
Countering Kernel Rootkits with
Lightweight Hook Protection

Zhi Wang, Xuxian J iang, Weidong Cui, Peng Ning

Presented by: Nathan Sriboonlue

(From the proceeding of the 16th ACM CCS 2009)

Outline
• Introduction
• Motivation
• Challenge
• HookSafe
• Implementation
• Evaluation
• Conclusion
• Questions

Introduction: Rootkit
• Rootkit is a software program designed to gain control over a

system or network.
• Rootkits can not only hide their presence but also tamper with OS

functionalities to launch various attacks.
– Opening backdoors
– Stealing private information
– Escalating privileges of malicious processes
– Disable defense mechanisms

Previous works
• Three major research categories:

– Analysis of rootkit behavior
• Panorama, HookFinder, K-Tracer, and PoKeR

– Detection of rootkits based on certain symptoms exhibited by
rootkit infection
• Copilot, S BCFI, and Vmwatcher

– Preservation of kernel code integrity by preventing malicious
rootkit code from executing
• S ecVisor, Patagonix, and NICKLE.

Motivation

• The act of preventing malicious rootkit codes from executing alone
is not enough. This type of security can be bypassed easily.

• Rootkits such as the return-oriented ones, will first subvert kernel
control flow and then launch the attack by only utilizing legitimate
kernel code snippets.
– Hijacking attack on return address and function pointers

Motivation

• In addition to the preservation of kernel code integrity, it is also
equally important to safeguard relevant kernel control data

• By preserving the kernel control flow integrity, it enables the system
to block out all rootkit infections in the first place.

Kernel Hook
• As there has been extensive research on the protection of return

address, this paper is solely focused on the protection of function
pointers.

• Function pointers are typically hijacked or “hooked” by rootkits,
thus for ease of presentation, the paper addressed the term
function pointers and kernel hooks interchangeably.

Challenge(1)
• In OS such as windows and linux, there exist thousands of kernel

hooks and these kernel hooks can be widely scattered across the
kernel space.

• To monitor all write to these system pages would introduce
significant performance overhead.

• Extremely inefficient as their previous study showed that only 1%
of kernel memory writes may cause problem.

Ubuntu Study
• Analysis of a typical Ubuntu 8.04

server by using a whole-system
emulator called QEMU.

• Within a randomly-selected 100
secs, there were 700,970,160 total
kernel memory writes.

• Only 6,479,417(1%) memory
writes were possible to create
page fault.

Challenge(2)
• Protection Granularity Gap

– effective protection requires byte-level granularity while
commodity computers allow only for protection at a much
broader page level.

HookSafe
• HookSafe is a hypervisor-based lightweight system that aims to

achieve large-scale protection of kernel hooks in a guest OS.
• HookSafe solves the protection granularity gap problem by

creating a shadow copy of the kernel hooks in a centralized
location.

• Any attempt to modify the shadow copy will be trapped and
verified by the underlying hypervisor while the regular read access
will be simply redirected to the shadow copy.

HookSafe

Implementation

• Given a set of kernel hooks for protection, HookSafe achieves its
functionality in two key steps:
– Offline Hook Profiler
– Online Hook Protector

Offline Hook Profiler
• Offline hook profiler takes in kernel hook inputs and profiles them

into a hook access files.
• These hook access files contain information such as access type

and the values associated with it.
• These instructions that access a hook are known as Hook Access

Points (HAPs).

Offline Hook Profiler
•

Online Hook Protector
• Taking hook access profiles as input, online hook protector

creates a shadow copy of all protected hooks and instruments
HAP instructions such that their accesses will be transparently
redirected to the shadow copy.

• Shadow hooks are aggregated together in a central location and
protected from any unauthorized modification.

Online Hook Protector
• To reduce performance overheads, HookSafe handles read and

write differently.
• Write - transfer control from guest kernel to the hypervisor, update

the memory, then return control back to the guest kernel.
• Read - use a piece of indirection code residing in the guest OS

kernel memory to read the corresponding shadow hook.

• Note: read accesses are much more common than write, thus we
benefit greatly by keeping the command under guest kernel level.

Online Hook Protector
• When read is performed, HookSafe will do a consistency check

between the original kernel hook and its shadow copy to make
sure that it has not been compromised.

• To validate write request, HookSafe requires the new hook value
to be seen in the offline profiling phase. Other common
techniques can also be applied here:
– Valid code region
– Valid function value type

• Once the write request has been validated as legitimate, both
shadow copy and its original hook are updated.

Evaluation
• Two sets of experiments:

– Evaluation of HookSafe's effectiveness against nine real-world
rootkits

– Evaluation of performance overhead introduced by HookSafe
on benchmark programs and real-world application

Set up
• HookSafe takes in two sets of kernel hooks input:

– The first set contains 5,881 kernel hooks in preallocated
memory areas of main linux kernel and dynamically loaded
kernel modules

– The second set is from 39 kernel objects that will be
dynamically allocated from kernel heap.

• These hook inputs are obtained through scanning of the data/bss
sections of the kernel and LKMs in a guest VM running Ubuntu
Server 8.04.

Effectiveness
• Nine state-of-the-art kernel rootkit:

– Adore-ng, eNYeLKM 1.2, sk2rc2, superkit, Phalanx b6, mood-
nt 2.3, override, Sebek 3.2.0b, and hideme.vfs

• HookSafe successfully prevented all of the rootkits tested from
modifying the protected kernel hooks.

Performance
• To evaluate performance overhead introduced by HookSafe, they

measured the runtime overhead over 10 computer tasks.
• Set up:

– Dell Optiplex 740
– AMD64 X2 5200+
– 2GB memory
– Xen Hypervisor 3.3.0
– Ubuntu server 8.04

Performance

Contribution
• HookSafe is the first system that is proposed to enable large-scale

hook protection with low performance overhead.
• Extremely credible as it performed well against various advance

rootkits.
• Overcame the critical challenge of the protection granularity gap.

Weakness
• Construction of hook access profiles may be incomplete.
• Small time lag before detection of inconsistencies between the

original kernel hooks and their shadow copies.
• Need prior knowledge of the set of kernel hooks that need to be

protected

Future Work
• Perform both dynamic analysis and static analysis of the source

code to improve the coverage of finding all the HAPs.
• Combine HookSafe with hook finding applications such as

HookFinder and HookMap

Reference
Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering Kernel
Rootkits with Lightweight Hook Protection. In Proc. Of the
16th ACMConference on Computer and Communication
Security (CCS 2009), Chicago, IL, October 2009.

Question?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

