
Multilayered Defense-in-Depth Architecture for Cryptocurrency Wallet

Hossein Rezaeighaleh
Department of Computer Science
University of Central Florida

Orlando, USA
e-mail: rezaei@knights.ucf.edu

Cliff C. Zou

Department of Computer Science
 University of Central Florida
 Orlando, USA

 e-mail:

czou@cs.ucf.edu

Abstract—A significant challenge in blockchain and
cryptocurrencies is protecting private keys from potential
hackers because nobody can rollback a transaction made with a
stolen key once the blockchain network confirms the transaction.
The technical solution to protect private keys is cryptocurrency
wallets, a piece of software, hardware, or a combination of them
to manage the keys. In this paper, we propose a multilayered
architecture for cryptocurrency wallets based on a Defense-in-
Depth strategy to protect private keys with a balance between
convenience and security. The user protects the private keys in
three restricted layers with different protection mechanisms. So,
a single breach cannot threaten the entire fund, and it saves time
for the user to respond. We implement a proof-of-concept of our
proposed architecture on both a smart card hardware wallet
and an Android smartphone wallet with no performance
penalty. Furthermore, we analyze the security of our proposed
architecture with two adversary models.

Keywords-blockchain, cryptocurrency, wallet, defense-in-
depth, bitcoin.

I. INTRODUCTION

Cryptocurrencies are not currency until the owners can
purchase something with them. Today, a user can perform
various electronic commerce transactions like paying a bill [1]
booking a hotel or flight [2] purchasing online products [3],
and paying taxes [4] with cryptocurrency.
As blockchain and cryptocurrencies become increasingly

popular and practical in electronic commerce, they also
become more attractive targets for hackers. Every week, we
read the news of stealing money from exchanges, servers, and
cryptocurrency owners. A big challenge in bitcoin and almost
all blockchains is protecting the private keys of
cryptocurrency owners. Blockchain usually uses elliptic-
curve asymmetric cryptography to control the ownership of
coins or accounts. For example, when Alice signs a
transaction with her private key to transfer coins to Bob, the
blockchain network will verify the signature of the transaction
with Alice's public key. After being confirmed by the
blockchain network, the transaction, unlike the traditional
bank transfer, cannot be rolled back by anyone.
Consequently, the private key has full control of the crypto

funds, and the most crucial task of a user is keeping her private
keys safe. It is one of the fundamental challenges in
cryptocurrencies [5]. Existing systems require a particular
software or hardware called cryptocurrency wallet to store the

private keys and sign the transactions. Cryptocurrency wallets
have a spectrum of forms from online wallets to cold wallets,
while many experts believe the most secure one is the
hardware wallet. The hardware wallets are good but not
enough because they are hard to use in comparison to hot
wallets (i.e., software wallets) and smartphone wallets. We
need an appropriate setup when using hardware wallets to
achieve a balance between convenience and security.
Defense-in-Depth (DiD) is an approach in IT security that

usually conveys multiple layers with various security
mechanisms to protect a system from attacks in several steps.
DiD applies to all IT systems and is a standard solution for
network security. In this paper, we propose a multi-layer
architecture that provides a Defense-in-Depth design for
cryptocurrency wallets. We propose a layered deployment of
wallets that delivers a balance between convenience with
security for cryptocurrencies. The user protects the private
keys in three restricted layers with different protection
mechanisms. So, a single breach cannot threaten the entire
fund, and it saves time for the user to respond. This paper
provides the following research contributions:
 Proposing a layered architecture for cryptocurrency
wallets that is secure yet convenient for average users

 Implementing a proof-of-concept on a hardware wallet and
an android wallet and evaluating its performance

 Providing adversary models to analyze the security of the
proposed layered architecture

In the rest of this paper, in section 0 we review previous
works to use in our proposed architecture. Next, we explain
our proposed layered architecture for cryptocurrency wallets
in section III and our proof-of-concept implementation in
section IV. Finally, in section V, we provide adversary models
to analyze the security of our proposed model and finish with
the conclusion in section VI.

II. RELATED WORKS

In this section, we review two related works that we will
use to create a multi-layer architecture for cryptocurrency
wallets.

A. Wallet Backup

Existing cryptocurrency wallets usually use the paper
backup. The wallet generates a mnemonic word list to convert
the master seed from digital form to physical form as a

2020 IEEE 6th International Conference on Computer and Communications

978-1-7281-8635-1/20/$31.00 ©2020 IEEE

2
0
2
0 I
EE
E
6t
h I
nt
er
na
ti
o
na
l
C
o
nf
er
e
nc
e
o
n
C
o
m
p
ut
er
 a
n
d
C
o
m
m
u
ni
ca
ti
o
ns
 (
I
C
C
C)
 |

9
7
8-
1-
7
2
8
1-
8
6
3
5-
1/
2
0/
$
3
1.
0
0
©
2
0
2
0 I
EE
E
|
D
OI
:
1
0.
1
1
0
9/
I
C
C
C
5
1
5
7
5.
2
0
2
0.
9
3
4
5
0
1
3

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

backup[6]. The user may either save these words in a
computer file or writes them down on a piece of paper. In our
previous paper [7], we suggest a new mechanism to back up a
wallet on another wallet directly with the elliptic-curve Diffie-
Hellman key agreement.
In contrast to the paper-based backup, our scheme uses

Elliptic-Cure Cryptography (ECC) to transfer the keys to
another wallet. So, the user does not need to either write a list
of words or remember a complex long passphrase.
Our new scheme uses elliptic-curve cryptography to back

up the keys. It employs a crafted version of the Elliptic-Curve
Diffie-Hellman (ECDH) key agreement protocol [8] for
backup and recovery. The problem of ECDH is the Man-In-
The-Middle attack where a hacker replaces the public key of
the backup wallet by a fake public key, and the main wallet
cannot distinguish the original backup public key from the
fake one. To solve this problem, we employ the side-channel
user visual confirmation (verification code, aka vcode).
Existing hardware wallets use a similar method to confirm
transaction information like the receiver address, amount, and
fee before signing [9][10].
In the backup process, there are two wallets: the main

wallet and the backup wallet. Before start, the main wallet has
generated and stored the master seed, and the goal of our
proposed backup process is to transfer an encrypted copy of
the master seed from the main wallet to the backup wallet. We
assume both wallets have a screen and (at least) one physical
button. Also, we assume the backup channel is an untrusted
terminal, like a smartphone that may be compromised by a
hacker. The vcode is displayed on the hardware wallets' screen
for user verification. The values shown on the two wallets'
screen should be identical.

B. Super-Wallet and Sub-Wallet

Storing all funds on only one wallet and use that for daily
spending is risky because it is possible that the wallet crashes,
gets damaged, or stolen. So, the authors of [5]propose a
simple but useful idea called super-wallet and sub-wallet. The
user stores the large fund on the super-wallet and refills a
small fund to the sub-wallet frequently or as needed. So, she
uses the sub-wallet for daily spending and the super-wallet as
a saving account.
The sub-wallet/super-wallet model proposed in [5]is

simple. The user has two regular wallets and uses one of them
as the super-wallet and another one as the sub-wallet. One
disadvantage of this model is that it requires one transaction
per refill, which means that the user pays a miner fee and waits
for the network confirmations for each small refilling. Also,
the user must get backup of both wallets, and the sending
transaction is vulnerable to the MITM (Man-In-The-Middle)
attack for receiving address injection like other regular
sending transactions.
To resolve these challenges in the super-wallet/sub-wallet

model, we propose a new scheme that we call the
Deterministic Sub-walle[11]. In our model, the root of key
trees of the super-wallet and sub-wallet are linked. In other
words, the sub-wallet seed is derived from the super-wallet
seed. It means that the super-wallet seed can generate the
entire key tree of the super-wallet and also all the sub-wallets.

So, the super-wallet does not require to get the sub-wallet
address from the external source, and it generates them
internally. It also eliminates the sub-wallet backup process
because the super-wallet backup is enough, and it can
regenerate the sub-wallet seeds.
To link the super-wallet seed (mSeed) to the sub-wallet

seeds (subSeed) we use the following derivation function in
[11]. This formula is similar to the existing master key
generation function in [11] with some modifications. The
xxxx is the four-digit hexadecimal index of the sub-wallet
starting from zero. The output of this function is a 512-bit
deterministic pseudo-random value, which can be used as a
regular seed to generate the entire key tree of the sub-wallet.

subSeed = HMAC-SHA512(key="Sub-wallet xxxx", data=mSeed)

We use a modified version of our proposed mechanism [7]
to transport a sub-wallet seed from the super-wallet to the sub-
wallet. The modified version uses the same steps but
transports a sub-wallet seed instead of a master seed. It uses
ECDH to encrypt the seed and vcode as the side-channel user
visual confirmation. After that, the super-wallet creates a refill
transaction and publishes it on the blockchain to send funds to
the sub-wallet addresses.

III. PROPOSED MULTI-LAYER WALLET

To protect the private keys from attackers, we introduce a
defense-in-depth architecture for cryptocurrency wallets. Our
proposed architecturehas three layers with different usage and
protection mechanisms, which makes a balance between
usability and security. Figure 1 demonstrates this architecture.
It has three layers, including offline layer,protected layer, and
online layer.
The protected layer consists of a superior wallet. This

wallet conveys the master seed, which generates the entire key
tree and all addresses. The offline layer has at least one backup
walletwhere it is a clone of the superior wallet. We use our
previously proposed method in [7] for encrypted wallet-to-
wallet cloning. The online layer can have multiple spending
walletsfor regular daily purchases. A spending wallet has a
subordinate seed from the superior wallet with a limited fund.
We use our previously proposed mechanism in [11] for key
derivation to generating subordinate seeds and seed
transferringfrom superior wallet to a spending wallet.
We have revised our previous algorithm [11] to support

our new proposed architecture. Firstly, we modify the
derivation function as follows where swSeedstands for
spending wallet seed, mSeed stands for master seed, and xxxx
indicates the spending wallet index starts from zero in 4-digit
hex number format (0000). The superior wallet uses the
derivation function only when it creates a new seed for a
spending wallet.

swSeed = HMAC-SHA512(key="swSeed xxxx", data=mSeed)

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

Figure 1. The proposed multi-layer defense-in-depth architecture for
cryptocurrency wallets.

Secondly, we also modify the refilling address selection
policy. On the original work [11], the wallet only refills the first
address index of each derived seed. However, in our new
proposed architecture, the superior wallet uses multiple
addresses of a spending wallet seed. For each refilling, it
searches the blockchain to find the first unused address to send
the fund.
The offline layer is designed to be offline and does not need
any connection to the blockchain network. It gets online if and
only if an incident occurs for the superior wallet and needs an
emergency response. If the superior wallet is compromised by
an attack or is lost, the backup wallet generates a brand-new
master seed. It creates a blockchain transaction to transfer all
available funds of the last master seed to an address under the
new master seed. It avoids any unintended transfer from the
superior wallet as soon as possible. We recommend a secure
hardware wallet with a secure element, a trusted display, and
an embedded button for the backup wallet.
The protected layer has only one superior wallet. This wallet
only refills the spending wallets. It calculates the spending
wallet addresses internally, so it does not send any fund to other
addresses that are vulnerable to MITM attack for receiving
address injection. Similar to the backup wallet, we recommend
a secure hardware wallet for the superior wallet too.
Finally, the online layer can have multiple spending

wallets. These wallets can be software wallets like smartphone
wallets or hot wallets (third-party hosted wallets). Spending
wallets do not need a backup because the superior wallet can
recreate their seeds[11].
These three layers provide a balance between security and

usability. While the user stores her large fund on the superior
wallet and creates a clone of it on the backup wallet, she
enjoys the convenience of a smartphone wallet or hot wallet
to purchase online and pay her expenses.
Receiving funds does not need private keys, so there are

two possible options. If the user context does not have privacy
concerns, she can generate an address under master seed on
the superior wallet to share with others. If the context is
sensitive to privacy, the superior wallet creates an extended
public key to generateshierarchical deterministic addresses

outside of the superior wallet without exposing the master
seed or any private keys[12].
For better understanding, we explain an example setup.

Alice has 10 Bitcoin (BTC) equals to $100k (we assume the
bitcoin price is $10,000 for simplicity). She stores her fund
into the superior wallet, which is a secure hardware wallet and
keeps it safe at her home. She creates a backup wallet, which
is a secure hardware wallet too, and put it in a safe deposit box
in a bank that is physically secure. Then, she installs a wallet
app on her smartphone and makes it a spending wallet under
the superior wallet and refills 0.5 BTC ($5K) into it. To
receive her salary, she gets a receiving address from the
superior wallet and shares it with her employer. She gets paid
bi-weekly with bitcoin without requiring using the superior
wallet. Alice uses the smartphone to buy a coffee, pay the bills,
and purchase from online stores. When the spending wallet
has a low balance, she refills it using the superior wallet.
For convenience, Alice uses a type of hardware wallet for

superior wallets and backup wallets that support Bluetooth or
NFC, and she can do backup and refilling operations using a
smartphone. However, she may use an offline laptop or another
offline smartphone for better protection to do the backup and
refilling.
Now, we consider two possible security incidents and how

the defense-in-depth architecture mitigates them. First,
assume an incident in the online layer, for example, Alice
loses her smartphone or recognizes a malware program on her
smartphone. In this scenario, only the spending wallet is at risk
with a maximum of 0.5 BTC amount. To respond to this
incident, she uses superior wallet to transfer the fund of the
suspected spending wallet to an address under the master seed.
Then, she can reset her smartphone or get a new one, and the
superior wallet generates a brand-new spending wallet seed
and transfers the seed to the smartphone.
Secondly, an incident can occur in the protected layer. For

example, Alice may lose the superior wallet because of the
physical robbery in her home. Since she uses a secure
hardware wallet for the superior wallet, it is password
protected and, if an attacker tries password guessing more than
the retry counter (i.e., five times), the wallet will be blocked
permanently. On the other hand, for responding to this
incident, Alice uses the backup wallet to generate a brand-new
master seed and create a blockchain transaction to transfer all
funds from the previous master seed to an address under the
new master seed. She should do that as soon as possible before
any breach of the suspected superior wallet. She also must
create a new backup and regenerate the subordinate spending
wallets.

IV. PROOF-OF-CONCEPT

To evaluate our proposed architecture on bitcoin, we
implement the backup wallet and the superior wallet on a
hardware wallet device from scratch that supports
fundamental functionalities of hierarchical deterministic
wallets, according to BIP-32 [12] and BIP-44[13]. We use a
secure element for key operations such as key generation and
digital signature.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I. ADVERSARYMODELI: MALICIOUSAPPWITHDANGEROUS PERMISSION

Assumptions Goals Capabilities

Android 8.1.0
Internet access
NFC access
Knowledge of the low-level wallet
protocol (APDUs)

Capture the master seed
or sub seed
Inject the adversary
address to receive the
fund

Record the screen or log the pressed buttons to capture the password
Sniff the low-level packets to capture the master seed or spending seed
Inject the adversary address into spending wallet refill transaction to receive
the fund (MITM)
Replace the backup or spending wallet original transport public key with the
adversary public key to extract the master seed or spending seed (MITM)

We choose a smart card that has essential parts of a secure
hardware wallet. It has a secure element for cryptography
operations and key storage, a screen to display sensitive
information to the user, and a button to get confirmation from
the user. Figure 2 demonstrates a picture of our test device.
This device is in credit card size and has NFC and contact
interfaces to communicate.
Our test smart card has the following specification; Java

Card 3.0.5, Global Platform 2.2.1, e-paper display 256x256
pixel, 2.5 KB memory, 170 KB storage, contact and NFC
interfaces, support for SHA256, SHA512, HMAC, AES256,
ECC256, and ECDH algorithm.
Since the secure element is a resource-constraint device

with limited memory and processing ability, our code must
use the minimum amount of memory. We use the sharing
memory technique and allocate the entire memory to only two
arrays. We pass these arrays with the maintained indexes to
the functions that require arrays, and it minimizes the heap
consumption.
Furthermore, we do not use a very nested function and any

recursive call, and it minimizes stack memory usage. We use
the Java Card framework [14]to program the secure element.
It is a limited version of Java Virtual Machine with fewer
features to run on microcontrollers and secure elements. We
compile the code with the Java Development Kit, convert it to
a Card Application (CAP), and load it into the secure element.
One of our implementation challenges is the public key

derivation. In ECC, a public key calculates by multiplying the
private key and the Generator point (G) [15].Unfortunately,
our secure element (and many others) does not support EEC
multiplication, and its software implementation has no
acceptable performance due to the limited resources of the
secure element. However, Java Card API and our secure
element support Elliptic-Curve Diffie-Hellman (ECDH) key
agreement.
In ECDH, each party calculates a secret by multiplying its

private key and the other party public key. An ECC public key
is an elliptic-curve point aka EC point. Therefore, the ECDH
function mathematically multiplies a scaler and an EC point.
We use the ECDH function with the private key as the scaler
and the Generator point (G) as the EC point. Thus, the result
of ECDH is the public key.
For the spending wallet, we develop a mobile app to test

our prototype with a smartphone. We use a Google Pixel
smartphone with an NFC antenna and the following
specifications: Google Pixel G-2PW4100 smartphone, quad-
core Qualcomm Snapdragon 821 processor with two 2.15

GHz cores and two 1.6 GHz cores, 4 GB memory, 32 GB
storage, and Android 8.1.0.

Figure 2. Test device with secure element, screen, and button to create a
hardware wallet

According to our evaluation, the total execution time for
creating a backup on the test smart card takes less than one
second to complete based on our prototype[7]. The derivation
mechanism and refilling a spending wallet also can complete
around one second [11].

V. SECURITY ANALYSIS

In this section, we analyze the security aspect of our
proposed architecture and the implemented proof-of-concept
on hardware wallets and smartphones. Firstly, we argue about
the security advantages of our proposed architecture in
comparison to the existing solutions. Next, we provide
appropriate adversary models to investigate the possible major
attacks and countermeasures.

A. Security Advantages

No Paper Backup:Spending wallets do not need any
backup, and the superior wallet has one or more identical
backup on other hardware wallets. Therefore, all backups are
in digital format, and there is no physical backup on a paper
that is vulnerable to traditional attacks.
Less Vulnerable to Lose Large Amount:In our architecture,

we split the fund between two layers. The protected layer
stores a large amount and is used rarely, while the online layer
stores a small amount and is used frequently. Therefore, a
spending wallet is more exposed to the network and accessible
for attacks; however, it has a small fund at risk. On the other
hand, the superior wallet is less accessible on the network, and
hence, more secure to possible attacks.
Control of spending wallets:The superior wallet can

regenerate the spending wallet seed and all corresponding
keys. Therefore, if a spending wallet is lost or stolen, the user
can use the superior wallet to recover all spending wallet keys

Screen
(E-Paper)

Buttons

Programmable
Secure Element

Logo for NFC Antenna

Hidden MCU

MCU

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

and transfer their funds to a brand-new address and empties
the spending wallet.

B. Adversary Models

Authors of [16] survey security analyses on several papers
and propose a comprehensive adversary model to employ in
future security researches. This model defines three aspects of
an adversary, including Assumptions, Goals, and Capabilities.
The assumptions describe the environment, resources, and
equipment of the adversary. The goals identify the intentions
of the adversary and explain why he targets the system. The
capabilities are the abilities and actions that the adversary
performs to achieve his goals.
The authors of [16] discuss various adversary models for

diverse environments like personal computers, networks, and
cryptography parties. We use the models of the smartphone
environment to measure the security of our final prototype on
an Android smartphone.
1) Malicious app adversary model
The adversary model has different properties in various

fields of study, and the authors of [16] provide several
adversary models for smartphone applications. Their
proposed Malicious App Adversary Model is appropriate for
our conditions. This model includes three sub-models based
on the app permissions: Zero Permission Adversary only has
access to the list of installed apps and files stored on external
storage. Normal Permission Adversary adds Internet access,
Bluetooth, and NFC interfaces. Finally, Dangerous
Permission Adversary has access to all resources such as
camera, microphone, contact, and SMS. In this paper, we use
the Dangerous Permission Adversary model to assume
maximum power for the attacker that is defined in Table I.
According to Table I., the adversary could capture the

user's password by recording the screen or log the pressed
buttons. Even though some solutions exist for this attack like
Trezor [17] that uses a blind visual matrix to avoid entering a
plain password on the host, we use a physical button on the
hardware wallet for confirmation.
Also, the adversary may sniff the transmitted messages

between hardware wallets and the smartphone app to
eavesdrop the master seed or spending seed. Our mechanism
is secure against this attack because the smartphone only
transmits public information, including the superiorwallet,
the backup wallet and spending wallet public keys, and
encrypted master seed or encrypted seed under an AES 256-
bit key. Therefore, the attacker does not have access to any
private data.
Another capability of the adversary is making an MITM

attack to replace the receiver address by his injected address
in the transaction. The classic super-wallet/sub-wallet model
[5] is vulnerable to this attack because the super-wallet needs
to get the sub-wallet address from the host like a smartphone.
However, in our architecture, we use the deterministic sub-
wallet that prevents this attack since the spending wallet seeds
are derived from the superior wallet master seed, and the
superior wallet generates the receiving addresses internally.
Therefore, there is no need to get the receiving addresses from
the external source, and the hacker has no chance to replace
them.

Last but not least, the adversary may make an MITM
attack to intercept the messages between the superior wallet
and the backup wallet or the superior wallet and the spending
wallet. Then, he replaces thebackup wallet public key or the
spending wallet public key by the adversary public key in
ECDH key agreement, and he can recover the transferred seed.
To defend against this attack, we have used a side-channel

verification code (vcode) in our mechanism. Both wallets
compute their vcodes of the public key and display the vcode
on their screens (see the hardware wallet shown in Figure 2).
The user visually inspects and confirms the equality of these
two vcodes by pressing a physical button on the superior
wallet. Existing hardware wallets use a similar method to
confirm transaction information like receiver address, amount,
and fee before signing them. Therefore, during the wallet
transfer operation, if a hacker injects his public key to the
superior wallet, the user will be able to detect such an attack
due to the mismatch of the two vcodes shown on two wallets'
screen and reject this MITM attack.
2) Physical access adversary model
Another possible adversary model for our proposed

architecture is an adversary with physical access to the
superior wallet (or backup wallet). In this case, the adversary
can do anything directly with the hardware wallet without the
need to install a malicious app on the remote user's
smartphone. Table II. demonstrates the Physical Access
Adversary Model.

TABLE II. ADVERSARYMODELII:PHYSICALACCESS

Assumptions Goals Capabilities

Access to the
hardware wallet
device
Knowledge of
the low-level
wallet protocol
(APDUs)

Sign a
transaction and
send the fund to
the adversary
address

Make a brute-
force attack to
guess the
passwordand
sign a transaction
to transfer the
fund

In this adversary model, the adversary can make a brute-
force attack to obtain the hardware wallet password (PIN code)
and sign his desired transaction. Our proposed architecture
recommends a hardware wallet with a secure password for the
superior wallet that has a fixed password retry counter, usually
between 3 and 15. After that, the secure element locks
permanently. It is a standard mechanism for secure elements.
Therefore, if a hacker finds the superior wallet, he can only try
a limited number of guessed passwords and could not make a
brute-force attack. For instance, if the PIN code length is four
digits and the retry counter is 10, the chance to find the PIN
code is 0.001 (tries / possible PINs = 10/104= 0.001). On the
other hand, the user has time to use her backup wallet to
transfer all funds to a brand-new seed as soon as possible.
We must mention that the attacks to the security element

or other hardware parts and theircountermeasures are out of
the scope of this paper and apply to entire hardware wallets
not specific for our proposed schemes.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we considered protecting private keys in
cryptocurrency wallets for blockchain technology. Even
though the most secure choice is hardware wallets, we argued
that there are critical issues that should be addressed. We
introduced a multi-layer architecture for cryptocurrency
wallets to provide a Defense-in-Depth approach. For our
proposed architecture, we implemented a proof-of-concept on
a hardware wallet and Android smartphone. We also offered
performance evaluation and security analysis for our proposed
architecture.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation under grant DGE-1915780 and DGE-1723587.

REFERENCES

[1] AT&T, "AT&T is the First Mobile Carrier to Accept Payment in
Cryptocurrency," 23 May 2019. [Online]. Available:
https://about.att.com/story/2019/att_bitpay.html.

[2] Jeff Klee, "A Letter to Our Bitcoin Customers," 20 April 2018.
[Online]. Available: https://www.cheapair.com/blog/a-letter-to-our-
bitcoin-customers/.

[3] Microsoft, "How to use Bitcoin to add money to your Microsoft
account," 5 Oct 2018. [Online]. Available:
https://support.microsoft.com/en-us/help/13942/microsoft-account-
how-to-use-bitcoin-to-add-money-to-your-account.

[4] P. Vigna, "Pay Taxes With Bitcoin? Ohio Says Sure," 26 Nov 2018.
[Online]. Available: https://www.wsj.com/amp/articles/pay-taxes-
with-bitcoin-ohio-says-sure-1543161720.

[5] S. Barber, X. Boyen, E. Shi and E. Uzun, "Bitter to Better —How to
Make Bitcoin a Better Currency," in Financial Cryptography and Data
Security, Berlin, 2012.

[6] M. Palatinus, P. Rusnak, A. Voisine and S. Bowe, "Mnemonic code for
generating deterministic keys," 2013. [Online]. Available:
https://en.bitcoin.it/wiki/BIP_0039.

[7] H. Rezaeighaleh and C. C. Zou, "New Secure Approach to Backup
Cryptocurrency Wallets," in 2019 Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 2019.

[8] Certicom Research, "SEC 1: Elliptic Curve Cryptography," 2009.
[9] "Ledger Nano X," [Online]. Available:

https://shop.ledger.com/pages/ledger-nano-x.
[10] "Trezor One," Trezor, [Online]. Available:

https://shop.trezor.io/product/trezor-one-white.
[11] H. Rezaeighaleh and C. C. Zou, "Deterministic Sub-Wallet for

Cryptocurrencies," in 2019 IEEE International Conference on
Blockchain (Blockchain), Atlanta, GA, USA, 2019.

[12] P. Wuille, "Hierarchical Deterministic Wallets," 2012. [Online].
Available: https://en.bitcoin.it/wiki/BIP_0032.

[13] M. Palatinus and P. Rusnak, "Multi-Account Hierarchy for
Deterministic Wallets," 2014. [Online]. Available:
https://en.bitcoin.it/wiki/BIP_0044.

[14] Oracle, "Java Card 3 Platform Runtime Environment Specification,
Classic Edition Version 3.0.5," 2015.

[15] Certicom Research, "SEC 2: Recommended Elliptic Curve Domain
Parameters," 2000.

[16] D. Quang, B. Martini and C. K.-K. Raymond, "The role of the
adversary model in applied security research," Computers & Security,
vol. 81, pp. 156-181, March 2019.

[17] Trezor, "User manual: Entering PIN," [Online]. Available:
https://wiki.trezor.io/User_manual:Entering_PIN.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 16:24:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

