
MAC-Layer Traffic Shaping Defense Against WiFi
Device Fingerprinting Attacks

Mnassar Alyami,1,2 Mohammed Alkhowaiter,1 Mansour Al Ghanim,1 Cliff Zou,1 and Yan Solihin1

1College of Engineering and Computer Science, University of Central Florida, USA
{mnassar.alyami@knights. | mok11@knights. | malghanim@knights. | changchun.zou@ | yan.solihin@}ucf.edu

2College of Computer Science and Information Technology, Jazan University, Saudi Arabia
malsaad@jazanu.edu.sa

Abstract—WiFi networks are vulnerable to statistical traffic
analysis attacks, even when a WiFi network is securely encrypted
and the attacker is unable to join the network. Many defenses
proposed in the literature are inefficient to deal with profiling
attacks against WiFi-based Internet-of-Things (IoT) devices,
because they burden the Internet traffic with high bandwidth
overhead and pose deliberate delay on packet transmission.
In this paper, we propose a new MAC-layer packet injection
technique where injected dummy packets only exist within the
WiFi link between IoT devices and their connected WiFi access
point. This traffic shaping defense is effective against data-
link device profiling attacks without adding any Internet-side
overhead or time delay in legitimate traffic. We evaluated our
approach on four WiFi-based IoT devices against a recent privacy
attack, and showed the reduction of attack classification accuracy
from the original 100% to 54%, close to random guessing.

Index Terms—Device Fingerprinting, IoT Privacy; Traffic
Analysis Countermeasure

I. INTRODUCTION

IEEE 802.11 Wireless network (WiFi) is widely adopted to
support Internet-of-Things (IoT) environments; the emerging
paradigm has gained rapid deployment but has increased
privacy concerns. Device Fingerprinting (DF) attacks allow
observers to identify IoT devices and their operation status
in a wireless network, which implies a severe privacy threat
due to their specialized tasks. For instance, an eavesdropper
can monitor events of the thermostat transitions (i.e., Home
to Auto-Away and vice versa) from network traffic to infer
when householders are entering/leaving their residential build-
ings [1]. Indeed, the DF attack is a well-established privacy
threat in the literature from monitoring network traffic at the
network-layer [2]–[4] and the data-link layer [5], [6].

Source anonymity technologies [7], [8] can be used to
ensure the unlikability of the traffic to the destination to avoid
network-layer traffic analysis by a remote attacker. Yet, link-
layer traffic analysis attacks (i.e., local eavesdropping) are still
undefeated. The attackers who have proximity to the access
point (AP) can, without joining the network, collect WiFi
traffic and extract statistical characteristics (e.g., frame sizes,
timing) to match observed patterns to known patterns of IoT
devices. Inference attacks from WiFi eavesdropping are not as
weak as one can imagine; this attack is very realistic and can
be performed by practically anyone with close proximity to
the WiFi network [6].

There has been active research work to mitigate the privacy
leakage from network traffic analysis. (We will discuss this
more in Section II.) Broadly speaking, these defensive systems
fall into one of three categories: Uniform, Randomization, and
Mimicry-based obfuscations. Uniform-based methods enforce
a fixed packet rate [9], whereas randomization techniques
randomize packet size distribution and inter-arrival time to
make network traffic patterns odd and ”unmatchable” to the
learned signatures [10]. Mimicry-based approaches let the
system copy a target pattern to force a model used for
packet classification to misclassify [11]. Nevertheless, none
of these strategies provide an efficient way to remove (or
hide) statistical fingerprints without posing a delay on packets.
Although some IoT applications are delay-tolerant, other time-
sensitive applications would be significantly affected (e.g.,
alarming systems) by such defenses. Hence, it is extremely
important to provide a general privacy-preserving solution to
accommodate all types of IoT devices.

Furthermore, with billions of connected “things” over the
Internet providing services to governments, hospitals, busi-
nesses, and individuals, Internet service providers (ISP) in
some areas may limit the bandwidth to ease congestion over
the network. With that in mind, relying on a mechanism
that increases the internet traffic [12], [13] would deplete
the network resources and harm user experience. Therefore,
existing countermeasures that increase internet bandwidth are
not practical for wide deployment.

Towards this end, this paper presents a new MAC-layer
traffic shaping defense against device fingerprinting attacks
with the following properties:

• Effective: We present a confusion-based obfuscation ap-
proach that defeats device fingerprinting attacks by mak-
ing a pair of devices look indistinguishable. Furthermore,
our solution is simple to implement on IoT devices and
AP.

• Zero internet bandwidth overheads: Our approach brings
the obfuscation technique to the WiFi network and con-
tains injected dummy packets within the local WiFi net-
work, preventing an increase in internet traffic bandwidth.
We accomplish this by enabling AP and IoT devices
to recognize and drop the dummy traffic generated by
our defense, hence dummy traffic does not cause internet

978-1-6654-9792-3/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 S
ym

po
siu

m
 o

n
Co

m
pu

te
rs

 a
nd

 C
om

m
un

ic
at

io
ns

 (I
SC

C)
 |

 9
78

-1
-6

65
4-

97
92

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

CC
55

52
8.

20
22

.9
91

30
56

Authorized licensed use limited to: University of Central Florida. Downloaded on November 11,2022 at 19:03:52 UTC from IEEE Xplore. Restrictions apply.

bandwidth overhead. In addition, the injector creates and
transmits dummy packets without tampering with the
original traffic of a device, resulting in little time delay.

The remainder of this paper is organized as follows: We
review related work in Section II. In Section III, we present
the threat model and outline a recent DF attack. Our traffic
obfuscation methodology is described in Section IV. We
evaluate our technique and discuss our results in Section V
and Section VI, respectively. Finally, we draw our conclusion
and discuss future works in Section VII.

II. RELATED WORK

Privacy leakage from analyzing encrypted traffic has been
extensively studied, including identification (or fingerprinting)
Apps [14]–[16], websites [17]–[19], and devices [2]–[6]. An
increasing number of studies have found that monitoring
IoT devices can yield surprisingly detailed information about
user activity. Recent work [20] has shown that monitoring a
camera’s video traffic would allow network observers to infer
changes in user activity (e.g., moving from sitting to walking).

Several papers introduced countermeasures against vari-
ous privacy attacks such as internet traffic tracing [7], app
identification [21], and website fingerprinting [12]. Are these
countermeasures effective against data-link device fingerprint-
ing (DF) attacks? We center our answer on two aspects: the
effectiveness of mitigating the privacy leakage from statistical
traffic analysis and the feasibility of implementing the defense
in terms of time and bandwidth overhead. That leads us to
argue that all the prior defenses are ineffective against our
attack as some defenses do not extend to our threat model [7],
[21] (i.e., they are tailored towards a different scope), others
are expensive to implement [12]. We discuss below related
work and their limitations to our attack scenario.

Effective defenses, though with high overheads (i.e., >150%
bandwidth and/or latency), were proposed in response to newer
website fingerprinting attacks [9], [22], [23]. Later, Wang et
al. [12] developed a practical solution that is well-appreciated
by The Onion Router (Tor) community to mitigate the privacy
leakage at lower overheads. They modified the proxy and
client’s browser to maintain a buffer that holds burst sequences
to be molded with each other to form a non-sensitive pattern at
little bandwidth instead of injecting additional dummy packets
per burst. Still, their approach requires over 30% overhead in
both bandwidth and time. Additionally, Tor uses fixed-length
packets to deliver information, unlike IoT traffic that varies in
length. Observers can perform the attack by solely leveraging
packet length statistics, as reported by [24]. Therefore, efficient
countermeasures designed for Tor cannot be extended to IoT
networks. However, other solutions that distort only packet
length features [21] are ineffective either; packet interarrival
time features are sufficient to fingerprint the types of devices
using deep learning algorithms [4]. Our obfuscation technique,
on the other hand, obscures all statistical features in the traffic
and does not increase the internet traffic.

As mentioned by Xiong et al. (2022) [25], IoT networks re-
quire special tailoring as current countermeasures have tended

to focus on shaping web-level traffic rather than device-level.
Unlike web servers, IoT devices are resource-constrained. This
led the authors in [25] to design a tunable privacy model
for IoT network traffic so users can balance the trade-off
between their privacy demands and resource requirements.
Nevertheless, their defense is limited to obfuscating event-
indicating traffic (e.g., a sensor detects motion), so attackers
can still fingerprint IoT devices. In this work, we protect
against DF attacks, which implies the immunity against the
event-level adversary.

Our literature search was able to identify a single paper [5]
in which the authors attempted to defend against the data-link
profiling attack. The authors of [5] evaluated a traffic injection
solution and reported a reduction in the accuracy from 94%
to 15%. The main limitation of their work is that they rely
on the assumption that the attacker does not know about
the defense, which is an unreasonable assumption that can
lead to significant privacy leakage. Attackers can implement
their technique and adversarially train a better classifier to
overcome the defense. Different from their work, we applied
our technique to both training and testing data to show the
more robust technique against future attacks.

III. PRELIMINARIES

In this section, we discuss the threat model we consider. We
then give a brief description of our recent privacy attack [6].

A. Threat Model

In this paper, we are concerned with the privacy leakage of
IoT devices from statistical traffic analysis attacks. As shown
in Fig. 1, we assume an observer positioned within the signal
range of the victim’s AP to record encrypted WiFi traffic. This
adversary does not need to join or break into the WiFi network
to perform the attack; thus, the observer can only access
the encrypted data-link traffic (i.e., MAC addresses, signal
strength, observation timestamp, frame length, and type).

Our adversary’s goal is to infer the device type (e.g., Baby
monitor, Security camera, etc.). We consider a closed-world
scenario, where the attacker is interested in profiling a partic-
ular set of devices to infer sensitive information or monitor
user activity. For example, the attacker can infer whether a
unit has expensive equipment in it or not, and roughly how
many people being active in that unit. IoT monitoring can also
reveal user activity. If the attacker succeeds in fingerprinting

Fig. 1. Threat Model.

Authorized licensed use limited to: University of Central Florida. Downloaded on November 11,2022 at 19:03:52 UTC from IEEE Xplore. Restrictions apply.

sleep monitors, it is then possible to extend the traffic moni-
toring to observe an event packet stream from packet lengths,
triggered when the user is sleeping. This assumption has been
successfully validated recently [25].

We assume the observer is aware of the defense, thus can
adversarially train his/her classifier to overcome our defense.
To counter against further attacks successfully, we reduce the
attack success near to random guessing.

B. WiFi-based Device Fingerprinting Attack

Our prior work presented a practical privacy attack that
allows eavesdroppers to identify IoT devices in a WiFi network
with high accuracy (95+%) [6]. The adversary exploits the
statistical differences in IoT devices’ network traffic due
to their various and distinct functionalities (e.g., streaming,
sensing). From the machine learning perspective, device iden-
tification is a classification problem in which the adversary
captures raw packets of his/her own devices and then extracts
distinguishable features to build a profile that can be used for
identifying IoT devices in-the-wild with similar data patterns.

In this attack, we show the attacker can set a commodity
laptop in monitor mode to passively record encrypted IoT
network traffic over a short time (30 seconds). The attacker
then pre-processes the trace by filtering out all control and
management MAC-layer frames to exploit data patterns from
the remaining data type Mac-layer frames.

Next, we obtain the pre-processed data to extract 14 statis-
tical features f from encrypted WiFi traffic for profiling:

• f1: Number of incoming frames from AP to the device.
• f2: Number of outgoing frames from the device to AP.
• f3: The variance of inter-arrival time of the received

frames from AP.
• f4: The average number of frames the device transmitted

consecutively prior to receiving a data frame.
• f5: The average number of frames the device received

consecutively prior to transmitting a data frame.
• f6: Flow size in bytes of transmitted data frames from

the device.
• f7: Flow size in bytes of received data frames from the

device.
• f8: The number of distinct lengths in device transmitted

data frames.
• f9: The number of distinct lengths in device received data

frames.
• f10: Maximum observed frame length.
• f11: The most frequent length in transmitted data frames

from the device (i.e., the length that appears most in the
monitoring window).

• f12: The most frequent length in received data frames
from AP.

• f13: The variance of device transmitted data frames.
• f14: The variance of device received data frames.
Finally, we use the summary data approach we summarized

in Section V to create a dataset of 14 columns; each represents
a feature from f . These statistical data are found to be effective
signatures to feed into machine learning (ML) classification

to infer information about the device type and its working
activity (busy vs. idle). In [6], we evaluated 3 ML algorithms:
Support Vector Machine, Naı̈ve Bayes, and Random Forest.
The latter model (i.e., Random Forest) outperforms the other
two algorithms and achieves an average F1 score of 95%.

IV. OBFUSCATION VIA CONFUSION

Our proposed traffic shaping defense is based on dummy
packet injection to make two different devices look very
similar. It sends dummy packets in a way that masquerades
another device and blends into the original traffic so that
the attacker cannot distinguish which of the two devices the
observed traffic belongs to. To be specific, let a classifier C
that classifies a device D using its traffic TD. Our defense
shapes TD to T ′D to confuse C such that it cannot classify
D correctly.

To achieve this, we shape the original traffic of a device
x, TD(x), by injecting a traffic pattern from another device y,
PD(y), so that we obtain the shaped traffic as:

T ′D(x) = TD(x) + PD(y), (1)

where PD(y) is a segment of trace recorded from another
device y. Likewise, for the device y and its original traffic
TD(y), we use device x’s traffic pattern to shape it, which
means the shaped traffic of device y is:

T ′D(y) = TD(y) + PD(x). (2)

As a result, classifier C cannot distinguish device x from
device y because T ′D(x) ≡ T ′D(y). This is empirically true as
the pattern in a recorded trace PD is equivalent to the pattern
in the online traffic observed in TD.

Furthermore, we assume the adversary knows about our
defense being performed at the WiFi network; therefore, if we
adversarially train C′ using T ′D, then C′ also cannot classify
D as T ′D(x) ≡ T ′D(y).

In our wireless communication scenario, two objects are
involved in packet injection (i.e., AP and a client device). We
adopt a one-way injection at each node to obfuscate the bi-
directional traffic between the AP and client. Thus, we have
a two-way injection in the entire network. In other words, the
AP sends noisy traffic to the client, and the client sends noisy
traffic to the AP. As a result, the incoming and outgoing traffic
is thoroughly obfuscated.

Fig. 2 depicts the traffic shaping scenario between the AP
and two IoT devices. The system enables the AP and IoT to
store packet traces to mask the traffic. On the right hand, the
AP injects dummy packets into IoT(x) traffic with sending
patterns derived from data traces recorded from IoT(y). The
same is performed for the second device (IoT(y)) but using the
corresponding packet trace (IoT(x)). On the left hand, each
device also uses stored packet traces to mimic the behavior
of each other when responding to the AP. All noisy traffic is
sent at the network-layer. Hence, all packets are encrypted
at the data-link layer. Therefore, the WiFi traffic is fully
obfuscated, and the wireless eavesdropper cannot identify and
filter out those dummy packets. Finally, all generated dummy

Authorized licensed use limited to: University of Central Florida. Downloaded on November 11,2022 at 19:03:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. WiFi traffic shaping scenario between AP and two IoT devices.

flow is dropped by the AP and IoT devices when they receive
them, which means the dummy traffic only exists in the WiFi
network, never appears beyond the AP to the Internet. In
this way, our proposed approach does not add any bandwidth
overhead on the Internet side.

A. Algorithm

A pseudo-code for the main loop of our traffic shaping
defense is shown in Algorithm 1. Both the AP and client run
the same loop but using the corresponding data trace (i.e.,
incoming or outgoing). As mentioned before, the data trace
is recorded offline from a device to provide the basis for the
mimicry process.

The input of data trace is stored in a sequence Seq{},
which contains a set of segments S. Each individual segment
holds a series of packets {Pktn0} captured over a specific time
window.

The program, once executed, feeds the injector with a
segment of packets Sx. In this manner, the injector uses the
two values provided from each packet in the segment (i.e.,
timestamp and length) to decide each packet’s length and
insertion schedule (i.e., waiting time).

We randomize Sx using two operations. First, we add a
marginal random value ∈ {0.0 to 0.09} to each time interval.
Second, we run a pseudorandom number generator to get two
lists LDrop and LReplace of the same size as Sx. Both list
elements ∈ [0, 1] with a random probability Prob from 0%
to 5% to be ones. So, when injecting the dummy packets
from Sx, we skip the ith element of Sx when the ith element
in LDrop = 1. However, if the corresponding element in
LDrop = 0 and the ith element in LReplace = 1, the program
will replace the packet from Sx with a random size packet
that is less than or equal to the maximum transmission unit
(MTU) and send it after a random waiting time, up to 0.09
seconds. Otherwise (i.e., when both elements in LDrop and
LReplace = 0), the program will inject form Sx, which will

Algorithm 1 Mimicry-Based Traffic Injection
1: Seq{} ← multiple segments S
2: while True do
3: DummyPkt← Source, Destination, flag = ’Dummy’
4: Sx ← Randomly select a segment from Seq
5: V olume← length of Sx

6: Prob← random (low = 0, high = 5)
7: LDrop []← random (value ∈ {0, 1}, size = V olume,

probability = (Prob, value = 1)).
8: LReplace []← random (value ∈ {0, 1}, size = V olume,

probability = (Prob, value = 1)).
9: for i← 1 to V olume do

10: if LDrop[i] = 1 then
11: continue
12: else if LReplace[i] = 1 then
13: Waiting time = random (low = 0, high = 0.09)
14: send DummyPkt (size = random)
15: else
16: Interval← Sx : Pkti − Pkti−1

17: r = random (low = 0, high = 0.09)
18: Waiting time = Interval + r
19: send DummyPkt (size = Sx : Pkti)
20: end if

be at least 95% of the time. Thus, we slightly randomize
the time-based and flow-based features of packet sequences;
hence every time we use the same segment, it looks different.
This randomization is necessary to prevent the attacker from
conducting frequency analysis to identify dummy packets (i.e.,
using the same segment at a fixed pattern).

B. Implementation

This section discusses practical considerations involved in
implementing our defense and noise generation prototype.

Authorized licensed use limited to: University of Central Florida. Downloaded on November 11,2022 at 19:03:52 UTC from IEEE Xplore. Restrictions apply.

a) Practical Considerations: In creating the dummy
packets, we need to design a mechanism that allows IoT
devices and the AP to easily identify and discard the noisy
frames. To achieve this, we propose putting a flag on the
header of dummy packets. We exploit the reserved/unused
bit flag on the IP header to label dummy packets. Since
the adversary observes only the data-link layer traffic in an
encrypted WiFi network, the IP header is fully encrypted, and
hence, the attacker cannot observe the IP header to filter out
dummy packets. The tagged packets can be ignored in different
ways, such as using the ip command blackhole in Linux OS1,
which is used to drop packets silently.

b) Noise Generation Prototype: Since we cannot modify
IoT devices due to firmware restrictions, we develop a proof-
of-concept implementation on two Linux computers; the first
is on the AP mode to emulate as an AP and the second one
emulates as an IoT device. We developed a Python script
with the scapy library2 to generate and send dummy packets
between the two computers over a WiFi connection. The
packet creation and transmission are implemented using the
IP () and send() functions at layer 3. Our source code can be
found on GitHub3.

V. EVALUATION

We evaluate the performance of our obfuscation technique
by simulating the noise injection on a data trace collected
over 30 minutes from four WiFi-based IoT devices (Baby
monitor, Camera, Light bulb and Smart plug). Note we capture
additional data trace from the same devices to be used as
background noise. We opted for a 30-minutes sample size
due to the observed persistent pattern by all devices, which
is also noted in [6]. Fig. 3 gives two examples of these steady
patterns from two devices (Light bulb and Smart plug). The
spikes indicate packet arrivals at different times. The larger the
spike, the more packets observed during a 1-sec time window.
We can notice that both devices exhibit a consistent pattern
(regular number of packets per second), with higher traffic
volume when the device is turned ON/OFF. For example, the
light bulb on the left char mostly has a frequent number of
packets/sec of 2.5 and increases above 5 when changing its
working status. Besides, the time difference between packet
streams is remarkably constant. Therefore, we believe that our
data has a sufficient mix of testing signatures to prove the
concept of our defense.

To construct our dataset, we adopted the summary-data
format described in [6]; For every device (i.e., every unique
MAC address)4, we calculate 14 features {f1, f2, . . . , f14},
as outlined in Section III-B, observed over a 30-seconds time
window. For example, to obtain the first datapoint, we calculate
f during the time window W1 = {0, . . . , 30}. Then, we slide
the time window forward by 30 seconds to obtain the second

1https://man.archlinux.org/man/ip-rule.8
2https://pypi.org/project/scapy/
3https://github.com/MnassarAlyami/Mimicry-Based-Traffic-Injection.git
4The basic assumption here is that a device will not change its MAC address

during this observing time window, which is true for current IoT devices.

datapoint within W2 = {30, . . . , 60} and repeat the process
until the end of the trace. (We refer readers to more detailed
descriptions in [6]). Note that we created two datasets: the first
represents the undefended traffic, and the second is constructed
after shaping the traffic using our proposed technique.

For evaluation, we randomly split our datasets into 75%
for training and 25% for testing. We evaluate our defense
against the best classifier (using Random Forest) reported
in [6]. Below, we discuss our evaluation metrics and compare
our results with random guessing as a baseline.

A. Evaluation Metrics
We evaluate our defense using the same standard metrics

used for evaluating our prior attack: Accuracy, Precision, Re-
call and F1 Score. The detailed calculation of these evaluation
metrics is given in the Appendix.

Our goal is to confuse the classifier from predicting the true
device. Hence, we show the indistinguishability of the four
devices under investigation through a lower score in all metrics
compared to our attack, ideally close to random guessing5

(50%).
Additionally, we evaluate the overhead of our defense by

calculating the percentage of added dummy data, which we
define as:

Overhead =
D

R
(3)

where D is the total amount of dummy packets, and R is the
total amount of real packets.

Generally, inserting extra dummy packets affects the internet
bandwidth, but as we mentioned earlier, our technique avoids
this limitation by dropping noise packets at the AP before en-
tering the Internet. However, we define this metric to simplify
the analysis of the extra burden laid on the WiFi network or
the devices (e.g., power consumption overhead).

B. Results
Table. I compares the accuracy, precision, recall and F1

score of two classifiers: the first is trained using the original
traffic, which represents the attack performance and the second
is trained using the defended/shaped traffic (i.e., After injecting
dummy packets). We can observe the reduction of all metrics
from 100% to 54% on average by our defense.

Furthermore, Table. II shows how the classifier confuses
and misclassifies one device for another in our testbed (Bulb
vs. Plug and Baby Monitor vs. Camera). The model could not
learn from the ”mix” as we inject from the bulb to the plug and
vice versa. Likewise, we pair the traffic of the baby monitor
and camera. As a result, a potential attack classifier will have
difficulty learning from data created in this fashion.

The same Table (Table. II) also shows the percentage of
dummy packets to the real packets as 106%. This is expected
as the WiFi network traffic doubles when we program each
device to duplicate another device’s traffic.

5Random guessing achieves 1/k accuracy where k is the number of classes
in the model. Since we confuse the attacker between two devices at a time,
then k = 2.

Authorized licensed use limited to: University of Central Florida. Downloaded on November 11,2022 at 19:03:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CLASSIFICATION ACCURACY, PRECISION, RECALL AND F1 SCORE OF TWO DATASETS.

No Defense (%) Defended Traffic (%)
Device Accuracy Precision Recall F1 Accuracy Precision Recall F1
Baby Monitor 100 100 100 100 60 56 60 58
Bulb 100 100 100 100 50 50 50 50
Camera 100 100 100 100 53 57 53 55
Plug 100 100 100 100 50 50 50 50

TABLE II
CONFUSION MATRIX OF OUR IOT DEVICES CLASSIFICATION AGAINST OUR

DEFENSE AND OVERHEAD.

Actual
Baby Mon. Bulb Camera Plug

Baby Mon. 0.6 0.0 0.47 0.0
Prediction Bulb 0.0 0.5 0.0 0.5

Camera 0.4 0.0 0.53 0.0
Plug 0.0 0.5 0.0 0.5

Balanced Accuracy 54%
Added Packets 106%

VI. DISCUSSION

Privacy leakage mitigation: Our results validate that our
traffic-confusion-based obfuscation technique can defeat data-
link device fingerprinting attacks. We show the four devices in
our experiments become indistinguishable for the classifier, al-
though it was trained using the obfuscated traffic. The learned
model resulted in 54% accuracy compared to 50% using
random guessing. This confusion is expected as signatures in
both training and testing data are very similar for each device.

The side-channel leakage from encrypted traffic analysis
is not only a privacy leakage but also a critical information
leakage to vulnerability scanners. Mapping the high fidelity
classification information to known vulnerable devices [26]
provides a potential attack plan for when the adversary wishes
to penetrate the environment. This preparation phase can
provide insight to the adversary on what tools and penetration
assets to establish a foothold in the target environment. Hence,
this defense may also provide security protection as privacy
and security threats are sometimes related.

Overhead: Our method provides privacy without incurring
internet bandwidth overhead. Moreover, we rely on pre-
recorded traces to generate packet sequences to enforce con-
fusion against inference attacks, which carries a small compu-
tational cost. However, since our defense requires additional
packets to obfuscate traffic patterns, that would introduce an
inevitable power consumption overhead.

We propose a potential obfuscation mechanism without
inserting dummy packets to overcome the power consumption
overhead. Shaping the IoT traffic via virtual identifiers [27]
would allow each IoT device to generate multiple virtual
network interface cards; each has a different MAC address
to communicate with AP. As a result, the network traffic
of one device will be distributed among different identifiers.
Thus, it becomes much more difficult for the attacker to
link packets from different identifiers for profiling. However,

there are still unresolved practical challenges with this privacy
model. For example, how to decompose the internet traffic of
a device (e.g., HTTP requests) into fractions over multiple
virtual interfaces with different IP addresses? We plan to
conduct further investigation in this direction as future work.

VII. CONCLUSION AND FUTURE WORK

The existing countermeasures against network traffic analy-
sis attacks at the network-layer are not a viable option against
data-link DF attacks. One reason is that they would negatively
impact the internet condition with significant noisy traffic. Be-
sides, prior studies present lightweight solutions in bandwidth
but at a higher latency. By adding noise traffic only on the
WiFi link, this paper presents a zero-overhead defense in in-
ternet bandwidth against WiFi-based traffic analysis attacks. In
addition, our technique injects dummy packets without posing
a deliberate delay on the original traffic of a device. We present
a traffic obfuscation mechanism in which a pair of devices
become indistinguishable. Each device sends dummy packets
to mimic the other, so it generates two patterns simultaneously
to hamper the fingerprinting attack. Our method significantly
reduces the classification accuracy of a recent privacy attack
to be close to random guessing.

For future work, we aim to answer the question of how
much privacy is enough? In other words, we plan to introduce
a risk assessment model to allow users to balance between
the cost of implementing the countermeasure (i.e., power
consumption) and privacy. Since different IoT devices may
leak sensitive information that varies in severity, such as
the user presence/absence, age, health condition, etc., it is
therefore of great interest to quantify privacy leakage with
respect to the device type to allow for an optimum balance
between privacy protection and overhead.

ACKNOWLEDGMENT

This work was sponsored by the U.S. National Science
Foundation (NSF) under Grant DGE-1915780. The authors
also would like to thank Mr. Karl Ackerman from Sophos
Inc. for the helpful discussion.

REFERENCES

[1] Bogdan Copos, Karl Levitt, Matt Bishop, and Jeff Rowe. Is anybody
home? inferring activity from smart home network traffic. In 2016 IEEE
Security and Privacy Workshops (SPW), pages 245–251. IEEE, 2016.

[2] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam
Radford, Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman.
Classifying iot devices in smart environments using network traffic
characteristics. IEEE Transactions on Mobile Computing, 18(8):1745–
1759, 2018.

Authorized licensed use limited to: University of Central Florida. Downloaded on November 11,2022 at 19:03:52 UTC from IEEE Xplore. Restrictions apply.

(a) Smart light bulb. (b) Smart plug.

Fig. 3. Traffic flow of two devices over 30 minutes.

[3] Mustafizur R Shahid, Gregory Blanc, Zonghua Zhang, and Hervé Debar.
Iot devices recognition through network traffic analysis. In 2018 IEEE
international conference on big data (big data), pages 5187–5192. IEEE,
2018.

[4] Sandhya Aneja, Nagender Aneja, and Md Shohidul Islam. Iot device
fingerprint using deep learning. In 2018 IEEE International Conference
on Internet of Things and Intelligence System (IOTAIS), pages 174–179.
IEEE, 2018.

[5] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder,
Markus Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi,
and Selcuk Uluagac. Peek-a-boo: I see your smart home activities, even
encrypted! In Proceedings of the 13th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pages 207–218, 2020.

[6] Mnassar Alyami, Ibrahim Alharbi, Cliff Zou, Yan Solihin, and Karl Ack-
erman. Wifi-based iot devices profiling attack based on eavesdropping
of encrypted wifi traffic. In 2022 IEEE 19th Annual Consumer Com-
munications Networking Conference (CCNC), pages 385–392, 2022.

[7] Jianqing Liu, Chi Zhang, and Yuguang Fang. Epic: A differential privacy
framework to defend smart homes against internet traffic analysis. IEEE
Internet of Things Journal, 5(2):1206–1217, 2018.

[8] Asma Iman Kouachi, Abdelmalik Bachir, and Noureddine Lasla.
Anonymizing communication flow identifiers in the internet of things.
Computers & Electrical Engineering, 91:107063, 2021.

[9] Xiang Cai, Rishab Nithyanand, and Rob Johnson. Cs-buflo: A conges-
tion sensitive website fingerprinting defense. In Proceedings of the 13th
Workshop on Privacy in the Electronic Society, pages 121–130, 2014.

[10] Brandon Wiley. Dust: A blocking-resistant internet transport protocol.
Technical rep ort. http://blanu. net/Dust. pdf, 2011.

[11] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing:
An efficient defense against statistical traffic analysis. In NDSS,
volume 9. Citeseer, 2009.

[12] Tao Wang and Ian Goldberg. {Walkie-Talkie}: An efficient defense
against passive website fingerprinting attacks. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1375–1390, 2017.

[13] Ahmed Abusnaina, Rhongho Jang, Aminollah Khormali, DaeHun
Nyang, and David Mohaisen. Dfd: adversarial learning-based approach
to defend against website fingerprinting. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 2459–2468. IEEE,
2020.

[14] John S Atkinson. Your WiFi is leaking: inferring private user informa-
tion despite encryption. PhD thesis, UCL (University College London),
2015.

[15] Qiuning Ren, Chao Yang, and Jianfeng Ma. App identification based
on encrypted multi-smartphone sources traffic fingerprints. Computer
Networks, 201:108590, 2021.

[16] Liuqun Zhai, Zhuang Qiao, Zhongfang Wang, and Dong Wei. Identify
what you are doing: Smartphone apps fingerprinting on cellular network
traffic. In 2021 IEEE Symposium on Computers and Communications
(ISCC), pages 1–7, 2021.

[17] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security Symposium
(USENIX Security 16), pages 1187–1203, 2016.

[18] Chenggang Wang, Jimmy Dani, Xiang Li, Xiaodong Jia, and Boyang
Wang. Adaptive fingerprinting: website fingerprinting over few en-

crypted traffic. In Proceedings of the Eleventh ACM Conference on
Data and Application Security and Privacy, pages 149–160, 2021.

[19] Meng Shen, Zhenbo Gao, Liehuang Zhu, and Ke Xu. Efficient fine-
grained website fingerprinting via encrypted traffic analysis with deep
learning. In 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), pages 1–10, 2021.

[20] Jinyang Li, Zhenyu Li, Gareth Tyson, and Gaogang Xie. Your privilege
gives your privacy away: An analysis of a home security camera
service. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 387–396. IEEE, 2020.

[21] Louma Chaddad, Ali Chehab, Imad H Elhajj, and Ayman Kayssi.
Optimal packet camouflage against traffic analysis. ACM Transactions
on Privacy and Security (TOPS), 24(3):1–23, 2021.

[22] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimp-
ton. Peek-a-boo, i still see you: Why efficient traffic analysis counter-
measures fail. In 2012 IEEE symposium on security and privacy, pages
332–346. IEEE, 2012.

[23] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Gold-
berg. Effective attacks and provable defenses for website fingerprinting.
In 23rd USENIX Security Symposium (USENIX Security 14), pages 143–
157, 2014.

[24] Antônio J Pinheiro, Jeandro de M Bezerra, Caio AP Burgardt, and
Divanilson R Campelo. Identifying iot devices and events based on
packet length from encrypted traffic. Computer Communications, 144:8–
17, 2019.

[25] Sijie Xiong, Anand D. Sarwate, and Narayan B. Mandayam. Network
traffic shaping for enhancing privacy in iot systems. IEEE/ACM
Transactions on Networking, pages 1–16, 2022.

[26] Yinxin Wan, Kuai Xu, Guoliang Xue, and Feng Wang. Iotargos: A
multi-layer security monitoring system for internet-of-things in smart
homes. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 874–883. IEEE, 2020.

[27] Omar Nakhila, Muhammad Faisal Amjad, Erich Dondyk, and Cliff Zou.
Gateway independent user-side wi-fi evil twin attack detection using
virtual wireless clients. Computers & Security, 74:41–54, 2018.

APPENDIX

To evaluate our defense, we used four metrics: Accuracy,
Precision, Recall and F1 Score, which can be calculated as
follows:

Accuracy =
T

T + F
(4)

where T is the number of correct predictions, and F denotes
false predictions.

Precision =
TP

TP + FP
(5) Recall =

TP

TP + FN
(6)

where TP means true positives, TN is true negatives, FP is
false positives, and FN is false negatives.

F1 = 2× Precision×Recall

Precision+Recall
(7)

Authorized licensed use limited to: University of Central Florida. Downloaded on November 11,2022 at 19:03:52 UTC from IEEE Xplore. Restrictions apply.

