figure 2.3: Oracle (Sankaran, Pitzer, & Osentoski, 2012)
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Information Acquisition And Analysis Under Incomplete Observations

With adequate sensing frameworks [MCS10], [PTP12], robots are highly efficient and

more than capable, in comparison with their human counterparts, at acquiring raw data and

information required to accomplish their assigned tasks. Well-known examples range from

tangibles such as robot pose from odometry, point clusters [BJL11], [NGP13], [QMG15], and

2D imagery (pixel features) for SLAM applications [BD06], [HM11], to custom intangibles

such as gestures and human intent [IPK03] as quantitative signals via natural input modali-

ties [PKL13], [KPL14], [SSC10]. Sensing and generating information understood by users for

robot interaction is viable due to the presence of measurable and consistent empirical training

data in noisy environments [DSK12]. Autonomous acquisition of structured, tangible state

data and information can be considered as a solved problem; and should the need arise with

seemingly intelligible data, machine learning techniques and heuristics could make up for

the technical limitations of sensor hardware. Clear examples can be seen in state-of-the-art

SLAM applications, where statistical techniques such as Kalman (EKF-SLAM) and Particle

filters (Monte-Carlo localization), Bayesian Graphs, and Feature-based Matching are applied

to register observed sensor scans that optimize belief of robot-pose and landmarks of explored

space [FWR10], [HM11]. Bohg [BJL11], Kroemer [KAE12], Navarro [NGP13], and Quispe

[QMG15] studied methods for generating 3-D models of household items automatically that

can be under incomplete observation. Autonomous robot teams, however, are still limited

by sensor noise and mobility constraints; they are never exempt from having sufficient and
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reliable information about their environment that allow good decision-making about their

task actions [Fon01]. Users could assist autonomies here, by inferring together with agents

useful spatial information that rectify model predictions. In describing collaborative teleop-

eration control, Fong et al. [Fon01] addressed the main limitations of supervisory or fully

autonomous robot teleoperation, where the only choices a robot has when encountering task

difficulty are “to continue performing poorly or to stop”. Collaborative or shared control,

however, allows the robot to compensate its own inadequacy through human cooperation;

requesting supplemental information from a co-participating human that augments its task

autonomy. Fong illustrated two loop closures, perception and cognition (Figure 2.1), where

human co-participants assist a robot in resolving its perceptual and cognitive difficulties.

Illustrating with a teleoperative demonstration, a human controller helps to validate obsta-

cles deemed impassable by the robot to be passable, allowing it to plan better routes to its

assigned destinations.

Besides physical information such as 3D spatial geometries, autonomous gathering

and analysis of semantic information in a robot’s workspace have been gaining attention in

recent literature [PTP12], [RMB09], [SBB12], [ZC14], enabling machine intelligence to in-

quire labels and relationships between common household artifacts that predict tractable ac-

tions. By constraining to indoors environments (e.g. kitchen), Rusu, Pangeric et al. studied

autonomous object pre-categorizations of structures (e.g. walls, floors, ceiling), box-like con-

tainers (e.g. drawers, cabinets, cupboards) and planar areas (e.g. tables, counters, shelves)

using machine learning. Further child-categorizations are parameterized with features; for
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instance, objects with a unique number of handles for grasping allow differentiation, such as

between cupboards (with two handles) and drawers (with a single handle). Point cloud scans

are post-processed with segmentation and labels, generating modifiable Semantic Object

Maps (SOM+) that cache physical and logical relationships between objects and structures,

utility (e.g. oven for heating food), and articulation models which can be learned on-line

while a robot manipulates the object by their handles. Dynamic or changing environments,

however, still present an enormous hurdle to the storage and generation of useful semantic

information, requiring inexhaustible lists of heuristics, or learning statistical models a-prior

at multiple scales that need huge ground databases updated constantly and training time

to enable effective object classification [PTP12], [RMB09]. Instead, human agents can pro-

vide such information to robots along task planning and execution according to task-specific

identifiers and context. Besides knowledge of workspace semantics, robots need continuous

localization and differentiation about novel objects, structures, and locations stipulated by

the task instructions (e.g.“Place This Book on That Shelf”). Reliable object classification

and recognition, especially inside cluttered scenes, is a hard problem that largely remains

unsolved under full autonomy. At Pitzer et al. [PSB11] collaborative task of selection, the

robot relied on human assistance for object recognition when it has ‘exhausted’ all possible

avenues. Pitzer demonstrated that robots in a shared autonomy (Figure 2.2), as compared

against state-of-the-art recognition under full autonomy, performed more robustly with user

help when isolating an object to grasp. Users become helpful in a graph-cuts image seg-

mentation algorithm, enclosing an image sub-window where the target object resides and
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marking the object’s foreground and background areas. Similarly, free-form sketches on 2-D

images can be meaningful cues at both spatial and semantic levels for object or structural

recognition, providing users an intuitive modality to assist robots as a secondary resource.

One objective for the work in this dissertation, is to explore how abstract sketches could be

effective spatial and semantic cues that augment robotic perceptual models during task and

grasp planning.

Plan & Action Selection Under Incomplete Observations

Any action or task undertaken by autonomous agents need to be consistent with the

choice of plan [PSW00]. Planning is a well-studied problem in Artificial Intelligence (AI)

and Machine Learning (ML); they are commonly associated with graph-search algorithms of

discrete maps demarcating state or plan spaces, such as best-first (e.g. A*) or first-solution

(e.g. greedy depth-first) searches that compute a heuristic cost requiring complete ‘off-line’ a-

priori information [KF11]. Sampling-Based Planners (SBP), such as Probabilistic RoadMaps

(PRMs) and Rapidly-exploring Random Trees (RRTs) on other hand, expand and process

graphs on-the-fly through samples in robot configuration space (Cspace), providing substantial

computation and memory savings even though the solution may more often be sub-optimal

[ES14]. In autonomous tasking for robot manipulators, the common scenarios are plan-

ning low-level primitives, requiring specialized motion planners for trajectories and grasps

that employ SBPs’ with graph-search [VAD12], while configurable classical-based planners
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such as SHOP2, UCPOP, Fast-Forward, and GraphHTN are more practical for planning in

abstract spaces that process STRIPS-like instructions representing actions in environment

space [NGT04]. Under ‘real-world’ planning circumstances however, robots compute multi-

ple plans as contingencies for partial observations; or sometimes, no plan or action can be

feasible when prescribed with constraints or time-schedules that become Constraint Satis-

faction Problems (CSPs). In the former case, robots could explore and mine the task-space

further to reinforce useful information or alleviate a ‘no-plan’ occurrence, a phase that can

be extremely time consuming and computationally expensive [KLM96]. Human-in-the-loop

interaction or intervention, however, have shown to help robots expedite plan exploration via

natural instruction or teach tokens that prune or filter the search space. Using Programming

by Demonstration (PbD), or Learning from Demonstration (LfD) [CDS10], recent examples

can be found at Seidel and Morante [SES14a], [MVJ14] where a robot manipulator gener-

ates novel and valid actions using taught motion segments of prior human-guided control.

Conversely, other examples can be found where human agents specify spatial and motion

constraints that imply forbidden actions that agents would need to plan around [FON12],

[GSR14].

There is little reported literature, however, that report qualitative findings of coop-

erative interaction with a non-prehensile grasp planner; the literature in general reports the

study of automatic methods that provide (i) object shape recognition, and (ii) grasp points

or posture modeling [MKC03], [BK10], [BJL11], before applying self-correcting pressure on

the grasp. Miller et al. presents a system where users first select a starting grasp position
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and approach for a particular arm, followed by the pre-grasp pose from a ranked list of

possible poses. Bohg et al. defined a grasp-planning pipeline that progresses as follows: (i)

Generation of grasp points on the object that align the hand, or tool, center point (TCP), (ii)

Computing an approach vector to the grasp points parameterized as a 3D angle parameter,

and (iii) Determining the wrist orientation for the pre-grasp. A user could potentially assist

grasp planning agents unobtrusively by intervening along the pipeline; for instance, they

could recommend mesh regions of interest around and on the object where manipulators

should reference for grasp points during tool center alignment (TCP), approach vectors for

moving to the pre-grasp pose, or to assist the agent in forming and correcting object shape

hypotheses.

The ideal collaborative scenario, however, is to necessitate human intervention only

upon request by any autonomous agent so that human supervision and attention is mini-

mized. In Sankaran et al., a shared autonomy was developed that allows a user to intervene

only after the agent, or robot, has exhausted all attempts of recovery on its own [SPO12]. The

collaboration requires an ‘oracle’ agent to mediate between a human ‘expert’ and the robot’s

task executive, selectively querying for user intervention only after progressing through a

flow-chart of recovery measures that fail to progress the task. The oracle constantly refers

to a state-machine that represents the high-level task plan for a status update as the robot

progresses through each action [BRJ11]. Alternatively, the expert can opt to supersede

the original plan with teleoperation only when an unrecoverable failure has occurred (Figure

2.3). Sankaran has shown that in a shared autonomy, human co-participation as a secondary

31



source of semantic information is essential for a successful plan execution, and teleoperating

through an unrecoverable task failure is not an uncommon occurrence given the complexities

of task planning in a dynamic and unstructured environment.

Task Transfer & Learning

A robot must be able to perform every foreseeable iteration of actions required by a

task beforehand. These iterations are acquired either through autonomous planning (Section

‘Plan & Action Selection Under Incomplete Observations’ ), or by programming executives.

Every task can be modeled as a sequence of actions or a state machine [SPO12], and many

atomic tasks that represent a high-level task can be modeled as a Hierarchal Task Network

[EKR13], [NGT04]. Using human dialogue, She et al. [SYC14] demonstrated how robots

can learn new high-level actions or tasks from known actions. The study defined a set of

manipulator-only atomic actions, such as opening and closing of the gripper, and 8 variants

of manipulator moving actions described in generic terms of constraints under which the

manipulator can move around the workspace. Any action can be represented as a STRIPS

quadruple (P,O,I,G), and during teaching a user instructs the robot to execute each known

action in a sequence as it senses the initial and goal states of that action, and finally submit-

ting the new quadruple into a knowledge database. With Knowledge Representation such

as STRIPS, automated planners such as SHOP2 can compose state-machines (or task exec-

utives) that dictate a robot’s actions based on its observations to changes in the task space.
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On other hand, users can express the state-machines visually, which can be convenient with

modelers such as Robot Operating System’s (ROS) RCommander with the underlying ROS

SMACH (State MACHine) engine [NCH13] (Figure 2.4). Chen et al. [CCC13], for instance,

built an interactive user interface (Figure 2.5) on top of tasks built with RCommander that

allow users with disabilities to control a PR2 robot as their surrogate for object manipu-

lation and social interaction. These techniques, however, still require explicit expression of

the task semantics from users; With automated planners, users are required to represent

the knowledge as quadruples before transfer to a robot. Modelers such as RCommander

mitigate the requirement by letting users visually graph out the state-machine. However,

the tool assumes a full plan is known prior, requiring users to express the state-machine fully

that includes recovering from failure. Work from She et al. is interesting given that it can

allow users to impart new tasks without requiring direct and explicit expression on the task

executive from the user. However, it assumes the taught task to be in total-order, whereas

most plans in real-life can be partially-ordered [EKR13].

There has been very little work in prior literature about user interfaces that could

allow a user to impart new tasks or actions implicitly; it is possible that without requiring di-

rect expression by a user about the task’s prerequisites, a planner could generate the actions

(or state-machine) needed for the task to complete its goals under observed environment

changes by both machine and human users. Meeting this requirement is very interesting,

as it can allow users to program behaviors into a manipulator without requiring to know

and implement much of the low-level technical details of both machine and task. Instead,
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free-form sketches can be used to implicitly express HTNs’, using its annotations that hold

semantic information which planners can work with. User annotations can implicitly pro-

vide predicates, intermediate and end-goal states, and induced state environment changes

or effects to an executive that assemble the high-level task to be acquired. For instance

when indicating a manipulator to put a lego block on the shelf, a user can mark and label

both the book and shelf, which allows a robot to isolate specific areas in the workspace to

acquire spatial and semantic knowledge about the objects and locations involved in the task

(Figure 1.2). Tasks can be also merge into larger task trees through user interaction and

re-validated by the planner. If no feasible action could be found by any planning agent for

the task to proceed, the action could be implied through user recommendation or interven-

tion. Automated planners can leverage on implied HTNs to generate task-executives users

can collaborate on in a shared autonomy based on Parasuraman’s proposed function classes.

Figure 2.4: RCommander User Interface (Nguyen et al., 2013)

34



Figure 2.5: Interface Layout (Chen et al., 2013)
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Figure 2.6: Example Sketch with six gestures, each gesture symbolizing an action, waypoint,
path, or interesting landmark (Shah et al., 2010)

Figure 2.7: Robot Control using Laser Gestures (Ishii et al., 2010)

Figure 2.8: Command Gestures (Ishii et al., 2010)
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Natural Abstractions for Human-Robot Interaction

Using sketch and touch modalities as part of a Natural User Interface (NUI) to convey

natural abstractions that interact with robots is a widely studied topic from prior work

[CWF10], [SSC10], [SAB07], [SHI09], [LSI11]. The vast literature, however, can be classified

as either action or task-oriented works. But varied hybrids between the two categories can be

observed in some, though with more emphasis on the former. Action-oriented applications

typically prescribe robots on an optimal course of action(s) which maximizes probability of

the robot completing its assigned task (‘user-knows-best’), while task-oriented approaches

allow for greater autonomy but tend to require user intervention between execution due to

greater risk, especially when operating under changing task conditions.

Action-Oriented Sketches

Works by Skubic [SAB07], Sakamoto [SHI09], Sugiura [SSW10], Ishii [IZI09], and

Shah [SSC10] let users indicate explicitly on a mobile device the goals and way-points robots

have to navigate through, or what actions to perform that achieve the goals. There can be

autonomy present at lower-level activities, such as obstacle avoidance when teleoperating a

robot to a goal on the map [SAB07]. Using sketched landmarks on a map, Skubic et al. issues

implicit navigation commands to a team of robot(s) when routes to one or many landmarks

are sketched. Sakamoto [SHI09] and Sugiura [SSW10] used a closely-similar approach with
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the exception of sketches are made out on RGB image-streams instead of a digital canvas.

AR markers1 are used to detect the robots from a overhead live-video stream, allowing a

user to reference the robot’s 2D location on the image when assigning paths or actions that

move a robot around the floor for vacuuming [SHI09], or assign cooking actions on a stove

[SSW10]. Similarly, Shah et al. use ink gestures recognized with a trained variable duration

Hidden Markov Model (VDHMM), each mapping an action to perform or an event that a

robot encounters (Figure 2.6). Ink gestures events include way-points, paths, and points

of interest (POI) before a robot reaches the final goal and completing the task. Instead of

sketching on a mobile device, Ishii on the other hand uses laser-pointed gestures to indicate

‘move-and-place’ tasks for a robot (Figuire 2.7). Ishii’s laser gestures demarcate objects for

delivery and collection, trashing actions, or to cancel the last executing action.

Action-oriented works that use sketch or natural gestures are interesting as they

provide users an intuitive way to express the actions needed for a robot to complete the

task. Upon encountering task difficulty, users can re-use the same intuitive commands for

the robot to execute alternative actions that recover from the action causing the problem.

Though user-knows-best strategy could be a best approach for many difficult tasks, it usually

draws away a lot of valuable human attention due to a lack of trust in automation, forgoing

the possibility that users might overestimate or overvalue their own decisions in comparison

to solutions from autonomy [CBH11].

1http://artoolkit.org/
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Figure 2.9: (Left)User Stroke selecting the pallet (Right)Warehouse receiving area (Correa
et al., 2010)

Figure 2.10: (Left)Layer Palette (Right)Tasks Layers for a room overlaid upon each other
(Liu et al., 2011)
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Task-Oriented Sketches

Task-oriented applications could be found at Correa [CWF10] and Liu [LSI11], using

ink strokes to indicate what needs to be done (e.g. move X from Y to Z) but delegating

entirely how it is done to the robot. Correa et al. developed an application where a user

demarcates the pallets to be moved off a truck with an autonomous forklift using sketch

and speech commands. Upon receipt of the selected pallet, the forklift proceeds with the

transportation task to a storage lot inside the warehouse, where the choice of lot can be

optionally selected by the user. In transit, the forklift is aware of its surroundings, such

as pallet recognition, fixed and moving obstacles, people, and the available storage lots

at the warehouse (Figure 2.9). Liu et al. developed a prototype for sketch layering that

imitates the image editing framework of Adobe Photoshop, which they call Roboshop; Each

layer represents one task for a specific room that can comprise of multiple actions, such as

vacuuming, mopping, or push/grab-and-deliver objects (Figure 2.10). Multiple layers can be

overlaid over one another, presenting all the tasks to be executed for that room. Any task

layer can be saved, reloaded, and rescheduled for future use.

Even though literature have shown application of sketch or ink gestures to be highly

usable and intuitive for expressing tasks instead of actions, support for user-assisted task

recovery is either absent or discharged with action-oriented interaction. The forklift in

Correa’s study either awaits for reassignment instruction, or switches to manual mode that

lets the user take over complete control. This recovery strategy can generally be observed
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inside nearly every multi-modal system that supervise robot teams in collaborative task

control [MTA00], [CBH11]. It is a safe and effective scheme, but robot-centricity is lost

since the robots do not take any part during recovery planning. Liu hardly covered task

recovery roles and strategies during collaboration, assuming the robots tasked by Roboshop

are operating in closed-world environments. But the simplified assumptions were valid given

that the work’s emphasis was the evaluation of interface usability. Another objective for the

work in this dissertation is to provide this role for users under semi-autonomy, other than

demonstrating the use of sketch for task-oriented interaction.

Figure 2.11: Memory-Based HTN planner control architecture (Zhang et al., 2011)
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Task-Oriented Interfaces under Incomplete Knowledge

Past literature have shown that fully autonomous systems can perform quite well

despite having incomplete information under partially observable dynamic environments.

Studies from Karaman [KF11], Zhao [ZC14], Bohg [BK10], Navarro [NGP13], and Quispe

[QMG15] have shown interesting workarounds with respect to motion and grasp planning

when having incomplete information about the world state. Analogously, Weser [WOZ10],

Zhang, and Zeng et al. described the approaches and developed a deliberative-reactive

framework [ZZL11], [ZZL12] when dealing with incomplete world knowledge in the context

of fully autonomous task planning (Figure 2.11). Weser et al. offered two ideas; the first

strategy is to put the robot in a perceive-replan pattern, where any unknown object or loca-

tion shall be replaced with a default plan of exploring the unknown entity until recognition

occurs (e.g. search for Lego block), or adding a book-keeping literal to the plan (e.g. Lego

block not found) if recognition fails so as to prevent an infinite perceive-replan loop. The

second strategy attempts to circumvent the need for re-planning, by generating a solution

for the task based on a prediction of the perceived unknown world state (e.g. placing Lego

block on a shelf by assuming that the shelf is usually empty). If the plan according to the

predicted world state fails, the symbolic and continuous representations of the world state

are automatically modified, initiating a new perceive-replan process of the first strategy.

Instead of letting robots explore and perceive an unknown object under Weser’s strate-

gies, robots could obtain new symbols of unknown instances by human observation. Mikita
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et al. [MAK12] proposes constructing conditional plans, and populating these plans with the

required symbols via human recognition when the robot encounters unknown objects while

executing the task. For instance in the task of clearing a table, the final goal-state is for

any object that was on the table to be placed elsewhere in order to have a clear table. From

the task description, a conditional plan can be constructed but some of the objects that

require moving may be unknown to the robot. Mikita’s strategy is to proceed on with the

object pick, and with it in the robot’s camera view while in the state of perceiving, delegate

recognition to the user via an input labeling of the object (Figure 2.12). Upon receipt of

new knowledge about the unknown entity, the robot is able to move the newly-recognized

object to a known storage location (e.g. all cups are kept in a kitchen cabinet).

Besides the implementation of a collaborative shared perceptual autonomy, Mikita’s

work is interesting in the context of this dissertation; it proposes an intuitive technique

that enable users to assist robots in task planning via an implicit modification to the task

plan through semantic labeling of objects unrecognized by the robot. The implementation,

however, has two major drawbacks; firstly, prior conditional task plans would need to be

prepared before the robot can be useful. Also, this approach asserts the requirement that

in any plan, recognized objects either by automated means or user grounding have a known

location it needs to go, or move away from. For example in Mikita’s experiment, the recog-

nized cup instantly goes to the sink, and the plastic bottle to trash. The Planning Domain

Description Language (PDDL) that describes the task plan and action behaviors are encoded

in Lisp, before conversion to a state machine readable with ROS SMACH. The work in this
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dissertation sets out to discharge this requirement, by demonstrating the use of free-form

sketch that implicitly expresses the required task behavior, which can also be saved and re-

loaded for future use. Secondly, the system does not make provision for changing semantics,

such as the fact that movable objects themselves can be locations, or sometimes, they could

be viewed like obstacles as if they were part of the table. For instance, decorative objects

on a table, such as a flower vase or a picture frame, are items that usually should not be

moved. Utility objects, such as letter trays and stationery holders, are movable items found

commonly on a study table that are better associated as locations. Work in this dissertation

sets out to study the use of free-form sketches to assist robots in differentiating between

objects that can be manipulated or behaving as locations.
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Figure 2.12: Tablet screen of human supervisor input (Mikita et al., 2012)
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CHAPTER 3
SYSTEM ARCHITECTURE & INTERFACE DESIGN

Introduction

We describe our theoretical service framework and interface specifications where sty-

lus and touch modalities are presented for robot-centric collaboration. On system request,

interactions for task modeling and recovery bias autonomous-planning at two manipulation

levels; (1) high-level1 task, and (2) low-level actuator primitives of grasping and motion

planning. Otherwise, the robot is unsupervised and left alone to decide actions that perform

the task.

Design Motivation

Service robots typically work in partially observable environments that constrain

planning. It is impractical to assume symbols generated from a known environment will be

sufficient to enable execution (AI Frame Problem). But the observability requirement can

be relaxed through human knowledge that help robots to learn the appearance by grounding

1In this work, we define a high-level task as a sequence of one or more high-level actions. A high-level
action may require one or more primitive actions that include base motion, manipulator trajectories, and
grasping.
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symbols to their unknown perceptual instances. Corroboratively, the trend towards semantic

ontologies for knowledge expansion can produce unintended over-fitting. To scale an action

corpus (Chapter 4, Section ‘Theoretical Framework’ ) across ‘common’ artifacts that share

utility concepts2, ontologies are exploited to infer deeper relationships from reasoning rules

(Figure 3.4). As illustration with a simplified ontology from [TB13] (Figure 3.1), observations

from a serving tea demonstration could provide the following action corpus in Planning

Domain Definition Language (PDDL) notation:

Listing 3.1: Serving Tea

(: action bring -tea :parameters (?x ?y ?z)

:precondition (and (FoodVessel ?x) (FoodVessel ?y)

(FurniturePiece ?z)

(or ((has -tea ?x) (has -tea ?y)))

(clear ?z))

:effect (and (at-furniture ?x ?z) (at-furniture ?y ?z)))

(: action pour -tea :parameters (?x ?y)

:precondition (and (DrinkPreparationDevice ?x)

(FoodVessel ?y) (not (has -tea ?y)))

:effect (has -tea ?y))

These actions are agreeable with instances ‘teapot’ and ‘cup’ as they have concepts (or

concept relations) ‘DrinkPreparationDevice’ for ‘teapot’, ‘FoodVessel’ for both. Instance

‘kettle’ could be a ‘DrinkPreparationDevice’, and ‘glass’ ‘FoodVessel’, but interpretation is

subjective (e.g. medication bottles, vases as ‘FoodVessel’ ). Some instances can also assume

2We define an artifact to be an object or space that maps between symbols of an action to their perceptual
representation. Concepts are resource triples describing relationships between artifacts tied by an is-a
relation (https://www.w3.org/TR/rdf-concepts/).
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separate concept relations (e.g. DrinkPreparationDevice(‘teapot’), FoodVessel(‘teapot’)). An

effective solution is for users to assert or retract semantic facts (or ABox statements) about

instances that enable or disable actions with respect to personal task demands3. A secondary

consideration for semantic modification is perceptual adaptability; allowing uncommon, ar-

bitrary artifacts and spaces4 left out of standard ontologies to assume concepts outside of

common-sense knowledge.

Second, authoring task behaviors for robotics in an unstructured world can be de-

manding for non-technical users, even with visual languages reported at [NCH13], [PHJ17].

Using the corpus from Listing 3.1, prior robot observations of the space before or after serv-

ing tea include whether the desk is full, or if the desk presents a cup with no tea. One

iteration includes pouring the tea before bringing to the desk. The amenable approach is to

minimize authoring by abstracting users away from the corpus, modeling the task as effects

parameterized with semantic instances from an ontology5.

Third, the partial observability of spatial geometries in the world can be disruptive

to primitive manipulation planning in a tractable task plan. Using back the corpus from

Listing 3.1, either action would be impossible without finding stable grasps on the teapot

if the robot perceives the handle geometries to be missing, or when there are no feasible

manipulator trajectories towards the pre-grasp pose [CCM13], [PGS17]. Autonomous recon-

stitution is hard [BJL11], [QMG15], especially for unknown or novel artifacts that require

3Chapter 4, Section ‘Theoretical Framework’, ‘Collaborating With Semantic Assertions’
4Instances for resting items, like ‘desk’, ‘shelf ’, ‘bulletin-board’, are debated to be enclosed planes which

take arbitrary shape and size.
5Chapter 4, Section ‘Theoretical Framework’, ‘Collaborating In Tasks’
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user grounding. State-of-the-art trajectory planning have traded completeness (exhaustive

path search) for improved efficiency (probabilistic searches) [ES14], [DCQ16], resulting in

false-negatives. However, there are effective cooperative approaches to reconstitute the ge-

ometries or teleoperate (Chapter 5).

To clarify development goals that describe how users would use stylus and touch

collaborating natural abstractions to a service robot, the following sections from ‘Put-That-

There’ to ‘Grasp/Place-That-There-Differently’ illustrate ‘pick-and-place’ use cases that mo-

tivate the interface and architecture specifications.

Figure 3.1: Layout of the conceptual ontology for the corpus ‘bring-tea’, ‘pour-tea’, ‘bring-
toast’, and ‘remove-to-trolley’. Instances are represented in blue boxes. Red ‘X’ indicates a
semantic retraction, rendering any instance of ‘teapot’ to be ignored for manipulation when
‘pour-tea’ activates.

‘Put-That-There’

A user observes security video streams of his home on a mobile app on his phone while

at work. He sees the kettle on the coffee table, and would like it to be placed on the stove.

The user achieves this by tapping on the kettle in the stream followed by the stove. The
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user has modeled a reusable predicate (‘Put-That-There’ ) comprising of the ‘kettle’ object,

and ‘stove’ as the location.

‘Put-Them-There’

The user has modeled and saved multiple ‘Put-That-There’ predicates previously. He

observes from the mobile app that two or more predicates can complement one other. Taking

on one case where objects ‘plate’ and ‘cup’ go on his study desk for meals, he proceeds to

merge the two predicates and saving as a coalesced predicate (‘Put-Them-There’ ).

‘Put-That/Them-There-Differently’

The user schedules the service robot to execute a saved predicate (‘Put-That-There’ or

‘Put-Them-There’ ), but the state of the world or environment keeps changing. For example,

the user would like his laptop computer to be brought to the study desk when he gets home,

but a plate with other eating utensils are taking up the space needed. However there is

nothing to be concerned about; before getting the laptop, the robot proceeds to make space

on the desk by relocating the plate and utensils to the sink.

However in more common scenarios which occur under partial observability, the ser-

vice robot will be undecided and does nothing (a stall occurs) if it detects any reasonably

large geometries unregistered to its knowledge base that are on the study desk. The service
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robot alerts the user on his phone, who proceeds to resolve the perceptual ambiguity by

lassoing out the ‘obstacles’ and providing semantic descriptions.

‘Grasp-That-There’

The service robot stalls when grasp-planning is unable to detect a stable grasp due to

ambiguous or incomplete geometries [BK10], [NGP13], [QMG15]. For example, the service

robot alerts the user when it perceives large clusters of points to be missing from a cup when

setting or clearing his study desk. The user responds to help reconstitute the geometries

back to a usable cluster or shape that resumes the grasp.

‘Grasp/Place-That-There-Differently’

The service robot stalls when motion-planning is unable to locate valid trajectories for

its manipulator(s) to navigate towards or place an object. For example, the user is alerted

when the robot perceives unknown clutter on the desk to be too obstructive to reach for

the cup without making contact with its manipulators. The user responds either by manual

teleoperation, or instruct motion-planning to explore alternative configurations for a feasible

trajectory.
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Figure 3.2: System Architecture: Blue Arrows represent interaction presented when modeling
new tasks and semantic assertions for collaboration using the tablet.

Figure 3.3: Our Natural User Interface (NUI) Prototype
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Figure 3.4: Data-Flow Diagram (DFD) of the System Architecture as a RAP Multi-Agent-
System (MAS): System Blocks in red were prepared before-hand for our user studies; Grasp
Planning is a simulated system, or Wizard of Oz (WOZ) implementation, performing perfect
grasp postures
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System Architecture

Figure 3.2 illustrates the system architecture composed of five primary blocks; our

NUI client that includes a Head-Mounted-Display (HMD) and a mobile device such as a

tablet (Figure 3.3), Ontology Knowledge Base (KB), Action Corpus, High-Level Task Plan-

ner, and Manipulation Control. The Ontology Knowledge Base module is used to persist

semantic rules and facts of the known perceptual instances according to the concept on-

tology. We used Protégé to build our concept relation taxonomies according to OWL/RDF

standards. Apache Jena with SPARQL is used to maintain and query the ontology database.

Besides persisting snapshots of the current state of the world for reasoning, SWI-Prolog is

also used for building and reasoning the semantic rules and facts about the artifacts (e.g.

FoodVessel(cup), DrinkPreparationDevice(teapot)) and providing updates to the database

upon a semantic assertion or retraction (Chapter 4, Section ‘Theoretical Framework’ ). The

Action Corpus module generates further actions by reasoning from the Ontology KB module.

We used SHOP2 for our High-Level Task Planning. The planner references the corpus for

methods, and reasons the Ontology KB for predicate states. The Manipulation Control mod-

ule converts the high-level task plan into lower-level manipulator actions, leveraging Robot

Operating System6 (ROS) specialized continuous planners for trajectories and grasps. Ma-

nipulation Control also commands the sensor array that provides perceptual feedback about

the world back to the Ontology KB with feature extraction and processed point clouds. Fig-

ure 3.4 illustrates the data-flow interactions across key components between blocks under

6http://www.ros.org
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the RAP system (Robots, Agents, and People) [SJP02]. Through the NUI, a user inter-

acts with agents that maintain ontology representation and tasks modeled as Hierarchical

Finite-State-Machines (HFSM) behind-the-scenes. A HFSM illustrates how a robot switches

to different states between actions that require motion or grasp planning according to the

current world belief. The NUI component provisions four main collaborative features: (1)

Augmenting semantic and spatial representations of the world, (2) Augmenting continuous

planning, (3) Assisting Task Behavior and Modeling, and (4) Agent-assisted teleoperation.

Sensor models that detect exogenous events or exceptions that occur during an action are

reported to the NUI, allowing the user to intervene either with teleoperation, or with stylus

and touch modalities (Figure 3.3). In the user studies, our service robot is modeled by a six

degrees-of-freedom (DOF) JACO arm manipulator7 with a Kinect RGB-D Sensor (Figure

3.2).

Interface Design

Our NUI comprise of two child interfaces for interaction; a Mixed-Reality Head-

Mounted-Display (HMD) with skeletal-joint tracking that supports user-avateering in tele-

operation (Chapter 6), and Second, a tablet or any suitable mobile device (Figure 3.3). To

present semantic assertions and task collaboration (Chapter 4, Section ‘Prototype & Exper-

iment Design’ ) with stylus and touch, the tablet interface is divided into four perspectives

7http://www.kinovarobotics.com/service-robotics/products/robot-arms
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for a distinct interaction; (1) Symbol and Semantic Concept Grounding, (2) Predicate Con-

struction, (3) Predicates Coalescence, and (4) Collaboration and Assistance. In the following

sections, we list general design specifications independent to any service manipulation do-

main; a specific implementation for ‘pick-and-place’ was developed for our user studies at

Chapter 4 however, and we shall use snapshots of the experiment prototype for illustration.

Symbol & Concept Grounding (‘Label’)

Lasso strokes of different-color stylus ink are used for grounding and recognition of

unknown perceptual instances to the Ontology KB (Figure 3.4). Each color represents a

different concept relation of the ontology. For example, following Figure 3.1, there would

be six colors available to a palette menu. For our user studies, only two colors are used

(Chapter 4, Section ‘Prototype & Experiment Design’ ). The instance is processed according

to the semantic relation encoded in the color of the stroke, followed by asserting further

concept relations by cascading upwards. Similarly, semantic retractions from the user would

also be published to the Ontology KB.

Predicate Construction (‘Predicate’)

A list of predicate functions, according to the effects of each action from the Action

Corpus (Figure 3.4), would be available for selection when constructing a predicate. For
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example, if the corpus is taken from Listing 3.1, the available names would be ‘at-furniture’

and ‘has-tea’. Before selecting the desired effect function (or predicate function) from the

corpus, touch modality is used to select the concept(s) to populate the predicate function

parameters either through the live image or from the Model Pane. The populated predicate

can be saved and previewed in the Predicate Pane (Figure 3.5).

Figure 3.5: Layout of the ‘Gather’ Perspective: Model Pane (left) displays known concepts
about the world. Predicate Pane (lower) displays Object-Location, Object-Object effect
predicates. Task Pane displays each task as a list of effect predicates (right)

Coalescing A Goal (‘Gather’)

A task is modeled by expressing a conjunction of predicates8 as a goal. The task is

modeled by selecting the predicates one after another from the Predicate Pane, appending to

8Section ‘Interface Design’, ‘Predicate Construction (‘Predicate’)’
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a list that appears as an overlay. Once the user is satisfied with the model, the conjunction

can be saved and previewed at the Task Pane (Figure 3.5). To submit a task to the High-

Level Task Planner (Figure 3.4), a selection is made from the same pane and publishing a

request to execute the task.

Collaboration & Assistance (‘Assist’)

Real-time monitoring of an executing task shall be observed as a sequence of primitive

manipulator actions processed by Manipulation Control (Figure 3.4). The current executing

action is highlighted at each stage (Figure 3.6), providing a status of the last executing state

if the task stalls and requires manipulation assistance.

Conclusion: Natural Abstractions For Cooperative Planning

Non-technical users can be efficient with service robots by cooperating with au-

tonomous planning. Collaborative robot-centric scenarios through natural modalities (Sec-

tion ‘Design Motivation’ ) have shown how task specifications and recovery for robot manip-

ulation in a dynamic and unstructured world can be modeled with actuation abstractions

to the service framework. As a final resort, tasks that remain unrecoverable after cooper-

ative interaction can be teleoperated either fully, or to an amenable state that allow task

autonomy to recover.
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Figure 3.6: Current executing action is highlighted at each stage of the task - node indicates
a ‘grab’ action. ‘stand’ is offered as an intermediary for motion planning to manipulate past
the virtual obstacle
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CHAPTER 4
PLANIT! HIGH-LEVEL TASK COLLABORATION

Introduction

In chapter 3, we addressed architecture and interface considerations amenable to non-

technical users for cooperative task modeling and recovery of service robots. We shall be

examining in this chapter our theoretical framework behind cooperative modeling and per-

ceptual assistance that abstracts the action corpus away from the user (Section ‘Theoretical

Framework’ ). To evaluate user perception and quantitative performance, we developed a

prototype for ‘pick and place’ tasks in a ‘Blocks World’ planning domain (Section ‘Prototype

& Experiment Design’ ), and compared our interface against a desktop control that uses a

very simple visual language. The remaining chapter discusses the empirical setup and results

of the user study.

Design Motivation

Visual languages such as Behavior Trees [PHJ17] and Hierarchal Finite State Ma-

chines (HFSM) [NCH13] were proposed to simplify task authoring in robotics. However, it
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does not abstract away manual programming; a user still performs an analytical considera-

tion for all iterations of the task in a fully known domain beforehand. But manual program-

ming can be simplified further with kinesthetic teaching and natural language techniques

[SDB13], [LOM14], [SES14b], [SCC14], [FM14], parsing observations of user demonstrations

into a corpus (Figure 3.4) of usable actions which can be generalized into PDDL or Lisp-like

languages [BKS12], [KSL15], [KB17]. These natural techniques can be useful for non-experts

to populate the corpus that function as a database of reusable building blocks to a task in

their free time. However, the corpus lack scale and adaptability to be applied on artifacts

that are outside the demonstration domain. With a corpus, our approach encourages rapid

modeling by not requiring users to consider the iterations and actions since they are cooper-

ating with automated task planning. The corpus is adapted and incorporated to a framework

expressing the actions with semantic literals1 defined from an ontology [JQN12], [PPT12],

[TB13]. Users can provide perceptual grounding and semantic revisions to task models2 on

a mobile app [CWF10], [LSI11], [PSB11], [MAK12].

Theoretical Framework

In this work, semantic concepts are set apart from labels commonly associated with

autonomous recognition (e.g. teapot, cup, desk); though labels can be treated like con-

cepts, they are highly specific instances describing appearance. On other hand, semantic

1Section ‘Theoretical Framework’, ‘Action Templates with Conceptual Ontologies’
2Section ‘Theoretical Framework’, ‘Collaborating With Semantic Assertions’
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concepts describe roles and definitions (T-Box statements) about what and how the artifact

is used (e.g. ‘FoodUtensil’, ‘FurniturePiece’ is-a ‘Place’ ) [TB13]. Importantly, the latter

informs actions or manipulations which are tractable for that artifact. Given a corpus, a

user can model a new task by stating a goal, or effects, as a logical conjunction of predicates.

Each predicate is parameterized by artifacts that can assume several different and separate

semantic relations under the same goal (‘Collaborating With Semantic Assertions’ ).

Action Templates with Conceptual Ontologies

An action parameterized by semantic concepts of a taxonomy behave closely to a

template that preserves the parameter subtypes; scaling is possible by adapting the action

to be covariant on literal subclasses. For illustration, consider the following action in PDDL

notation that references the simplified ontology schema (Chapter 3: Figure 3.1):

Listing 4.1: Removing any ‘HumanScaleObject’ to a service trolley

(: action remove -to-trolley :parameters (?x ?y ?z)

:precondition (and (HumanScaleObject ?x) (Place ?z)

(FurniturePiece ?y) (at -furniture ?x ?y))

:effect (at -place ?x ?z))

Listing 4.1 can illustrate the action of removing the teapot from the desk to the service

trolley (or serving-cart). This is made apparent by switching out the concept relations with

their instance equivalents:
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(: action remove -to-trolley :parameters (?x ?y ?z)

:precondition (and (teapot ?x) (trolley ?z) (desk ?y)

(at -furniture ?x ?y))

:effect (at -place ?x ?z) )

Traversing down the taxonomy and substituting the parameters with concept relations deeper

in the tree permute a total of five actions with different signatures. We highlight an inter-

esting case:

Listing 4.2: Parameter substitution on covariant action ‘remove-to-trolley’

(: action remove -to-trolley :parameters (?x ?y ?z)

:precondition (and (FoodVessel ?x) (FurniturePiece ?z)

(FurniturePiece ?y) (at -furniture ?x ?y))

:effect (at -place ?x ?z))

Alternative to the service trolley, the generated action can move any item with a ‘FoodVessel’

relation between furniture (e.g. ‘desk’, ‘chair’). The effect predicate ‘at-place(x,z)’ remains

true since the concept relation (‘is-a’ ) flows upwards from ‘FurniturePiece’ to ‘Place’.

Collaborating With Semantic Assertions

Enabling semantic modification over known artifacts provides an intuitive method

for implied manipulation control. Suppose the world model (Chapter 3: Figure 3.4) could

provide recognition of detected instances, the following facts are defined for ‘teapot’ and
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‘cup’ as examples of detected instances x and y :

teapot(x)→ DrinkPrepartionDevice(x) ∧HumanScaleObject(x)

∧FoodV essel(x) ∧ SpatialThing(x)

cup(y)→ FoodV essel(y) ∧HumanScaleObject(y) ∧ SpatialThing(y)

(4.1)

Consider also the Serving Tea corpus from Listing 3.1 is included; if there is preference for the

teapot to be unused for pouring tea, retracting the semantic fact ‘DrinkPreparationDevice’

from the teapot would disable the action ‘pour-tea’. Any retraction will cascade upwards

along the relations; for instance, if ‘FoodVessel’ is retracted from the cup, it is trimmed

away from the ontology schema and no longer holds any concept semantics other than its

own recognition label (i.e. ‘cup’ ). The remaining ‘FoodVessel’ relation held by the teapot

would still allow the action ‘bring-tea’ to manipulate it.

Suppose a task would prefer the kettle to pour tea, but there is no record in the

world model for automated recognition (highlighted green, Chapter 3: Figure 3.1), human

knowledge can ground and persist that unknown perceptual instance (i.e. z ) by providing

identity (i.e. ‘kettle’) and the necessary semantic relations:

kettle(z)→ DrinkPrepartionDevice(z) ∧HumanScaleObject(z) ∧ SpatialThing(z) (4.2)

Similarly, asserting the semantic relation ‘FoodVessel’ would enable ‘bring-tea’ to move the

kettle along with the serving cup.
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Collaborating In Tasks

Any task can be represented, or modeled, as a minimal set of effects to fulfill. Refer-

ring back to the Serving Tea corpus, a task of serving tea is modeled by stating the following

predicates that represent a goal:

at-furniture(teapot, desk) ∧ at-furniture(cup, desk) ∧ has-tea(cup) (4.3)

Casting each artifact according to the concept relations predicated at the preconditions

models a more meaningful expression:

at-furniture(FoodV essel(teapot), FurnitureP iece(desk))

∧ at-furniture(FoodV essel(cup), FurnitureP iece(desk))

∧ has-tea(FoodV essel(cup))

(4.4)

If the task also demands a plate of toast, the following predicate is appended to (4.4) (as-

suming the plate has toast):

at-furniture(FoodV essel(plate), FurnitureP iece(desk)) (4.5)

With reference to the first predicate in (4.4), ‘teapot’ can alternatively be re-cast as a

‘DrinkPreparationDevice’, modeling a conceptually different effect that disables ‘bring-tea’ :

at-furniture(DrinkPreparationDevice(teapot), FurnitureP iece(desk)) (4.6)
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Since the ‘FoodVessel’ relation is never an ancestor of ‘DrinkPreparationDevice’, it is impos-

sible for template covariance (Section 4) to generate the necessary action that accomplishes

the re-casted predicate. However, the following action would if it is included to the corpus:

Listing 4.3: Bringing tea with a ‘DrinkPreparationDevice’ artifact

:precondition (and (DrinkPreparationDevice ?x)

(FoodVessel ?y) (FurniturePiece ?z)

(has -tea ?x) (has -teabags ?x) (clear ?z))

:effect (and (at-furniture ?x ?z) (at-furniture ?y ?z)))

From a combined corpus from Listings 3.1 and 4.3, it becomes apparent that a user can

imply the actions needed from the corpus to fulfill the task by modeling different concept

relations assigned to the same effect. Alternatively, the goal can also be modeled as:

at-furniture(DrinkPreparationDevice(teapot), FurnitureP iece(desk))

∧ at-furniture(FoodV essel(teapot), FurnitureP iece(desk))

∧ at-furniture(FoodV essel(cup), FurnitureP iece(desk))

∧ has-tea(FoodV essel(cup))

(4.7)

The interesting occurrence is of having ‘teapot’ assuming separate ‘DrinkPreparationDevice’

and ‘FoodVessel’ concept relations under the same goal or effect. The ‘teapot’ must have

tea with tea-bags for the goal to fulfill. However, if the task demands only a cup of tea be

served to the desk, stating the following predicates as the goal would suffice:

at-furniture(FoodV essel(cup), FurnitureP iece(desk))

∧ has-tea(FoodV essel(cup))

(4.8)
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The first predicate of eqn.(4.4) is unnecessary, since the second predicate is a sufficient

requirement to ensure the action ‘bring-tea’ is required; modeling a task only requests user

consideration for the goal-states of the artifacts concerned, allowing autonomy to handle the

remaining workspace which are superfluous objectives from the user’s view.

Figure 4.1: ‘Blocks World’ conceptual ontology

Figure 4.2: Artifacts assigned as Locations-Only for the study. Numbers indicate available
capacity each location accommodates, e.g. ‘altar’ has space for two objects, remaining has
one each.

67



Prototype & Experiment Design

Experiment Domain & Ontology

To evaluate how non-experts would perceive collaborative modeling3, a main con-

sideration was for a simple, clear, and controlled domain to introduce users to our system.

The domain should be capable of partially observable and unstructured scenarios. ‘Blocks

World’ [GN92], [NGT04] for pick-and-place tasks meets these requirements, facilitating a

simple ontology of Object and Location concept relations that a color block can be either

or both (Figure 4.1). Immovable artifacts that can only be Location concepts are included

(Figure 4.2).

Experiment Setup

The JACO robot arm is used as the robot platform for development work with ROS

Indigo as the middle-ware (Chapter 3, Figure 3.2). A set of four different colored blocks

was prepared for stacking in our environment shown in Figure 4.2. Except for ‘table’, the

‘Blocks World’ environment is totally unknown to the robot when the study commences. A

total of eight ‘pick-and-place’ tasks of variable difficulty is planned such that as the study

progresses, a user gradually populates the instances in the ontology to completion as shown

in Figure 4.1. Each block is assigned a unique name and color feature (Figures 4.1 & 4.3) for

3Section ‘Theoretical Framework’, ‘Collaborating With Semantic Assertions’ & ‘Collaborating In Tasks’
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easy perceptual recognition, and instances which have Location relations have unique names

and poses (Figure 4.2). Except ‘table’, there is a stack limit for every artifact, including

colored blocks (limit 1) if they have Location concept relations asserted (e.g. ‘ale’ )

Learnt Action Corpus

Modeling under ‘Blocks World’ allows the consideration for a simple corpus of learnt

actions from literature [SCC14]. From She et al., two actions learnt from natural language

demonstration are prescribed:

Listing 4.4: Blocks World’ Action Corpus (Object-Location) artifact

(: action clear -top :parameters (?x ?y)

:precondition (and (Object ?x) (table ?y)

(has -space ?y))

:effect (at -location ?x ?y) )

(: action stack :parameters (?x ?y)

:precondition (and (Object ?x) (Location ?y)

(has -space ?y))

:effect (at -location ?x ?y) )

Examining Listing 4.4, it follows that modeling the task would be a logical conjunction of ‘at-

location’ predicates or effects, each parameterized by a Object-Location pair. For example,

to model a task that moves colored blocks ‘ale’ to the ‘altar’, and ‘beer’ onto ‘ale’ (Figures
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4.1, 4.2), the goal is stated as:

at-location(Object(ale), Location(altar))

∧ at-location(Object(beer), Location(ale))

(4.9)

The following action is added to the corpus in order to model an effect parameterized by an

Object-Object pair:

Listing 4.5: ‘Blocks World’ Action Corpus (Object-Object) artifact

(: action stack -near :parameters (?x ?y)

:precondition (and (Object ?x) (Object ?y)

:effect (at -obj -location ?x ?y) )

Predicate at-obj-location returns true when either Object(x) supersedes the current location

of Object(y), or placed at the same location with Object(y).

Interface Setup

Microsoft Windows Presentation Framework (WPF) was used to develop our Tablet

Interface prototype, deployed on a Microsoft Surface-Pro 3 tablet with an i7 processor with

8GB of RAM (Figures 4.3, 3.5). Predicate construction is either an at-location predicate

parameterized by an Object-Location, or an at-obj-location predicate parameterized by an
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Object-Object pair. As these parameters are distinguishable, the interaction to select the

predicate name4 is not required.

‘Label’

Unknown perceptual instances are recognized and grounded either with an Object or Loca-

tion concept relation. This is accomplished by inking a name, followed by either a blue or

red-colored ink lasso around the unknown artifact that present possible 2D image bound-

aries. Once finished, control is handed to geometry extraction to retrieve corresponding 3D

points. If the ink used is red, a plane model segmentation is performed to retrieve a plane

representative of a Location concept relation. A cluster extraction is performed instead if the

user ink is blue, retrieving the largest point cluster within the presented boundaries represen-

tative of an Object concept relation. Lastly, a 2D convex hull extraction is performed on the

corresponding image pixels, finalizing the image bounds of the artifact. For accomplishing

a Location semantic assertion to an instance that has an Object concept relation, the user

would first select an artifact from the model pane followed by the red-ink menu option from

the radial menu (Figure 4.3) to initiate the assertion. To retract, the Location concept is

selected from the model pane, and a delete event is published to the Ontology module after

tapping on ‘Delete’ located below the image (Figure 4.3).

4Chapter 3, Section ‘Interface Design’, ‘Predicate Construction (‘Predicate’)’
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‘Predicate’ Construction

A predicate is defined either with an Object-Location that parameterizes the predicate ‘at-

location’, or an Object-Object pair that parameterizes the predicate ‘at-obj-location’, following

the effects defined by the action corpus (Listings 4.4 and 4.5).

‘Gather’ A Task

The goal (eqn. 4.9) is modeled by selecting the predicates one after another from the Predi-

cate Pane, appending to a list that appears as an overlay (Chapter 3, Figure 3.5). To submit

a saved task to the High-Level Task Planner, a user selects a task from the Task Pane and

submits the request by tapping ‘Execute’ located above the pane.

‘Assist’ & Collaborate

For our experiments, three possible causes of task failure could occur; (i) when the high-level

plan encounters unknown artifacts that prevents an action in the plan from proceeding, (ii)

when grasp planning fail to locate stable object grasps, and (iii) motion planning fail to

find trajectories between primitive actions. The first exception is resolved with Symbol &

Concept Grounding (Chapter 3, Section ‘Interface Design’ ). Resolving the second and last

exceptions shall be addressed at Chapter 5.
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Figure 4.3: Layout of the ‘Label’ Tab Pane: Stylus ink is used here for symbol & concept
relation grounding of the environment.

Figure 4.4: Overview of the four interaction panels: (1) ‘Label’ - Object and Location
symbols are identified. (2) ‘Predicate’ - Pick-And-Place predicates are instantiated either as
an Object-Location, or Object-Object tuple. (3) ‘Gather’ - Modeling a Task with Predicate
Coalescence . (4) ‘Assist’ - Published user alerts in the event of a manipulation stall.
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Figure 4.5: desktop control in the within-subjects study

Figure 4.6: Trial 1 - The four easy tasks
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Empirical Study

To evaluate our tablet system performance and measure user perception and pref-

erence, we performed a within-subjects user study that compares our interface against a

desktop control. The control was built for non-technical users to learn quickly how to build

‘Blocks World’ manipulator tasks with simple visual programming, represented as a chain

of inter-linked manipulator activity nodes that facilitate drag-n-drop using mouse and key-

board (Figure 4.5). The tool panel layout for the control was made to be as closely similar

to the tablet, providing common WIMP-style interaction for editing artifacts, manipulator

nodes, connector links, and saving work. Unlike the tablet system, the control requires a

user to have full observability in order to resolve the sequence of manipulator actions needed

to fulfill the task. For example, to declare the manipulator to place ‘tea’ onto ‘table’ requires

a creation of four linked nodes (Figure 4.5).

Subjects

For evaluating our tablet interface with non-experts, we recruited 20 participants

from outside major fields in Science, Technology, Engineering, and Mathematics (STEM);

the average age was 23.7 with a standard deviation of 3.7. There were 16 females and 4 males.

On a 7-point Likert scale, the sample reported very low experience with manipulators (M

= 1.9, SD = 1.3) and medium-low experience with pen/touch interfaces for leisure (M =
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3.3, SD = 1.7) and for work (M = 2.6, SD = 1.7). Only 6 knew at least one programming

language on a novice level, and the mean experience with the most familiar was 2.8 (SD 1.3).

Experiment Tasks

The experiments consists of two main trials; each with four tasks giving a total of

eight. A secondary objective for the first trial (Trial 1 ) was to provide a gentle introduction

to the experiment and system. The trial provides four easy tasks for the user to clear; each

task can be completed in three ‘pick-and-place’ moves or less. Before the user starts modeling

a task, the blocks were arranged in a set manner to simulate unstructured environments.

For example (Fig. 4.6), the first task requires the user to move the green block ‘tea’ to

the location ‘stand’ (refer to Figure 4.2 for the experiment locations). Before the first task

commenced, block ‘tea’ was set at the location ‘table’ as the starting position, and there

were no blocks occupying the location ‘stand’. However for the starting positions for the

third task, ‘tea’ was set at the location ‘altar’, and the red block ‘ale’ was set at the location

‘stand’. The third task required the user to move ‘ale’ off the ‘stand’, before proceeding to

move ‘tea’. It is near impossible for the modeled task using the control to be reused when

the starting positions of the blocks change. For the tablet interface however, this is not a

concern. For the control application, the user would use between eight to twelve nodes to

resolve the task sequence. For the tablet system, the user would model a task, or goal, using

between one to two predicates (Fig. 4.6). The fourth task requires a user to accomplish a
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Location semantic assertion to an Object concept (‘ale’ ), modeling a task where ‘ale’ assumes

two different concept relations (Figure 4.6):

The second trial (Trial 2 ) provides four hard tasks to clear; each require at least three

‘pick-and-place’ moves or more. For the control, the user would require between twelve

to twenty-four nodes, while the user would model a task requiring between two to four

predicates for the tablet system. Two of the tasks were essentially the same for the tablet

system; the difference between the tasks was the last predicate that is missing from one of

the two (eqn. 4.10).

We set a partial observability scenario with the same hard task (eqn. 4.10). When

the task is submitted for execution using the tablet system, the task will stall as the yellow

block ‘rum’ has not been identified at this point of the study. The user would need to provide

symbol grounding through ‘Label’ interaction (Section ‘Prototype & Experiment Design’ ) in

order to resolve the stall. This scenario would not be a concern when using the control as

full knowledge for the task is needed.

at-location(Object(ale), Location(stand))

∧ at-location(Object(tea), Location(shelf))

∧ at-location(Object(beer), Location(table))

(4.10)
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Study Procedure

Our recruited participants reported to our laboratory and presented with the client

apparatus. They were seated out of sight from where the manipulator is operating. A demo-

graphics survey was given; after completion, instructions were given orally about completing

the study. The user was assigned an order of system usage in a counterbalanced design.

Then, the participant was shown how each system worked and given a simple tutorial to

accelerate familiarization. Next, the user was asked to clear Trial 1 5 with a system. After

completion, the participant repeated this process with the other system. A questionnaire was

given at the conclusion of the first trial to solicit feedback regarding both systems. The user

subsequently commenced the second trial (Trial 2 ), clearing the trial using both systems,

and another questionnaire was given to again garner user feedback. Lastly, a final question-

naire was given in order to determine if there was a clear preference between the two systems.

Each user was given $15 for their participation time. The study lasted approximately 90

minutes.

User Feedback

We wanted to evaluate if users favor our interface more than the control; our ques-

tionnaires were geared towards understanding user perception. We asked our users which

5Section ‘Prototype & Experiment Design’, ‘Experiment Tasks’
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method was more easy to learn, intuitive, fun, likable, useful, and easy to use. Additionally,

we asked the user to pick which system was better for various factors - easy completion,

intuition, usability, comfort, fun, and overall. We also recorded the total time it took to

complete each trial for both systems, as well as the errors made during use.

Results & Discussion

Qualitative Analysis

For Trial 1 (easy), our participants seemed to favor our interface over the control. We

performed Wilcoxon Signed Rank Tests to find statistical differences, and we used Holm’s

Sequential Bonferroni Adjustment method [Hol79] to control Type I errors. We found sta-

tistical differences for each of our measured questions except for “Easy to Learn” which has

no significant difference (Table 4.1). We repeated this analysis with Trial 2 (hard), and sta-

tistical differences were found between our interface with the control for all questions (Table

4.1).

We performed χ2 tests on our final post-questionnaire results in order to determine if

there were statistical differences and again used Holm’s Sequential Bonferroni Adjustment.

We found a significant difference for Intuition (χ2(1, N = 22) = 8.909, p < .05) and for Ease

of Use (χ2(1, N = 22) = 6.545, p < .05). Final results are shown in Table 4.2.

79



Figure 4.7: Three different task behaviors needed in order to accomplish the same goal
(top-left)

Table 4.1: Statistical Tests

Trial 1 Trial 2
Question Z p-val Z p-val

LabelEasy -2.264 .024 -1.991 .047
SetupEasy -3.048 .002 -3.216 .001
LearnEasy -1.496 .135 -2.488 .013
Intuitive -3.078 .002 -2.801 .005

Fun -2.953 .003 -2.445 .014
Liked -3.756 .000 -3.345 .001
Easy -2.776 .005 -3.497 .000

Useful -2.632 .008 -2.919 .004

Table 4.2: Post-Survey Statistical Tests

Question χ2 df p-val
Easier Completion 6.545 1 .011

More Intuitive 8.909 1 .003
Easier Use 6.545 1 .011

Comfort Use 2.909 1 .088
Fun Use 0.727 1 .394

Final Pick 4.545 1 .033
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Task Completion Time

We performed a Paired Samples T-Test to compare mean task completion times

(Figure 4.8). For Trial 1 (easy), there was a significant difference between the control

(Desktop : M = 23.65, SD = 5.51) and our interface (Tablet: M = 12.3, SD = 2.75);

t(19) = 11.083, p < .001. Significant differences are also found for Trial 2 (hard) tasks

between the control (Desktop: M = 22.7, SD = 4.19) and our interface (Tablet : M = 10.4,

SD = 3.05); t(19) = 12.564, p < .001.

Figure 4.8: Trial 1 (Easy) & Trial 2 (Hard) Quantitative Results
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Task Errors

We performed a Paired Samples T-Test to compare frequency of errors between the

conditions (Figure 4.8). For Trial 1, there was a significant difference between the control

(Desktop: M = .909, SD = .92) and our interface (Tablet : M = .136, SD = .35); t(21) =

3.93, p < .05. For Trial 2, we again found significant differences (Desktop: M = 1.0, SD =

1.2) (Tablet: M = .09, SD = .29); t(21) = 3.578, p < .05.

Discussion

The results expectedly show our interface significantly outperformed and was more

consistent across quantitative measures. Besides a smaller mean error (Figure 4.8), it has a

small variance compared to the control condition. The cause of the large variance can be

attributed to majority of users making careless mistakes in the hard tasks (Trial 2), where

the task that was modeled with the control cannot be re-used for subsequent problems, even

though the goals remained the same (Figure 4.7). Many users provided less optimal task

behaviors than the task planner, though some commented they could do better if allowed

to repeat the study. Our interface remained consistent and relatively error-free across usage

since the task is modeled as a goal agnostic to structural change. Our interface was well-

received by participants, with users finding the interactions easier and more intuitive than the

control (Tables 4.1 & 4.2). From feedback, users found no difficulty discerning the differences
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when instantiating Object-Object and Object-Location predicates, or when modeling the task.

They found the interaction when asserting the additional Location relation required (‘ale’)

intuitive and clear. They appreciated the re-usability of the tasks for our interface, especially

for the hard tasks (Trial 2).
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CHAPTER 5
GRASPIT! MOVEIT! GRASP & MOTION COLLABORATION

Introduction

In chapters 3 & 4, we addressed how symbol grounding with semantic revisions can be

encapsulated into abstract sketches. We have shown they can be both intuitive and useful for

non-experts to present artifact semantics and appearance in cooperative task1 modeling. But

the collaborative strategy so far with high-level planning (Chapter 4, Section ‘Theoretical

Framework’ ) will not be enough to ensure successful manipulation. Semantics aside, we

can observe upon closer examination that 3-D appearance learning is based on segmented,

but partially cognizant geometries2 (Chapter 3, Section ‘Interface Design’ & Chapter 4,

Section ‘Prototype & Experiment Design’ ). High sparsity and noise further corrupt the scan

quality of environment point clouds or depth images with commodity range finders. But

robots need to plan manipulator grasps and trajectories through incomplete and degraded

geometries at Manipulation Control for any tractable task (Chapter 3, Figures 3.2 & 3.4).

In this chapter, we shall explore further abstractions non-technical users can understand

and exploit to extend the capabilities of Manipulation Control agents for recovery (Section

1In this chapter, a task shall be defined as a sequence of manipulator trajectories and grasps.
2‘geometries’ shall be interchangeable with ‘point clouds’ or ‘meshes’.
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‘Theoretical Framework’ ); specifically, we explore interactive cues on environment geometries

that leverage user intuition, to stimulate further motion and grasp planning activity. The

‘Theoretical Framework’ Section also describes a grasp and motion planning pipeline our

user collaborates with in order to recover from manipulation stalls3, discuss our empirical

setups, and results of two independent user studies relevant to scenarios of assisting the

Continuous Planner (Chapter 3, Figure 3.4).

Figure 5.1: Manipulation Planning pipeline inside the Continuous Planner. Process and
Decision blocks in green are performed by our ‘human-in-the-loop’.
Process Block ‘A’ : User presents a Shape Hypothesis (Section 5).
Decision Block ‘B’ : User decides to either allow the pipeline to pop the next candidate
grasp, or to select workspace region(s) for preferential Cspace sampling.
Decision Block ‘C’ : User decides to teleoperate the grasp, or collaborate on a new shape
hypothesis.

3Chapter 4, Section ‘Interface Design’, ‘Collaboration & Assistance (‘Assist’)’
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Design Motivation

Continuous manipulation planning for robotics under incomplete observations of en-

vironment geometries are predominantly addressed with a fully autonomous, interconnected

pipeline of manipulator grasp and motion plans [CCM13], [PGS17] (Figure 3.4). When a

feasible grasp posture is found, the pre-grasp pose for the posture is offered as the goal for

motion trajectory planning.

In Grasp Planning, object geometries are important parameters for finding feasible

and stable grasp postures. Methods for autonomous geometry completion and fitting can

be one or a combination of extrapolation [BJL11], [KAE12], [TZC09] and matching with

3-D shape features from model databases [FAJ16], [LSW17]. It becomes apparent that au-

tonomous reconstitution destabilize when scanned geometries for grasping are novel, sparse,

or ambiguous. Further, locating a stable grasp would be irrelevant when Motion Planning

is unable to return a feasible manipulator trajectory to the pre-grasp pose. Our approach

is for users to participate in the Manipulation Planning pipeline (Figure 5.1), providing

environment cues that stimulate geometry extrapolation, and configuration space (Cspace)

exploration (Section ‘Collaborating with Cspace Exploration in Motion Planning’ ).
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Figure 5.2: (Left): A simulation of a noisy, occluded, and sparse point cluster of the ‘White-
Cup’ model from the KIT object models database.
(Center): Example of a 4-tupled shape hypothesis; aside from the filter plane, the tuple
expresses a vertical plane reflection, horizontal plane reflection, and a bounded axial symme-
try along the main axis.
(Right): The result when the hypothesis is applied to the /textitleft point cloud.

Figure 5.3: Artifacts assigned as Locations-Only. Numbers indicate available capacity for
each location. Figure is an exact copy of Figure 4.2, reproduced here for convenience.
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Theoretical Framework

Geometries obtained after interactive symbol grounding (Chapter 3, Section ‘Interface

Design’ ) or through automated recognition can be novel, sparse, noisy, and ambiguous at the

same time. Factors, to name a few, such as clutter occlusion [PSB11], sensor noise, sampling

rates, robot mobility and time constraints [QAC16] can limit the quality and size of the

scans. Without necessary prior information, reasonable shape hypotheses for geometry-

fitting [TW05], [BJL11], [MTG18], [VKW18] are nearly impossible for Grasp Planning to

predict. However, it may be possible for users to contribute estimated hypotheses that

leverage their understanding of the object’s appearance. The user hypotheses can be further

refined and validated against surrounding scene geometries by the Grasp Planner before

Geometry Fitting. When the Motion Planner (Figure 5.1) fails to locate a feasible trajectory

to the pre-grasp or, in fact, any destination pose in a motion plan, teleoperation could be used

to move the arm into more amenable configurations (Chapter 6) for a motion re-plan. But,

it is possible to avoid teleoperation by having the user, instead, to predict highly-probable

regions of configuration free (Cfree) space to explore alternatives.

Continuous Planning

Our extended Manipulation Pipeline inspired from Quispe et.al. [QAC16] resides in

the Continuous Planner (Figure 3.4), illustrated in Figure 5.1. Upon receipt of segmented
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points or depths, the following steps occur automatically if there were no stoppages requesting

user intervention;

1: Generate Shape Hypotheses; Shape hypotheses, such as Composite Symmetries4

[TW05], [BJL11], Extrusion [KAE12], [QMG15] and Medial Axes [TZC09], [VKW18]

are defined from existing geometries to extrapolate further spatial primitives and nor-

mals. Filtering [WKZ16] and collision tests may be performed to validate and refine

the cloud further.

2: Geometry Fitting; Mesh prediction methods, such as Poisson Surface Reconstruc-

tion [KBH06], Superquadrics (SQ) [QAC16], [MTG18], convex-hulls, or even primitive

shapes (cylinders, spheres, cuboids) [MKC03] may be used to solve the optimal repre-

sentation of the shape.

3: Generate & Rank Candidate Grasps; The Fitted Geometry and surrounding

scene geometries are sent to a grasp planner. Candidate grasps for the fitted geometry

with a specific manipulator arm are modeled, ranked, and enqueued according to a

chosen stability metric, such as force-closure [SEB12]; combinations of metrics which

can include rating the arm trajectory approach besides the grasp posture may also be

used [QAC16].

4: Pop Top-Rank Grasp; The highest-ranked grasp is removed from the queue and

sent to the Motion Planner.

4Combinations of two or more basic symmetries. For example, a cube has three orthogonal plane reflection
symmetries.
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5: Plan Trajectory Pre-Grasp; If a feasible manipulator trajectory to the pre-grasp

is found, the entire grasp and motion plan becomes executable. Otherwise, the same

evaluation is repeated with the next-highest ranked grasp from the queue.

The pipeline terminates when either a feasible manipulation plan was found, or when the

candidate grasp queue is empty. If the latter condition occurs, the user can either opt

to teleoperate the grasp (Chapter 6), or collaborate with grasp-planning further on the

shape hypothesis (Section ‘Collaborating with Geometry Cues in Grasp Planning’ ) to provide

another mesh prediction for the next cycle (Figure 5.1: Process Block ‘A’).

Collaborating with Geometry Cues in Grasp Planning

Human cognition has a definitive advantage over machines in mitigating ambiguities

and missing data when perceiving the same geometries. Psychological studies suggest that

humans are able to predict obscure geometries through controlled scene continuation, com-

pleting the hidden regions by visual propagation and generalization of the known geometries

[BF05], [BJL11]. It is worth mentioning that methods for the automatic completion5 of grasp

geometries are advancing rapidly, projecting better results with each iteration. However, the

literature have also reported the limitations that exacerbate a poor fit (and subsequent

candidate grasps) are attributed mainly to inaccurate spatial predictions from the shape

5We established that grasp geometries are processed through a two-stage pipeline; (1) Generating Shape
Hypotheses for further spatial information (Section ‘Continuous Planning’, Step 1:), (2) Fitting an Optimized
Shape (Section ‘Continuous Planning’, Step 2:)
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hypotheses [BJL11], [KAE12], [CZS13], [QMG15], [FAJ16], [LSW17]. Importantly, it sug-

gests that cooperative modeling on the hypotheses alone is a sufficient condition for users

to have significant influence in a grasp plan. We validate the use of symmetry cues in the

collaborative model with the following design considerations:

1: High Affordance; Norman defines an affordance to be “fundamental properties that

determine just how the thing could possibly be used” [Nor02]. In our context, user

interaction should be afforded to express hypotheses about the shape when they en-

capsulate common and intuitive descriptors that require little to no formal training.

The human cognitive ability of scene continuation allows a user to acquire understand-

ing of an appearance through the object’s local, global, and volume-based descriptors

[BF05], [BJL11]. When presented evidence of similar descriptors in different but par-

tially hidden objects, the invisible regions are predicted, or extrapolated, according to

the visual evidence and completion rules gained through prior visual experience. A

global descriptor, or cue, that is commonly expressed in many household objects is the

concept of symmetry [TW05]; a user can express a shape hypothesis with cues that

indicate symmetries of a household object.

2: Exhibit Low Entropy; The cue(s) should express the least-likely occurring hypothe-

ses (of scanned geometries) that hold the most spatial information. Object symmetries

and medial axes [Blu67] are examples of shape descriptors with low entropy that can

extrapolate global information about the shape [TZC09], [CC12]. A user could point
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out occurrences of ambiguous, composite symmetries along the main axes6 of a scan

which seem implausible to robots. As illustration with Figure 5.2, the occurrence of

two orthogonal plane reflection symmetries and bounded axial symmetry on a point

cloud (left) can be expressed with three points and a normal from the main axis (cen-

ter), resulting in the modified cluster (right). Extracting the main axes can either be

automatic [TZC09], [KAE12], [QMG15] or with user modeling [CZS13], [HDT07]. If

the main axes are indeterminate themselves, the 3-sweep technique [CZS13] can be

offered to model a hypothesis for the main axis; two sweeps joining three spatial points

that define the planar base for the axis, while the optional third sweep determines the

extent. On a side-note, 3-sweep is constrained by the modeling range of generalized

cylinders and cuboids, rendering it inadequate to offer hypotheses outside the range,

such as composite symmetries.

The estimated hypotheses from a user are offered to the Grasp Planner before the generation

of their own hypotheses (Figure 5.1: Block ‘A’). Grasp Planning may handle the hypotheses

with one or more of the following options;

1: ‘Seeding’; The estimated hypotheses may be used to initialize the parameters of auto-

matic methods that generate closely-similar hypotheses. Examples from past literature

include searches for the dominant symmetry, extrusion axes, and medial axes [TZC09],

[BJL11], [KAE12], [QMG15], [VKW18].

6It can be established that the main axes are extensions from their Medial Axis Transforms (MAT)
[MGP10]
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2: Validation; The estimated hypotheses may be used as similarity models [OMT03] to

refine or validate the spatial predictions of the automated shape hypotheses.

3: Shape Hypothesis; The estimated hypotheses may be used either on its own, or

included with the automated hypotheses, to extrapolate further spatial primitives for

Geometry Fitting.

Figure 5.4: Example of a simulated stall: Blocking virtual obstacles prevent the motion plan
from plotting a trajectory between experiment locations ‘table’ and ‘dais’ (Figure 5.3)
(Left): ‘stand’ selected as a waypoint; the space above ‘stand’ generates further Cspace

samples for the search-tree.
(Center): Highlighted node displays the current task status when the stall occurred.
(Right): Interactive markers are used to adjust the end-effector towards ‘dais’.
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Collaborating with Cspace Exploration in Motion Planning

Motion Planning in Cspace. The pose for an n degrees-of-freedom (DOF) robot ma-

nipulator, or arm, can be represented as a unique point in an n-dimensional space called

the configuration space (Cspace) [LW79], [Car06], [ES14], [DCQ16]. It is possible for the

end-effector, or hand, to maintain the same pose in an Euclidean workspace under multi-

ple configurations. Using the JACO arm to illustrate, the JACO has six joints and links

(excluding the fixed-base) with the last being a three-fingered hand (Figure 5.4). Assuming

the base link stays in the same position with the arm never fully extended, a configuration

specific to the JACO arm can be represented as a single point in a 6-dimensional Cspace as

a tuple of joint-angles7. It is possible for many points to appear in Cspace that each maps to

the same workspace orientation and position of the hand. In context with the Manipulation

Pipeline (Section ‘Continuous Planning’ ), it is worth mentioning here that it is possible for

the pre-grasp pose of each candidate grasp to have multiple feasible configurations in Cspace

as well. Therefore, we state the Cspace of a JACO arm to be the set of all feasible configu-

rations within joint angular limits. The subset of Cspace that avoids collision with obstacles

in the workspace is the configuration free space (Cfree), while its complement becomes the

obstacle space (Cobst). Hence, the general motion-planning problem becomes the search for

a trajectory of configurations inside Cfree that links between the current configuration of the

arm to a goal configuration [DCQ16].

7The angle between two links on either side of a joint in a robot arm
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Trajectory in Cfree. State-of-the-art motion planning occurs through a sampling approach

inside Cfree. For a more detailed review of Sampling Based Planning (SBP) research, inter-

ested readers are forwarded to Carpin [Car06], Elbanhawi [ES14], and Denny [DCQ16]. In

general, a graph, or search-tree, that includes the start and goal configurations as connected

nodes is grown from random samples of Cfree. The graph becomes an implied roadmap of the

real workspace which can be queried for trajectories expressed as a sequence of configura-

tions. However, the probability of finding a successful path through the graph is dependent

on the sampling strategy and its expansiveness ; valid trajectories can be missed when in-

sufficient samples are taken, or when too few connections are made due to poor visibility8

between neighboring nodes in the graph [ES14], [DCQ16].

Cooperative Cspace Exploration. When no motion plan is returned for a trajectory to

the pre-grasp (Figure 5.1: Block ‘B’) or any goal destination, a common occurrence is at-

tributed to under-sampled Cfree at key workspace regions between the current configuration

of the arm to the goal [DSA18]. Sampling is not efficient in cluttered, or obstacle, regions9 of

the workspace, resulting in poor visibility between Cfree samples taken around the obstacle

space. To get around the problem, a human-in-the-loop could teleoperate the hand directly

to the goal (Chapter 6); a more amenable second approach that reduces teleoperation is to

move the hand nearer to the obstacle region and resume planning. The second approach

improves the sampling probability of Cfree around Cobst [RTL06], growing further feasible

8A pair of configurations are defined as visible to each other when they can be connected in Cfree
9The narrow passage problem [DCQ16]. Cluttered regions form narrow, but passable, passageways be-

tween two sparse regions.
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configurations into the roadmap that improve the odds of finding a path. Inspired by the

success of human-in-the-loop methods reported in Kent [KSC17] and Denny [DSA18], the

third approach is for users to leverage labeled artifacts10 in the workspace as way-point rec-

ommendations. Instead of teleoperating to the obstacle region as in the second approach, a

user offers the artifacts that are close enough to the obstacle region, influencing the planner

to concentrate Cfree sampling around the artifacts.

As an illustrative example with our interface from Chapter 4 (Section ‘Prototype & Ex-

periment Design’, ‘Interface Setup’ ) and Figure 5.4, a simulated manipulation stall prevents

the JACO arm from placing ‘ale’ (red ego block) at ‘dais’ (Figures 5.3 & 5.4). The user

has three options; (1) Teleoperate the place action (Chapter 6). (2) Teleoperate closer to

‘dais’ and resume motion planning, or (3) Offer the ‘stand’ artifact as a way-point (or region

for Cspace samples) and resume motion planning. For Option (3), the artifact(s) can be of-

fered either by tapping the labeled artifact on the image or in the Model Pane (Figure 4.3).

Teleoperation can alternatively be performed with interactive markers11 (Figure 5.4).

10Chapter 3, Section ‘Interface Design’, ‘Symbol & Concept Grounding (‘Label’)’
11The interactive markers for teleoperating the JACO arm is a simple 6-DOF 3-D widget attached to the

hand. It allows a user to control translation and rotation of the hand in the workspace by clicking and
dragging along the colored gimbals (Figure 5.4).
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Figure 5.5: Selected household objects from the KIT object models dataset [KXD12] &
BigBIRD dataset [SSN14]; ‘CokePlasticSmall’ is used for a tutorial before the actual study
commences.‘GreenCup’ was modified with an extra handle. Only ‘Detergent’ is retrieved
from the BigBIRD dataset.

Figure 5.6: Single-view depth measurements [BRH14] with simulated noise and occlusion
are presented with their main axes. Tasks are divided under groups ‘A’ & ‘B’; the number
prefix at each name indicates the order of point clouds presented to the user.
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Study Design: GraspIt!

The goal of our study was to evaluate how non-experts would perceive using symme-

tries to describe 3-D shapes, and whether it can be effective as a collaborative model to a

grasp planner. We posit that a user with little to no experience about 3-D modeling would

favor describing object shapes as a hypothesis of symmetry descriptors. We begin with our

assumption that the user provides recovery assistance through a pick-and-place manipulation

of a common household object. Though it is possible for our ‘human-in-the-loop’ model to

scale (Figure 5.1), the assumption helps to shape the remaining study design considerations.

To answer the question whether it could be effective with automatic methods that complete

grasp geometries, we consider how the user hypotheses shall be handled by the pipeline; i.e.

whether they would be utilized for ‘seeding’, validation, or as a resource for spatial primi-

tives. The last option was selected (i.e. as a resource) as it exhibits method independence.

Thus, we would further evaluate similarity of extrapolated spatial primitives to a ground

truth.

Shape Hypothesis

We state the following elemental and dominant symmetries to be common in many

household objects [KXD12]; (1) Plane reflection, and (2) Axial [TW05], [BJL11], [KAE12],

[CZS13], [QMG15]. We establish that the symmetries are dependent on the object main
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axis (Section ‘Collaborating with Geometry Cues in Grasp Planning’ ). Many household

objects have at least one dominant symmetry, but it is also not uncommon to find composite

symmetries; besides the three-orthogonal plane reflection symmetry (e.g. a cube), two other

common composite symmetries are a dual-orthogonal plane reflection symmetry (e.g. Figure

5.2, ‘WhiteCup’ is modeled along one of the vertical plane reflections with a horizontal plane

reflection), and the axial with single-orthogonal plane reflection symmetry [TW05]. Hence,

a shape hypothesis could be expressed with a tuple that holds one or more of the following

descriptors; (1) a set of vertical plane reflections, (2) a set of horizontal plane reflections,

and (3) an axial symmetry. The main axis is implied in the hypothesis given that it is a

necessary requirement. In the study, each point cloud will be provided the main axis to

support the expressed symmetry descriptors (Figure 5.6).

From a user perspective, symmetry could be confusing as they apply globally on an

object. For example, a user may indicate an axial symmetry to an incomplete ‘WhiteCup’

point cloud (Figure 5.2 (Left)) though it should apply only at the cylindrical cluster. A

filtering definition can be included to the hypothesis that partitions out geometries where

certain symmetries do not apply. In this user study, we shall simplify the expression to

one or more of the following descriptors; (1) a vertical plane reflection, (2) horizontal plane

reflection, (3) bounded axial symmetry, and (4) a vertical plane filter. The filter plane

(Figure 5.2) separates, or cuts, away geometries that are exempt from the axial symmetry

rule (e.g cup handles), and also from a vertical plane reflection if their planes are orthogonal.
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A user is not restricted to express further hypotheses on resulting point clouds if they wish

to extrapolate further.

Figure 5.7: (Left) : The ‘pitcher’ mesh (KIT) is loaded to the virtual platform and rests
on table-top by default. The camera view is the implied parameter to the single-view depth
measurement.
(Right) : The result point cloud after the simulated measurement completes.

Figure 5.8: Modeling a shape hypothesis describing ‘Toothpaste’ ; a vertical plane reflection,
and axial symmetry bounded between two points (planes) along the main axis.
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Experiment Setup

A set of 7 point-clouds was prepared from the KIT object models database [KXD12]

and BigBIRD dataset [SSN14] (Figure 5.5), each presenting an incomplete point cloud that a

user presents hypotheses for extrapolation during the study. We developed a virtual platform

for the dual-purpose of preparing the simulated depth measurements (Figure 5.7) and an

interface a user leverages to explore and express hypotheses (Figure 5.8). After a depth

measurement, Perlin noise is introduced and one-third (33%) of the points are randomly

removed (Figure 5.6). To simulate simple occlusion, half the remaining cloud was removed

along a major eigenvector [BJL11] (e.g. lower-half of ‘WhiteCup’, Figure 5.2); but sufficient

precaution was taken to ensure the cloud maintained key textures that hold color cues for a

user to locate where major symmetries could reside.

Subjects

To evaluate our shape hypothesis abstraction with non-experts, we recruited 12 par-

ticipants from outside major fields in Science, Technology, Engineering, and Mathematics

(STEM); the average age was 24.8 with a standard deviation of 3. There were 9 females

and 3 males. On a 7-point Likert scale, the sample reported very low experience with 3-D

computer graphics (M = 1.33, SD = 0.49), 3-D modeling or editing (M = 2.25, SD = 1.3),

and 3-D printing (M = 1.08, SD = 0.25). Only 3 knew at least one programming language
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on a novice level, and the mean experience with the most familiar was 3.3 (SD 1.15). As for

robot-related experience, the sample reported very low experience with manipulators (M =

1.33, SD = 0.65) and software (M = 1.5, SD = 1.17).

Experiment Tasks

After a tutorial, the user would be presented further point clouds in sequence illus-

trated at Figure 5.6. Excluding the tutorial, tasks can be divided into two groups, ‘A’ & ‘B’;

the first four make up ‘A’ and remaining ‘B’.

Point clouds from ‘A’ are dual-orthogonal vertical reflection plane symmetries; re-

peated expressions of vertical plane symmetries should suffice under normal circumstances,

including point cloud ‘4 Detergent’ when the filter plane is used on the handle geometries.

However, it would be interesting to observe whether a user could refine the hypothesis further

with an axial symmetry; according to the entailment hierarchy [TW05], an axial symmetry

imply the presence of plane symmetries, but unlike planar reflections, a circle of points around

the main axis extrapolates instead of a single reflected point across the plane. For example, a

bounded axial symmetry, illustrated in Figure 5.8, can be included to describe point clusters

at ‘3 Toothpaste’; it can also be applied to the bottle-cap clusters at ‘2 HamburgerSauce’,

and ‘4 Detergent’.

Without handle geometries, point clouds from ‘B’ are essentially axial symmetries;

and users are informed of the mandatory requirement to express them. Interesting tasks
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include ‘GreenCup’ modified with an extra handle, and ‘WhiteCup’ that require both vertical

and horizontal reflection planes.

Figure 5.9: (First Row): Top, Side, Front, and Perspective projections of ‘GreenCup’
(Second Row): Top, Side, & Front projections of ‘Toothpaste’

Figure 5.10: Sample user point clouds with extrapolated vertices (red).
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Study Procedure

Our recruited participants reported to our laboratory and presented with the virtual

platform (Figure 5.7). A demographics survey was given; after completion, instructions

were given orally about completing the study. The user was given a short tutorial that

introduces the platform, object scanning, and the interface in order to express a hypothesis;

they were introduced to the concepts of vertical reflection, horizontal reflection, (bounded)

axial symmetry, and a filter plane. They were shown how to express each descriptor, and

extrapolate according to the expressed descriptor(s). They were also shown how to undo

a previous extrapolation, if necessary, and modify the descriptor(s). The user is provided

with 2-D snapshots of the objects’ top, front, and side projections (Figure 5.9). The user

is further informed there are no time limits to complete the task, multiple extrapolations

are not restricted, and that the scanned object is resting on a table-top. After completing

the tasks, a questionnaire was given to solicit feedback regarding the interface and using the

descriptors to extrapolate shape. Each user was given $10 for their participation time. The

study lasted approximately 40 minutes.

User Feedback

We wanted to evaluate if users favor expressing symmetries as a shape model for an

object; our questionnaires were geared towards understanding user perception. We asked
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our users whether the descriptors were easy to learn, intuitive, useful, coherence with real

objects, and likable.

Figure 5.11: Normalized Hausdorff distances in percentage values (Section 5).

Figure 5.12: Participant responses to the use of symmetry descriptors as a shape hypothesis.
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Results & Qualitative Analysis

Before post-processing, point clouds were down-sampled and filtered to remove any

duplicate and statistical outliers. To determine similarity of the point clouds with ground

truth models in KIT, we use the Hausdorff distance metric to compare between their convex-

hulls. As the depth measurements were simulated, the ground truth and corresponding

point cloud share a common coordinate system and transformation. Hausdorff distance

values between the two convex-hulls are normalized afterwards with the diagonal length

of the combined models’ oriented bounding box. The normalized minimum and maximum

Hausdorff distance values are 2.03% and 7.21% respectively (Figure 5.11), with the mean

normalized Hausdorff distance at 4.16%.

From our observations and user feedback, participants learned quickly and became

more familiar with each task progression about the descriptors required for aesthetic results.

Five of the twelve participants expressed the bounded axial symmetry for the bottle cap

clusters at the second task (‘2 HamburgerSauce’), eleven participants at ‘3 Toothpaste’,

and eight at ‘4 Detergent’. All twelve managed to complete the last three tasks with little

prompting.

The interface was very well received (Figure 5.12); participants recognized the ease,

speed, and utility of global shape descriptors; a participant remarked “Easy to use once you

get the hang of it. Generates objects fast”, with another summarizing “how easy it was to

pick it up and use it. Was also fast to do, especially if you’re very familiar with it.” Partici-
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pants found the descriptors fun and useful for people who are 3-D modeling and computer

graphics novices; as one participant summarized, “I like that it created 3D objects for me in

real time. As someone who struggles with technology, after some guidance most of the models

were doable”, one participant remarked that “It quickly became sort of like a matching game

and I got better quickly.” Some participants provided further comments about features they

would prefer, for example, support for more than one filter plane for symmetry exclusions,

and different-colored (layered) extrapolated vertices with each hypothesis iteration.

Discussion

Our shape hypothesis abstraction, leveraging human intuition directly into the expres-

sion of symmetries, provides a proof-of-concept model for non-experts to collaborate spatial

information with a grasp planner. Though it was cast and tested as a spatial information

resource in the user study, it can be re-applied either as validation or to refine automated

hypotheses; as the shape was expressed with positioned cues, it can also be re-positioned

by automated methods for seeding similar hypotheses. The main limitation of the model is

its dependence on the object main axis; future iterations for the hypothesis would need to

consider optimal interactions that incorporate an axis into the hypothesis should it become

indeterminate through automatic means.
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Study Design: MoveIt!

The goal of this study was to evaluate the collaborative model with motion-planning

(Figure 5.1, Block ‘B’) by stimulating Cspace exploration (Section ‘Collaborating with Cspace

Exploration in Motion Planning’ ). The ‘Blocks World’ empirical set-up (Chapter 4, Sec-

tion ‘Prototype & Experiment Design’ ) is re-visited again to perform the study. Readers

are referred to the user study performed at Chapter 4 for a review of the task domain,

infrastructure, and our prototype.

A main consideration for the study design is to minimize Grasp Planning effect on

user perception and preference to the model (Figure 5.1). Effectively, Grasp Planning effect

is removed when the pipeline is shorted ; we shall state the following design specifications;

1: Perfect Grasp Posture; There is only one solution grasp posture available from the

queue.

2: Probabilistic Complete Motion Plan; A trajectory solution to the pre-grasp can

be found within reasonable bounds.

Both specifications provide (i) Localized interaction only at the Motion Planner (Block ‘B’),

and (ii) Avoiding grasp teleoperation (Figure 5.1, Block ‘C’). The ‘Blocks World’ manipu-

lation pipeline can simulate these requirements, facilitating a simple working grasp posture

and motion planning (ROS MoveIt! ) between artifacts.
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Empirical Study & Tasks

Three simple ‘Blocks World’ manipulator tasks (Figure 5.13) are prepared by a proc-

tor before the study commences. All necessary artifacts in the domain are present in the

Model Pane (Figure 4.3). A total of six simulated manipulator stalls belonging either to a

‘pick’ or a ‘place’ action shall occur during the runs. We performed a within-subjects user

study that compares the collaborative motion planning model with a teleoperative control

condition; a user shall be instructed to either teleoperate closer to the destination with in-

teractive markers (Figure 5.4) to alleviate motion planning (control condition), or use the

Assist Panel (Chapter 3, Figure 3.6) to select a Location artifact (way-point) for preferred

Cfree sampling, in a counter-balanced design.

Subjects

Kent et al. [KSC17] posits the ring-and-arrow approach of interactive markers to be

unproductive and mentally demanding in teleoperation; a user has to adjust both the 3-D

camera view to the target and transformation of the 6-DOF markers in order to teleoperate

with reasonable precision. However, the use of 6-DOF markers is commonplace for teleop-

erative and navigation tasks in open-source robotics [QCG09], [LHC12], [CHL12], [CCC13].

To mitigate a possible bias against the control, we decided to sample participants within

STEM with little to no experience about robot manipulators. On a 7-point Likert scale, our
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users reported very low experience with robots (M = 1.3, SD = 1.0) and medium experience

with pen/touch interfaces for leisure (M = 3.6, SD = 2.0) and for work (M = 3.1, SD = 2.1).

However, 11 users knew at least one programming language, and the mean skill level with

their most familiar language was 4.2 (SD 1.7).

Study Procedure

The user was given a quick tutorial about the task domain, control, and interface.

Then, the user proceeds to execute three different ‘Blocks World’ manipulator tasks, in order,

prepared by the proctor beforehand. As the robot arm performed the actions for each task,

a simulated stall occurred in a total of six occasions across the tasks. Each time, the user

was asked either to select a way-point through the Assist Panel (Figure 3.6) or teleoperate

with interactive markers, in a counterbalanced design. After all the exceptions have been

rectified, a questionnaire was given in order to help understand which technique was more

preferable when resolving the stall. Each user was given $10 for their participation time.

The study lasted approximately 45 minutes.

User Feedback

We wanted to evaluate if there were preference disparities between Interactive marker

teleoperation and way-point techniques. We asked our users to rate each method in the
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factors of frustration, comfort, easy to learn, intuition, fun, likability, helpfulness, and easy

to assist. Additionally, we asked the user to pick which method was the best for various

factors - easier to assist, intuition, frustration, comfort, fun, and overall. We also recorded

the total task completion time required to resolve the simulated stalls for each technique.

Qualitative Analysis

We performed Wilcoxon Signed Rank Tests to help understand if one technique was

received better by our participants. We used Holm’s Sequential Bonferroni Adjustment

method to control Type I errors. We found significant difference (p < .05) between Inter-

active marker teleoperation and way-point technique for Frustration, Learning, Helpfulness,

and Easiness (Table 5.1).

We also performed χ2 tests on our final survey data points and again performed Holm’s

Sequential Bonferroni Adjustment. We found a significant statistical difference between

selection frequencies for the “Less Frustrating” and “Comfort” questions, in which the way-

point technique was selected more often. It also garnered all votes from our participants

from the “Easier to Assist Robot” question. See Table 5.2 for statistical values.
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Figure 5.13: Virtual obstacle arrangement from Tasks ‘A’ (left) to Task ‘C’. Red arrows
indicate potential regions a user selects for further Cfree sampling.
(Task A): User selects the artifact ‘stand’ in order for motion planning to plot a trajectory
to ‘tea’ (green lego block)
(Task B): User could either select ‘shelf’ or ‘altar’ to plot a trajectory to ‘beer’ (blue lego
block)
(Task C): User selects ‘dais’ to plot a place action trajectory to ‘stand’

Table 5.1: MoveIt! 1st Post-Survey Statistical Tests

Question Z p-val
Frustration -3.329 .001

Comfort -2.252 .024
EasyToLearn -3.114 .002

Intuition -1.749 .080
Fun -1.106 .269

Liked -2.43 .015
EasyAssist -2.816 .005

Helpful -3.052 .002

Table 5.2: MoveIt! 2nd Post-Survey Statistical Tests. For the “Easier” question, all
participants selected the way-point technique

Question χ2 df p-val
Easier Completion - - -

More Intuitive 1.143 1 .285
Less Frustrating 10.286 1 .001

More Comfortable 7.143 1 .008
More Fun 0.286 1 .593
Final Pick 4.571 1 .033
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Table 5.3: User comments from the MoveIt! study

Waypoints is way easier to use, it is faster to understand
I liked waypoints because it doesn’t need to move the robot manually
I liked the waypoints much better because it was easier for me and quicker
I liked the interactive method to operate the arm. Well, I am a gamer so I love to get
subjected to new challenges
Though the interactive marker had more control over the arm movement, waypoints
were more easy to use and without worrying about the arm
Conceptually I preferred the interactive mode. I liked having direct control of the arm.
I just wish it was smoother
It is easier to use waypoints but interactive markers is more fun

Discussion

Our results expectedly show that users found the interface selecting waypoints for Cfree

sampling much easier to use than teleoperating the robot arm. Using way-points was found

to be less frustrating and more comfortable, and it naturally reduced the task completion

time significantly, compared to the control technique. An interesting point, however, is

that users in this study found the control to be more fun to use. This can be attributed

to demographics as well; as the sample is taken from students or graduates of Computer

Science and Engineering, the users are relatively experienced with 3D Editing tools, and

very experienced with mouse-keyboard Video Gaming. Table 5.3 shows sample comments

we collected from our participants.
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CHAPTER 6
GUIDING USERS IN SHARED PERCEPTUAL

TELEOPERATION

Perceptual Shared Control in Human-Robot Teams

Chapters 2 to 5 present a branch of HRI research about robot-centricity; where intel-

ligent agents are in control to decide the high-level actions needed for a task, while human

agents behave as assistants or peers. Chapter 2 also reviewed prior literature and objectives

of the dissertation to examine interface requirements, architecture framework, and roles of

interactive computing for humans to convey perceptual knowledge and cooperative guidance

to robots under a shared autonomy.

This chapter explores the requirements and design of autonomous agents under col-

laborative scenarios where the roles are reversed; a user teleoperates a humanoid robot for

pick-and-place tasks, while autonomous agents assist user teleoperation discreetly from the

background. Polar-opposite characteristics between human (cognition) and robot (compute)

still apply under this scheme; the human agent teleoperating the robot is highly adept at

navigating the robot at reasonably optimal paths to the target object for grasping [DS13],

while simultaneously aware of avoiding the obstacles during teleoperation. However, manual

teleoperating with high accuracy is difficult due to factors such as viewpoint, human error,
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and lack of informative tactile feedback, especially when the avateering metaphor is used.

Artificial agents can enhance grasp accuracy by arbitrating the teleoperative input and as-

sist without disrupting the user’s overall experience and expectation of natural avateering

[KPL14].

Robot Teleoperation With Intuitive Metaphors

There has been a significant amount of literature reported on the successful use of in-

tuitive metaphors to teleoperate robots [PKL13], [GS08], [LFP12], [NS11]. Guo et al.[GS08]

explored interaction with robots using different intuitive motion controllers such as wii-

motes1, while Lichtenstern et al. [LFP12] explored commanding multiple robots using 3D

selection techniques and gestures that do not require any tangible devices. Similarly without

any device encumberment, Ng et al. [NS11] explored a falconeering metaphor for interacting

with an AR drone, while Pfeil [PKL13] explored five different 3D metaphors that teleoper-

ate the same drone. These works have demonstrated that teleoperation and interaction with

non-anthropomorphic robots, when applied through an appropriate metaphor using Natural

User Interfaces, can be effective, intuitive, and comfortable. As for anthropomorphically-

similar or Humanoid Robots, by inference, avateering could be an effective teleoperating

strategy since it leverages on human-robot embodiment similarities.

1https://en.wikipedia.org/wiki/Wii Remote
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Humanoid or Manipulator Teleoperation With Avateering

Humanoid Robots possess enormous potential to perform as surrogates in telepresence

or teleaction scenarios, especially in-lieu of real emergency personnel for disaster response

under hazardous environments [KPL14]. Teleoperating humanoids with little or no device

encumberment, such as with skeletal-joint tracking using Microsoft’s Kinect2 or Asus’s Xtion

depth sensors3, offer an interesting and cost-effective approach to allow for a more natural,

intuitive, and non-obtrusive interface. Additionally, service robots such as the PR2, or any

robot manipulator like the JACO arm, are fairly anthropomorphic, providing opportunity

for users to teleoperate these robots remotely via avateering.

There are essentially three research directions that address the use of human-motion

for humanoid avateering; The first covers primarily human-motion mapping and prototyping

[RMM05], [KWL05], [LME11], [PK12], [KB12], using the inexpensive Kinect motion sensor

to perform direct markerless human-imitation or manipulator control without device en-

cumberment [NL12], [SC11]. These teleoperation techniques can be stated as puppeteering

or avateering [HKB08]. The second direction investigates design of usage metaphors from

the Human-Robot Interaction (HRI) perspective [GS08], [NS11], [PKL13], leveraging on la-

tent human intuition to control the robot correctly. Lastly, the final direction investigates

the development of intelligent agents under the RAP system (Robots, Agents, and People)

[SJP02] to enhance the teleoperator’s control of the robot. Especially when teleoperating

2https://en.wikipedia.org/wiki/Kinect
3https://www.asus.com/3D-Sensor/Xtion
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with avateering, user interfaces associated with them are often inadequate, rendering simple

manipulation tasks often tedious and sometimes impossible. Assistive agents can help users

by predicting their intent, and using the predictions to augment their input into the robot

[DS13]. However, it is non-trivial to design a teleoperation strategy that suitably applies

the state-of-the-art from all directions. It turns out that often, the principles each purport-

edly contradict one another. For instance, avateering with motion capture on a HR can be

intuitive, but the technique becomes cumbersome when attempting to accomplish simple ma-

nipulation tasks, such as grasping [KAS13], [CTC12]. The assistive agents can be applied to

assist in the hardest tasks, such as manipulator position and force augmentation [WNU09],

[LME11], [DS13], but prediction and application of user intent to arbitrate user-input is like

an art, and more often than not, it is better for the agent to take complete teleoperative

control for arbitrary time intervals. In these instances, agent assistance breaks the avateering

metaphor, adversely affecting the controlling user’s perception and expectation.

It is hard to design an assistive agent that not only predicts what users may want, and

how it may assist, but also arbitrate inconspicuously such that users may perceive they have

full avateering control at all times using unencumbered motion capture. Section ‘Modeling

Agents that Assist Discreetly’ shall discuss the schematics of such an agent that activates

and assists discreetly at suitable timings to allow users perceive avateering control, while

teleoperating a Humanoid Robot to grasp, move, and release an object at a goal location. The

discussion is constrained to manipulators that initiate non-prehensile grasping, and modeling

axioms shall be stated which guide the development of such an agent. The Humanoid Robot
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used for the study in this chapter is a Webots4 simulation of the DARWIN-OP (Darwin)

robot5.

Figure 6.1: The manipulator shown on the left acquires a potential goal point, but the agent
is not activated as it does not meet the locality requirement, since it is located behind Plane
Z. At the next tick, the user moves the manipulator that meets the locality requirement (in
front of Planes Y & Z, and within the threshold), which then activates the agent to take
control and move the manipulator to the last-acquired goal point.

Figure 6.2: Similar to Figure 6.1, manipulator shown on the left acquires a potential goal
point, but the agent is not activated. At the next tick, the user moves the manipulator
that meets the locality requirement, but the agent will only activate and take control if it
approaches the object plane the point resides on at an angle smaller or equal to a set α, and
its velocity exceeds a set threshold.

4https://www.cyberbotics.com/webots.php
5www.robotis.com/xe/darwin en
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Modeling Agents that Assist Discreetly

The hypothetical agent should arbitrate at two phases, i) Before, and ii) After making

contact with the target object. The agent shares its perceptual space with the user, and also

possesses near-perfect spatial information about that space.

Before Grasp Contact

The main idea behind the agent letting a user maintain avateering control consists of

determining its i) Timing of Activation, and ii) Type of Arbitration, based on predicting the

users’ expectation of the manipulator trajectories around objects before and after making

contact.

Agent Activation: A straight-forward heuristic

Target proximity, if localized adequately, can be a simple and effective heuristic to

determine where and when the agent should activate. Tracing a ray from the center of the

eye-in-hand camera, the point it hits is usually the target (or the closest point). Figure 6.1

illustrates how we can take the ray-trace distance as an input to a Euclidean radial-distant

activation threshold. The agent can activate whenever this threshold is breached. We state

this heuristic with the following axiom:
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Axiom (1) : The closest target point, based upon the pose of the manipulator (which directly

affects the eye-in-hand camera pose), is usually, the intended target from the user.

Figure 6.1 also illustrates how the manipulator can be poorly located away from the region

where the user would prefer the agent to be activated, which in this case is by the right side

of the block. A better localization heuristic is to check further whether the manipulator is

between planes Y and Z. Used together with a radial threshold, the agent can be activated

where the manipulator is both properly localized and orientated towards a valid target point

on the object.

Improving the base heuristic on activation timing

Axiom (1) addresses agent activation locality (‘where’) sufficiently, but not neces-

sarily ‘when’. Assuming that upon activation, the agent takes full control and moves the

manipulators to their target placements, localization is not sufficient to hide the noticeable

arbitration to a keen eye. It is further exacerbated when considering the operator’s attentive

field-of-view (FOV) would usually be upon the task-space regions where the agent activates.

This observation postulates to two additional axioms as we model alternative agent arbitra-

tive behavior:

Axiom (2) : The agent should blend its activation-arbitrative actions into the robot’s current

executing action or operating environment.

Axiom (3) : The agent should divert some or all activation-arbitrative actions away from
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the user’s main focal point of attention (Sleight-Of-Hand Principle).

An application of Axiom (2) is to allow free avateering and delay activation till the agent

detects an expected action triggered by the manipulator in order to make contact with

the object; This criteria can be named Just-In-Time (JIT) Activation. One such instance

exists is where the user sends the manipulator, at some reasonable velocity and angle to

the normal of the object planes, towards their target points. The agent takes control only

when the manipulator velocity with respect to the plane exceeds a stated threshold. Ad-

ditionally, the corrective action it performs also blends and conceals within the momentum

moving the manipulator towards the plane. The threshold is modeled as a velocity vector

field, growing at increasing length from the surface using its plane normal (Figure 6.2). The

changing field implicitly models how a user would approach the object surface, given that

the manipulator velocity usually does reflect a user’s level of intent about approaching the

object; For instance, a user who feels confident enough would send the manipulators towards

the object plane from far at greater speeds, and at a vector that is closely parallel to the

plane normal (e.g smaller than α, Figure 6.2). At slow speeds, the agent can activate (if

the dot-product threshold is met) since the velocity-field vector gets shorter with decreasing

distance to the object contact surface. Linear and rotational velocities of the manipulators

can be computed using the geometric Jacobian with their associated Denavit-Hartenburg

(DH) coordinate frames, and the resulting dot product between the manipulator’s linear

velocity and velocity-field vector dependent upon its position in the activation space serves

as input to decide activation. For instance using Figure 6.2, once the locality requirement
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is met by the manipulator, when the dot-product computation between the manipulator’s

linear velocity and velocity-field vector it intersects inside the field exceeds a set value, the

agent will take full control at the next time-step.

Figure 6.3: A 3 Degree-Of-Freedom Arm Manipulator applying non-prehensile grasping at
the side of the block

Alternative Arbitration Strategy After Activation

Axiom (2) models the agent to surreptitiously arbitrate user input by quickly taking

and relinquishing full control when the manipulator meets the activation requirement based

on locality and approach. Axiom (3) models an alternative input mediation policy that

hypothesizes i) whether the assistive agent, upon activation, can allow the user a measure

of full control (e.g. user can voluntarily move the manipulator towards or away from the

target points) but maintains its arbitration role through partial control, ii) the option of

122



deactivating the agent, and iii) whether the agent can accomplish both i) and ii) without the

user noticing. One idea is to leverage on the DOF redundancy of the manipulator, letting a

user control the most significant degrees-of-freedom (DOF) that accomplishes the task from

his point of view that dominates attention, and letting the agent control any remaining DOF

to correct the trajectory error. Figure 6.3 illustrates such an example using a DARWIN-OP

arm with 3DOF. Upon meeting the agent activation requirement, it is sufficient for the user

to control only θ3 (roll) in order to send the manipulator to make contact with the right

side of the block, while the agent sets a manipulator pitch (θ1) and bend (θ5). Additionally,

if the manipulator rolls away from the activation threshold, the agent deactivates and the

user regains full DOF control. The manipulator pose, location, and task action also helps to

conceal the arbitration performed, as the block constrains any available operating space the

manipulator can move.

Figure 6.4: Left Image: User attempts to grasp a block by the sides and lift it away from the
crate. Right Image: Agent deactivates with a ‘release’ gesture; Darwin’s arms recalibrate
back slowly to user-space
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After Grasp Contact

User intent is hard to predict after the manipulator makes contact. Therefore:

Axiom (4) : The agent should assist in maintaining a suitable contact force between the

manipulators and object as the user desires. Otherwise, the user regains full avateering

control.

In many task scenarios, it is very useful for the agent to help the user maintain an arbitrary

force contact on the object when applying a grasp. Force input augmentation, such as

force-feedback, can be suitably applied to maintain a steady grasping force on the object

if a user desires so. It is observed that users have difficulty holding on to the block with

avateering, frequently moving the manipulators inadvertently away from the grasp points as

they attempt to move it away from the crate (see Section: ‘Agent Implementation & Trial

Description’ ). The main difficulty resides in determining a user’s intent to either maintain

or release grasp. A feedback system presenting a representation of the force contact on the

target object, either visually or by tactile, can be helpful for the user. However, the lack

of physical constraints in between the user’s hands afforded by the real object prevents an

adequate ascertainment of the grasp points (Figure 6.4). There are many heuristics which

can evaluate how the agent can assist here upon contact, and in fact, the agent can opt to do

nothing and de-activate with the user having full control. One strategy, however, is to take

a holistic approach and consider both user and robot states, and predict the next action the

teleoperating user could take. Gesture and pose recognition with a-posteriori prediction can
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be encoded into the agent, for instance using HMM [PKJ05] and POMDP models [PG07],

and based upon results from the prediction an agent can choose whether to maintain contact

or deactivate.

Agent Implementation & Trial Description

Four agents were developed using the modeling principles outlined from Axioms (1)

to (4). Each agent corresponds to a distinctive technique, which we state as i) No-Degrees-

Of-Freedom (No-DOF) ii) No-Degrees-Of-Freedom Just-In-Time (No-DOF-JIT) iii) One-

Degree-Of-Freedom (1-DOF) and iv) Two-Degrees-Of-Freedom (2-DOF). A Webots simula-

tion was used to devise a simple trial to test the main hypotheses that:

Hypothesis 1: User perception of Avateering can co-exist with the presence of an assistive

agent in the background that arbitrates the user’s input.

Hypothesis 2: User can be agnostic to the presence of an assistive agent when the corrective

action it performs blends with users’ expectation of the manipulators’ behavior during ava-

teering.

Each technique prescribes to a different heuristic in their approach on interacting with the

object. However for the study, all techniques shall share the same strategy in deciding for

the user whether to maintain the grasp for transport after contact. The trial requires users

to avateer a Darwin to complete a set of actions in the following order; (i) Grasp a plank

by the sides off the crate, (ii) Lift the plank, (iii) Move the plank away from the crate (iv)
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Drop the plank off the side of the standing platform. Gesture recognition heuristics from

both arms are used by the agent to decide whether to deactivate after contact (Figure 6.4).

No-DOF & No-DOF Just-In-Time (JIT) Techniques

No-DOF is designed with the ‘naive’ approach, applying the modeling principle of

Axiom (1) alone. The agent takes full control of Darwin’s arms after their manipulators

meet the locality requirement, performing an arbitrative action by moving the arms to their

grasp points, and relinquishes back control. The user will have no input control during this

arbitration phase. Corrective action is applied to all entries of the vector [q] of the manipu-

lator, where [q] represents the joint variables of Darwin’s three degree-of-freedom right-arm.

With exception to the 2-DOF technique, all techniques used the iterative Damped-Least-

Squares (DLS) [BK05] algorithm to compute the manipulators’ corrective paths to their

grasp points. The set of Forward-Kinematics (FK) equations tightly couple between the

joint-angle variables in [q] (θ1,θ3,θ5), rendering their solutions highly non-linear. Without

stating the associated DH parameters, the FK system of equations (position) for Darwin’s

right arm are:

{X} =


L1c1 − L3s3 − LHs1s5 + c1c3(L2 + LHc5)

L3c1 + L1s1 + LHc1s5 + c3s1(L2 + LHc5)

L2s3 + LHc5s3



where {X} represents the manipulator point in 3D space, L1 & L3 represent upper-limb link
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offsets introduced to mitigate singularities, L2 & LH represent upper & lower arm lengths

respectively, and the following abbreviations were used: ci = cos(θi), si = sin(θi), i = 1, 3, 5

Upon agent activation, projected operation and task-space of Darwin’s manipulators around

the plank usually provide good seeding data, allowing the algorithm to converge to a valid

Inverse Kinematics (IK) solution in a low-order of iterations. If no valid solution is obtained

after a set amount of iterations, user avateering input is used instead. After contact is made,

the agent maintains a locking grasp on the object, and deactivates (unlocks) upon recognition

of a ‘release’ gesture made by the user (Figure 6.4). For the remaining techniques, the agent’s

arbitrative strategy after contact with the object remains constant.

No-DOF JIT is similar to No-DOF, but includes the modeling principles of Axiom

(2). Besides locality, the agent activates if the manipulators exceed the velocity and angle-

of-approach threshold with respect to the object plane where the goal point resides.

1-DOF & 2-DOF Techniques

1-DOF applies the alternative arbitration principle supported in Axiom (3). The user

retains control of Darwin’s upper-arm roll (Figure 6.3) when the agent activates (Axiom (1)),

and can choose to deactivate the agent before contact by rolling the manipulator away from

the locality threshold. Additionally, computing IK solutions can be less expensive (agent

becomes more efficient during arbitration), as unique geometric solutions are possible if one

of the elements in [q] is known.
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2-DOF JIT is similar to 1-DOF, but the user retains control of the additional degree

of elbow-bend (i.e. agent controls only the upper-arm pitch). Besides control, an additional

difference involves the agent’s arbitrative behavior. Once the 1-DOF agent acquires the grasp

point, it can choose either to set the elements in [q] it controls immediately, or to interpolate

values in-between to set a path the manipulator takes to make contact with the object

plane. Instead, 2-DOF sets the path frame-by-frame after the goal point is acquired, using

an iterative approach similar to the Cyclic-Coordinate Descent (CCD) algorithm [Ken12].

The object plane that the manipulator intends to make contact serves as a very useful

constraint, assuring that user-set inputs of the upper-arm’s roll and elbow-bend (θ3,θ5) will

reach the goal point’s z-coordinate. Based on Darwin’s right-arm FK, the agent only needs

to adjust the upper-arm pitch (θ1) to move the manipulator closer to the grasp point in

coordinates x-y with respect to the user’s inputs for θ3 and θ5 in that current frame.

Figure 6.5: User attempting the trial in a telepresence setting
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Table 6.1: In-between survey questions after completing a trial assisted by a technique of
random choice

I quickly understood how to control the entire robot
It was easy to pickup the plank from the crate
The robot arms moved according to my expectation
As a whole, performing the task was easy
It was easy to make the robot walk
The robot walked according to my expectations.
Overall, the robot moved according to my expectations

Empirical Study

The following sections describe the virtual environment setup, task objectives, devices

and software, and participant demographics.

Participants, Devices & Software

15 students from the University of Central Florida are recruited for the user study.

Final pool consists of 12 males and 3 females, ages between 18 and 41. The trial is a

simulation developed using Webots EDU installed on Ubuntu 12.04 LTS. Webots provides a

realistic model of the Darwin-OP, since it is commonly used for Robocup 6. The manipulators

are modified to allow for easier grasping of virtual objects. Skeletal-joint data from the user

6http://www.robocup2013.org/472-2
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is captured using the Kinect motion sensor and post-processed with OpenNI 2.27 and NiTE

2.2.0.11 middleware8.

User Study Design

Darwin was placed on a platform along with a crate, upon which rested a plank

(Figure 6.4). The participant was tasked with guiding Darwin’s arms to grasp and lift the

plank, navigate it to an edge of the platform, and release it. Each participant was allowed

five attempts to complete the trial per technique which excludes the control technique. The

control is essentially free avateering, with no agent assisting the user to complete any action

during the trial. Prior to commencing the trial, the user was allowed a brief training session

to become familiar with the simulation. Order of techniques executed at each trial are

randomized but ensured to be unique. If Darwin successfully picked up the plank, the user

was required to turn and walk Darwin via body gestures to transport the plank to either side

of the platform and release it. Once both conditions were met, or if the plank was knocked

off the crate or dropped too early, the scenario was reset.

7http://www.openni.org
8http://www.openni.org/files/nite
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Table 6.2: Paired Samples T-Tests between control and assistive techniques

Technique t14 p-val
No-DOF -9.886 .005

No-DOF JIT -5.229 .0071
1-DOF 1.143 .0056
2-DOF 10.286 .00625

Quantitative & Qualitative Metrics

The main hypothesis of the user study is there will be superior techniques against the

control (‘Free’ Avateering) if an agent did benefit the users. The number of successes and

failures when lifting and releasing the plank (‘’Grasp” and ‘’Release” rates) were recorded.

After each technique was used a total of five times to complete the task, each participant

proceeds to fill out a small survey consisting of seven questions about the experience (Table

6.1). Each question was measured on a 7-point Likert scale. All participants were made

unaware of which technique they were using at any given time so as to eliminate any user

bias towards any technique. This way, the survey questions provide an opportunity to gain

any insight whether the user still felt in-control of Darwin during the trial.
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Figure 6.6: Pickup (‘Grasping’) Success Rate

Figure 6.7: Let-Go (‘Release’) Success Rate
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Results & Discussion

Quantitative Analysis

Using a repeated measures ANOVA test, significant difference was found between the

techniques (F4,14 = 15.852; p < .0001), with the sphericity assumption maintained. With

the control technique removed, no significant difference was found across the techniques

(F3,14 = 2.040; p = 0.123). Figure 6.6 illustrates the task completion rate for picking up the

plank. It can be observed very clearly that the avateering metaphor performed significantly

better with agent assistance. T-tests were performed between all pairs of techniques for a

total of 10 comparisons, and using Holm’s Sequential Bonferroni’s Adjustment [Hol79] to

control Type I errors. Significant difference was found between the control and remaining

techniques (Table 6.2). As expected, the avateering metaphor greatly benefited from an

assistive agent when grasping the plank. The four agent-assisted techniques allowed the

participant to pickup the plank twice as often as the control base metaphor, proving that

free avateering is not sufficiently efficient by itself. Additionally, two of the techniques

assisted in maintaining a grasp on the plank until end of trial. Figure 6.7 illustrates the

success rate for maintaining the grip and dropping the plank when needed. This success

rate is dependent upon the prior task of successfully lifting the plank off the crate. The

large standard deviation of this success rate suggests that the presence of expert users who

accustomed quickly to avateering benefit little from the agent’s assistance. This also suggests

that the agent is useful for non-expert or inattentive users, or to alleviate the inadequacy of
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the motion sensor interface either through noise, or by inadvertent arm movements during the

transport. It is also observed that users who are more confident with their movements scored

better with the ‘No-DOF JIT’ & ‘2-DOF’ techniques, while users who are feeling more careful

excelled with ‘No-DOF’ & ‘1-DOF’. This suggests that the threshold parameters across the

techniques can be pre-calibrated according to a user’s affect before undergoing the trials.

Qualitative Analysis

Friedman tests were used to determine statistical significance between the techniques.

In the event of significance, we used Wilcoxon’s signed rank tests between all techniques, for a

total of 10 comparisons. There were no statistical significance between the control technique

and others with regards to user perception. This aligns with the study’s expectations;

users were relatively unable to perceive that an agent was assisting with the teleoperation.

However, the participants felt that it was easier to pickup the plank off the crate using 3 of

the 4 techniques (Table 6.3). Second, the users responded that the robot arms moved more

accordingly to their expectations, when using a technique involving the agent (Table 6.4).

This positive outcome reveals that although the users did not have knowledge of an assistive

agent arbitrating the manipulator actions, they still felt more in control than free avateering.

Additionally, not only do the arms move according to their expectation, their perception of

control during free avateering is similar to any other agent-assisted technique.
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Table 6.3: Mean and median values of user perception towards ease of ‘pickup’

Technique Mean Median
No-DOF 5.1 5

No-DOF JIT 4.8 5
1-DOF 5.0 6
2-DOF 3.9 3
Control 4.1 4

Table 6.4: Mean and median values of user perception towards expectation of robot arm
movements while avateering

Technique Mean Median
No-DOF 5.6 6

No-DOF JIT 5.0 5
1-DOF 5.1 5
2-DOF 4.1 4
Control 4.7 5

Conclusion: Non-obtrusive User Assistance in HRTs’

Even though users were oblivious to the agent’s corrective actions, grasp completion

was achieved at significantly higher rates compared with free avateering. The study shows

that under situational observation of past trajectories, it is possible to model agents or

robots to assist users with teleoperation non-obtrusively without disrupting the teleoperative

experience and expectation.
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CHAPTER 7
CONCLUSION & FUTURE WORK

In this work, we devised a service architecture in Chapter 3 that describes our theo-

retical autonomous pipeline of high-level task planning inside a service robot. In Chapters 4

& 5, we used the architecture to localize human-in-the-loop collaborative models along the

pipeline which allow non-experts to convey natural abstractions of high-level manipulation

tasks, semantic revisions, geometries, and trajectories through stylus-based modalities of a

mobile interface. By assuming perfect grasp postures and object recognition (with color-

features) in a ‘Blocks World’ scenario, we evaluated cooperative task modeling and recovery

through semantic grounding and goal-predicate coalescence given an action corpus (Chapter

4). We explored further interactions that could help a service robot recover the manipulative

action through the Grasp and Motion Planning pipeline instead of teleoperating the action

(Chapter 5). If teleoperative recovery becomes unavoidable, it can be performed through

egocentric immersion and proprioception with arm and hand gestures (Chapter 6).

Positive results from the user studies can be attributed to one or a combination of three

major factors as a result of robot-centric collaborative influence; (1) Reusability, (2) Speed,

and (3) User Affordance.
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First Study: PlanIt! With the task modeled as a logical conjunction of effects, the ex-

pression can be reused under any structural changes to the world; further, the model is

abstracted away from the action corpus and analytical considerations for the conditions

needed to perform each action. A user can model a task quickly by focusing only on its

objectives, rather than considering how it should be performed; the course of actions is de-

cided entirely through the robot’s autonomous planning. Further, the user has intuitive and

implicit control over the manipulative actions usable on any artifact through its semantic

revisions without having to be cognizant of the available actions within the corpus. The mod-

eled task can also be performed through a partially observable environment, and is possibly

recoverable by relieving the condition that caused the exception; rather than teleoperating

the action, or to signal a re-plan.

Second Study: GraspIt! By limiting the range to household objects where symmetry is

commonly observed, participants are afforded to express reasonable hypotheses about the

hidden shape globally through controlled scene continuation along symmetry descriptors. As

the hypotheses are secondary resources of spatial primitives (points and normals) from the

user, they could be reused for parameter initialization or validation of automated hypotheses

that also predict missing geometries and shape.

Third Study: MoveIt! Instead of visualizing a robot’s motion through 3-D space as

sequences of timed configurations, it is more common and intuitive for a user to predicate

a course between the current and goal locations whenever autonomous motion planning is

unable to locate a feasible path for the robot. In our context of the user study, teleoperation
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is feasible whenever motion planning is unable to plot a trajectory either for a ‘pick’ or ‘place’

action for the JACO arm. But instead of predicating or teleoperating the whole trajectory,

key waypoints which fall along or near the user-projected path can be offered to influence

and stimulate motion planning. The waypoints are not direct inputs to the motion plan, but

rather, function as region indicators where a motion plan should intensify Cfree sampling.

The interaction is further simplified in our interface, where recognized or labeled artifacts

located closely to the projected path can be offered (through selection on the video stream

or Model Pane) instead of prescribing specific points inside the workspace.

Fourth Study: TeleoperateIt! By leveraging on human-robot anthropomorphic similar-

ities, the manipulators of a service robot can be teleoperated through egocentric immersion

and proprioception with arm and hand gestures while wearing a HMD [KPL14]. Teleop-

erative precision and experience were maintained by an assistive agent adjusting the user’s

teleoperative input in the background; the levels of arbitration needed is determined by pre-

dicting the user’s intentions observed from the manipulators’ trajectories around the scene

geometries.

PlanIt! Cooperative Modeling: Limitations & Future Directions

Aside from empirical control (Chapter 4, Section ‘Prototype & Experiment Design’ ),

the ‘Blocks World’ domain was also used to mitigate user bias towards contemporary tech-

nical challenges encumbering automatic grasp-planning and object recognition. First, our
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prototype facilitated evaluation of user perception towards collaborative detection, ground-

ing, and semantic revisions of unknown perceptual instances from the robot’s point of view.

Second, user performance and preference towards effect-based cooperative modeling with

autonomous-planning can also be measured against visual programming that require full

knowledge about the task artifacts. Though an eventual direction is to move the study out-

side toy examples, there are a few directions that can be explored further within the ‘Blocks

World’ domain, or through virtual simulations when performing the tasks with an actual

robot manipulator is not an important consideration;

Beyond Object and Location concept relations. It is actually possible to progress

towards a deeper and richer ontology schema while remaining in ‘Blocks World’; for example,

the ontology schema from Figure 3.1 could be used, requiring a palette of more than two

colors (six in this case) that currently suffice for grounding ‘Object’ and ‘Location’ concepts

to the known artifacts. Besides color, block height and width can be varied within reasonable

bounds in order to simulate further objects for the empirical design. With a richer ontology

schema, it remains an interesting question how the Model Pane (Chapter 3, Figure 3.5)

should present the information when each known artifact could be represented by more than

two concept relations. Entailing usability questions, such as the increase of cognitive load

that accompanies visual clutter, will follow with each iteration of the prototype design.

Sketch Strokes. Lasso strokes of different-color stylus ink were used for grounding and

recognition of unknown perceptual instances with different concepts to the Ontology KB

(Chapter 3, Section ‘Interface Design’ ). It would be interesting to explore additional ink
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strokes to apply on the geometries within the lasso that may provide further cues for au-

tonomy to extract hidden features and properties. For example, a line stroke representing a

plane-cut may indicate a separation of geometries with special characteristics from the main

body (Chapter 1, Figure 1.2), such as handle geometries of a mug, or brittle material that

require delicate grasping. Further usability questions, such as ideal stroke representations

non-experts would expect for the cues, would be important in order to measure whether the

strokes are intuitive representations.

Predicate Construction. It will be important to evaluate how predicate (or effect) con-

struction (Chapter 3, Figure 3.5) would impact user performance and perception when a

richer ontology schema is introduced together with a growing action corpus. The current

prototype did not require users to select a predicate function, since there were only two

possible effects (at-location, at-obj-location) inside the expanded corpus of three actions

(Chapter 4, Section ‘Prototype & Experiment Design’ ); the name of the function can be

implied through parameter selection of either an Object-Location or Object-Object concept

pair. However, it can be observed that the selected concepts can perform a filtering operation

through the list of predicate functions; the filter also applies through the corpus, eliminating

actions whose effect do not match the parameter signature of the selected concepts. For

example, selecting an Object-Object concept pair eliminates ‘clear-top’ and ‘stack’ (Chapter

4, Listing 4.4), since the respective effects are parameterized by an Object-Location concept

pair. It would be interesting to see how user perception and performance changes when the
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predicate function name needs user specification after selection of the concept parameters

from the Model Pane.

Predicate Coalescence. Similar to the Model Pane, excessive entries within the Predicate

Pane (Chapter 3, Figure 3.5) can be a negative influence on user performance and perception

towards modeling a task with predicate coalescence. It would be interesting to see how

information within the Predicate Pane can be presented for user selection as more are added

to the pane.

GraspIt! Collaborative Model: Limitations & Future Directions

The user study was designed to validate symmetry as an intuitive descriptor non-

experts would favor to express reasonable hypotheses about a common household object’s

hidden geometries and 3-D shape. For each task, the object’s main axis was provided to assist

the evaluation of user intuition and understanding for ambiguous and composite symmetries

present along the axis. It remains an interesting question how a user would perform when

the main axis is not provided, further requiring inclusion to the expressed hypothesis. A

possibility can be found through the 3-sweep technique [CZS13]; a user prescribes three

points defining the centroid of a planar base where the axis passes through, with an optional

fourth point that specifies the extent (or it is presumed to be infinite). Besides symmetry,

it would also be interesting to explore alternative descriptors amenable to non-experts in

expressing 3-D shape of common household objects.
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MoveIt! Collaborative Model: Limitations & Future Directions

The user collaboration with motion planning was tested against simulated manipula-

tion stalls; the user study sets up the motion planner to be “successful” in Cfree sampling such

that the samples ensure a path between the current and goal configurations. Thus, as long

as the user selects a “correct” waypoint (i.e. labeled artifact) for that particular stall which

were decided in advance by the proctor, the manipulator will proceed with the modified

trajectory that includes passing through the selected waypoint. As state-of-the-art motion

planning is a probabilistically-complete approach to trajectory finding, the user study was

designed in this manner based on the assumption that motion planning is guaranteed to find

a feasible trajectory after a user’s positive influence on the sampling strategy. In reality,

the narrow passage problem [DCQ16] that encumbers motion planning makes teleoperation

a more common and straightforward option to recover the action. It would be interesting

to evaluate the changes in user perception towards cooperative motion-planning through

Cspace exploration in real-world problems that may not guarantee a feasible solution within

reasonable time.
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Concluding Remarks

It is possible for non-experts to become efficient users of an autonomous service robot

through robot-centric collaborative models. We envision that service robots can become

commonplace at home when their utility is maximized by granting effective access to their

controlling architectures of autonomous-planning. This becomes possible through novice-

oriented mobile interfaces that enable non-technical users to convey natural abstractions of

high-level tasks, recovery assistance, and teleoperative control.
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