
Game AI for a Turn-based Strategy Game with Plan Adaptation and
Ontology-based retrieval

Antonio Sánchez-Ruiz† Stephen Lee-Urban? Héctor Muñoz-Avila?

Belén Dı́az-Agudo† Pedro González-Calero†

†Dep. Ingeniera del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

{antsanch}@fdi.ucm.es, {belend,pedro}@sip.ucm.es

?Dep. of Computer Science and Engineering
Lehigh University, PA, USA
{sml3, hem4}@lehigh.edu

Abstract

In this paper we present a novel approach for developing
adaptive game AI by combining case based planning tech-
niques and ontological knowledge from the game environ-
ment. The proposed architecture combines several compo-
nents: a case-based hierarchical planner (Repair-SHOP), a
bridge to connect and reason with Ontologies formalized
in Description Logics (DLs) based languages (OntoBridge),
a DLs reasoner (Pellet) and a framework to develop Case-
Based Reasoning (CBR) systems (jCOLIBRI ). In our ongoing
work we are applying this approach to a commercial Civiliza-
tion clone turn-based strategy game (CTP2) where game AI
is in charge of planning the strategies for automated players.
Our goal is to demonstrate that ontology-based retrieval will
result in the retrieval of strategies that are easier to adapt than
those plans returned by other classical retrieval mechanisms
traditionally used in case-based planning.

Introduction
Developing game AI, i.e. the algorithms that control Non-
player Characters (NPCS) in a game, is well-known to be a
difficult problem. Three outstanding challenges contribute
to this difficulty. First, game developers have little time
allocated to develop game AI; other aspects of game de-
velopment such as storyline, graphics, network connections
usually take precedence. Second, the development of en-
vironments, called level design, is typically done indepen-
dently of the development of the game AI. Yet, game AI will
be controlling NPCs running in these environments. Third,
games change over time. As games are tested, the games
are tweaked to improve the gaming experience of the player.
This makes constructing effective game AI a moving target.

In this paper we propose a novel approach for developing
adaptive game AI. At the core we propose the combination
of plan adaptation techniques and ontological information
relating objects in the game environment. Such ontological
information is readily available in many of these games and
is an integral part of their design. This is particularly the
case for turn-based strategy (TBS) games. In these kinds of
games, two or more opponents (some possibly automated)

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

take turns controlling each’s empire or civilization. Control-
ling these civilizations involves issuing commands to units
(e.g., to attack an enemy unit, to defend a location), allocat-
ing resources, and constructing new units. To win, various
aspects of building a civilization must be taken into account
including economy production, assigning resources to im-
prove military and economy, deploying military forces, and
using these forces in combat. In TBS games like Civiliza-
tion or Call To Power hundreds of different kinds of units,
buildings, technologies, civilizations, natural resources, ter-
rain features, and weather conditions form an integral part of
the game. Game AI must be able to reason with these objects
while planning the strategies for the automated players.

Currently, game AI is notoriously famous for cheating to
provide an adequate challenge level. So for example, if a city
is attacked, the game AI will spawn defenders to meet the
challenge even though these defenders are not constructed
following the rules of the game. This end up working ac-
ceptable in these games as the game AI includes ways to
make sure it will not unduly challenge a player. However,
cheating does detract from gameplay when the player real-
izes what is happening. Furthermore, as games are increas-
ingly used as training environments (e.g., for military train-
ing or as epistemic games), cheating becomes unacceptable
as the simulation environment is flawed.

We propose maintaining a library of known strategies
(i.e., plans) in the game. This strategy library includes on-
tological information about the objects used in the strate-
gies and the conditions under which these strategies where
performed. We propose an ontology based retrieval to re-
trieve relevant strategies (e.g., strategies that are applicable
to the current gaming situation) and plan adaptation tech-
niques that use the retrieved strategies to adjust them to the
current situation. Our goal is to demonstrate that ontology-
based retrieval will result in the retrieval of strategies that
are easier to adapt than other classical retrieval mechanisms
traditionally used in case-based planning.

Next, we describe the most relevant related work and the
differences with our approach. The section following that
provides an overview of the game and explains why we have
chosen it. Then we describe the general architecture of our
system and how the different modules are connected. Sub-



sequently, the next two sections provide a detailed descrip-
tion of the main components: the case-based planner and the
advantages of an ontological representation of the domain.
Finally, we summarize our work and propose future work.

Related work
One application of HTN planning in games is the work of
(Hoang, Lee-Urban, & Muñoz-Avila 2005), wherein a team
of non-human players in a first-person shooter game is con-
trolled by dynamically generated plans from the ordered-
task decomposition planner, JSHOP (Nau et al. 1999). This
team of bots was shown to outperform teams composed
of the same underlying bots that instead used hard-coded
strategies. The domain encoding input to the HTN plan-
ner, however, was static (pre-encoded); no form of CBR was
used. In our work, we intend to retrieve cases of HTN meth-
ods that are most suited to the current game state.

Other researchers have applied CBR in games. In (Aha,
Molineaux, & Ponsen 2005), cases consist of strategies ap-
plicable to specific situations in the real-time strategy game
Stratagus. Using these strategies, they were able to beat
opponents considered “very hard”, such as those that use a
“knights-rush”. This work differs from our approach in that
no form of HTN planning was used nor are retrieved plans
adapted.

Another use of case of CBR in games is the multi-layered
architecture CARL (Sharma et al. 2007). CARL com-
bines CBR and reinforcement learning to achieve a transfer-
learning goal in a real time strategy game. Unlike our work,
their case retrieval does not use ontological information.
Furthermore, case reuse is used to select a goal for the plan-
ner to achieve; no plan adaptation occurs.

In (Sánchez-Pelegrı́n, Gómez-Martı́n, & Dı́az-Agudo
2005) the authors present a preliminary approach that also
uses CBR in another clone of Civilization (C-EVO). The AI-
module concentrates in a simple tactical problem concerning
actions: the selection of a military unit behavior. However,
this tactical problem has a big impact on the result of the
game. It uses CBR to assign missions to control units based
on a big case base of previously assigned missions. Learning
and weighting case base features is a challenging problem in
this domain because of the difficulties inferring the impact
of individual military unit behavior in the final game result.

While all of the above methods employ modern AI tech-
niques in games, to our knowledge, there exists no published
work that combines CBP with HTN planning in computer
games. This is one of the primary contributions of our ef-
forts.

The planner used in our proposed architecture, Repair-
SHOP (Warfield et al. 2007), which is capable of perform-
ing both plan adaptation and plan repair, is strongly based
on other work on plan adaptation, such as (Veloso 1994).
Veloso’s work takes into account the paths explored by a
first-principles, state-space planner, and cases are used to
store the failures along with the path that lead to a solution.
A similar approach was later implemented for partial order
planners (Muñoz-Avila & Weberskirch 1996). Plan adapta-
tion of hierarchical plans has been proposed before ((Kamb-
hampati & Hendler 1992); (Muñoz-Avila et al. 2001)). The

RETSINA system (Paolucci et al. 1999) repairs hierarchical
plans in the context of a multi-agent system, but it does not
takes into account failed traces. Whereas these works either
use solely the path that led to the solution, or failure traces
for non-hierarchical planners, Repair-SHOP is distinguished
in that it takes into account failure traces for HTN planning.

Some research advocates separating planning from re-
source allocation (i.e., the information sources). Systems
such as RealPLAN (Srivastava, Kambhampati, & Do 2001)
and ParcPLAN (El-Kholy & Richards 1996) follow this ap-
proach. The separation of planning and resource allocation
allows the systems to decompose the problems into parts for
which a specialized reasoner is available. We will follow a
similar principle of separating a problem into parts and use
specialized reasoners for each part – specifically, by separat-
ing plan generation from execution.

Game description
Call to Power 2 (CTP2) is a turn-based strategy game (Civ-
ilization clone) that was originally developed by Activision
and made open-source in 2003. This game is a good choice
for our project because gameplay involves many decisions
at varying levels of complexity: where to build cities, bal-
ancing exploration and expansion with defense, when and
where to attack an opponent, which units to produce, which
advances to research, etc. The huge amount of possibilities
and factors involved in each decision make this environment
a great challenge to test techniques like hierarchical plan-
ning, case-based planning, and ontological representation of
knowledge.

An example is the best way to get an intuitive feel for how
CTP2 works. Figure 1 shows the initial state of the game. At
this point, the player has two Settler units, which are non-
military units that can explore the map and build new cities.
A majority of the map, which is a grid of tiles, is unexplored
and therefore not visible. When considering a location to
build a city, one must consider the type of terrain, amount of
food and commerce provided by the map tile, and proximity
of tradable goods (e.g. tobacco, beavers) in the vicinity of
that tile.

After a city has been built, the decision of number and
type of units to produce must be made. In addition to build-
ing more settler units, it is possible to produce military units.
Alternatively, the city can begin the construction of a City
improvement, such as a granary. When built, city improve-
ments give benefits to the host city, such as increased com-
merce or food production, or additional defense against at-
tacks. As the game progresses, another type of improve-
ments, called Wonders, becomes available. Wonders (e.g.,
The Great Wall of China) take many turns to complete and
provide special scientific, military or economic bonuses to
the player’s empire once built.

During the course of the game, enemy civilizations will
eventually be encountered, and battles ensue. Combat in-
volves each opposing unit simultaneously dealing damage to
each other in turns until one is destroyed or retreats. Bonuses
are given to a unit in a defensive stance within a city. For our
purposes, game victory is only available through military
conquest, which entails destroying all existing enemy units



Figure 1: Call to Power 2 (CTP2) is a turn-based strategy game similar to Civilization.

and cities. However, the complete game provides two other
means of victory, one through diplomacy through the form-
ing of alliances, and the other through scientific advance-
ment via building a special wonder.

General Architecture
Figure 2 shows the three main modules of our architecture:
Simulator, AI Engine and Knowledge base. The communi-
cation among these modules is done using well defined in-
terfaces over a TCP/IP connection, so each module can be
executed on different hosts.

The Simulator, or game engine, is a modified version of
the game CTP2, in which a Remote control API has been
added to the original game. This Remote control API is de-
scribed in (Gundevia 2006; Souto 2007) and allows a player
to be controlled using a external program. The API is in
charge of sending messages to the client about the events
that take place in the game (CityBuilt, ArmyMoved, etc),
and at the same time execute the commands that it receives
(BuildImprovement, MoveArmyTo, etc). With this API only
a subset of the game functionality is available: city develop-
ment and improvement, unit production, and military con-
trol; however it is enough for our proposes.

The AI Engine is the main module of our architecture and
it combines several components. Repair-SHOP (Warfield
et al. 2007) is a case-based planner based on SHOP (Nau
et al. 1999), a hierarchical planner, and is responsible for
generating new strategies. Like any other case-based plan-
ner, Repair-SHOP finds new plans by adapting old plans that
were successfully used in the past to solve similar situations.

jCOLIBRI (Recio-Garcı́a et al. 2005) is the component that
finds the most suitable old plan by using ontological knowl-
edge represented in a Description Logic formalism. Actu-
ally, jCOLIBRI is a framework for developing CBR Systems
capable of managing ontological information using the On-
toBridge library (Recio-Garcı́a et al. 2006). Finally, there
is a mediator between jCOLIBRI and the ontologies; the DL
Reasoner Pellet(Sirin et al. 2007), is this mediator, and is re-
sponsible for keeping the consistency of the knowledge base
and inferring new knowledge that was not explicitly asserted
but can be deduced. Once the “best” old plan is retrieved by
jCOLIBRI and adapted by Repair-SHOP, it must be executed
by the Supervisor. The Supervisor communicates with the
game and will both manage plan execution and determine
when to begin a new plan retrieval, adaptation, and storage
cycle. If the current plan has been accomplished, or is no
longer suitable, the supervisor will ask the planner to gener-
ate a new plan. In the coming sections we provide a more
detailed description of each part of the AI Engine.

The Knowledge Base module keeps three different types
of information: general knowledge about the domain, used
to compute similarity between cases and adapt them, infor-
mation about the current state of the game, and a collection
of old plans indexed by their initial states and goals (cases).
The main innovation is that we use ontologies to represent
all this knowledge and DLs-like formalism to reason. The
main advantages of this approach are discussed in a later
section.

As a product of the components of our architecture, the
are two main sources of domain knowledge: the tasks, meth-
ods and operators used by the planner and stored in the for-



Figure 2: Architecture of our system and main modules

malism of Repair-SHOP; and the knowledge about the dif-
ferent types of objects in the world and their relations that
are stored using an ontology. In addition, the current state
must be cloned in both formalisms because Repair-SHOP
and jCOLIBRI use it in different ways: the planner must keep
the current state to decide what methods and operators are
applicable to adapt an old plan; and jCOLIBRI keeps the cur-
rent state in an ontology to retrieve the most similar case
using similarity metrics based on hierarchies and DLs.

Planner
In plan repair an existing plan must be modified because of
changes in the world conditions (van der Krogt & de Weerdt
2005). Repair-SHOP, a planning system built on top of the
HTN planner SHOP, is capable of performing plan adapta-
tion and plan repair (Warfield et al. 2007). Among its dis-
tinguishing characteristics is the ability to take into account
failed traces, which can result in improvements in running
time performance. The HTN planner SHOP implements a
variant of HTN planning called Ordered Task Decomposi-
tion. In this variant tasks are totally ordered and conditions
are evaluated relative to the current state of the world, which
is updated during planning.

A case used in Repair-SHOP is defined as the tuple
(T,S,GG): a collection of HTN tasks T, a state S, and a graph
structure GG, called the goal graph. The goal graph GG rep-
resents the HTN generated when solving (T,S), augmented
by other relations, and takes the form of a directed depen-
dency graph with a one-to-one mapping between each goal
in the graph and each task in SHOP. This graph represents
relations between goals, operators and decisions (applied
operators). The GG, which is an implementation of the RE-
DUX architecture (Petrie 1991) with HTN planning in mind,
maintains dependencies among SHOP task nodes, allowing
SHOP to monitor changes in a task’s preconditions. This

structure propagates changes in conditions to the appropri-
ate task nodes; thus, SHOP can replan the affected sections
through dependency-directed backtracking.

Upon input of a case (T,S,GG) and a new problem (T’,S’),
Repair-SHOP uses the case’s GG relative to (T’,S’) in order
to generate an HTN for the new problem. The same domain
model is implicit in both the new problem and case. Depen-
dencies are evaluated relative to (T’,S’) resulting in a par-
tial HTN that is completed by using standard HTN planning
techniques.

The advantage of using the GG alongside SHOP is that
GGs preserve information about the state of the plan for each
task and subtask that SHOP attempts to solve. Leaves in
the GG correspond to primitive tasks in the HTN. Internal
nodes in the GG correspond to compound tasks in SHOP,
culminating in the original compound task at the root of the
GG.

Repair-SHOP’s operation is straightforward. When
Repair-SHOP monitors a change in conditions, it propagates
the result to the highest affected goal, and then checks for
an alternate decision. If no alternate decision is available,
the graph is navigated upwards towards the root until the
first alternate decision is found. If an alternate decision is
eventually found, the stored SHOP state from that decision
is restored and the SHOP planning algorithm restarted. If
no plan can be found, Repair-SHOP searches upward in the
GG for a new alternate decision. If finally successful, the
new plan is saved and then spliced into the original plan be-
ginning with the first affected goal node.

There are still areas in which Repair-SHOP could be im-
proved. Specifically, the system can only consider situations
wherein conditions in the case are invalid. Clearly, it would
be desirable to consider situations where new conditions are
added (e.g., additional resources are made available).



Knowledge Base and Similarity
As we have already explained, CTP2 is a very complex game
in which the player must manage several different types
of resources: units, city improvements, technical advances,
wonders, etc. Furthermore, each time a player uses his turn
the game time will advance, so a normal game will cross dif-
ferent ages (stone age, ancient age, modern age, etc). In each
age different features are available. Clearly, the complexity
of this environment is substantial: there exist hundreds of
features that interact in different ways depending upon the
stage of gameplay.

All this information can be intuitively described using tax-
onomies. Actually, the game user documentation includes
several tables and graphs in which all these resources are
classified. The use of these tables and graphs represent a
suitable way to describe complex worlds and so this kind of
documentation can be found in several strategy games. We
chose to use ontologies, as a generalization of taxonomies,
to represent not only the subclass relations but a more com-
plete description of the domain. Ontologies are an expres-
sive and standard mechanism to represent reusable knowl-
edge that has been successfully used in several areas.

It is evident that these ontologies keep knowledge, and
our goal is to use this information in the retrieval and adap-
tation phases of our case-based planner to improve the per-
formance and accuracy. This way, the planner is able to use
two main knowledge sources: the cases, that represent con-
crete past experiences, and ontologies, that represent general
knowledge about the domain. In this sense, our approach
can be described as a knowledge-intensive case-based plan-
ner (KI-CBP).

In figure 3 a small part of our ontology is presented (the
current ontology uses more than 60 defined concepts and
400 instances to represent the world). Each entity of our
world can be classified using different criteria. For instance,
units are classified by the environment in which they operate
(ground, water, air), the age they become available (ancient,
renaissance, modern, etc) and by their military features. In
the same way, the advances are classified by the age and
the technological area (Construction, Economics, Cultural,
Medicine, etc). We will use this ontology to compute sim-
ilarities between different entities. Intuitively, two entities
will be more similar the closer they are in the hierarchy and
the more parent concepts they share.

Let us remember the whole retrieve process of our case-
based planner. Assume that Repair-SHOP needs to build a
new plan to achieve some goals in the current state of the
world. At this point, Repair-SHOP asks the jCOLIBRI com-
ponent for the most similar case in the case base to achieve
those goals in the current state. All the previous plans are
stored in an ontology indexed by goals and initial states.
Then, using the classification capabilities of DLs, a set of
previous cases is retrieved using only some primary features.
After that, the retrieved cases will be ordered using more ac-
curate numerical similarity functions and the most similar
case is returned to the planner for adaptation. These similar-
ity metrics are discussed in next section.

The process we describe is quite complex compared to the
standard foot-printing similarity metric used in CBP, which

only counts the number of equivalent predicates in the states.
However, we think that by using complex retrieval metrics
we will get better cases that will be easier to adapt, reducing
the adaptation time and improving the quality of the final
plan. We can measure the accuracy of the retrieval as the
inverse of the plan adaptation effort.

DL and Ontology-Based Similarity
Description Logics (Baader et al. 2003) are a set formal lan-
guages (subsets of First Order Logic) that are typically used
to formalize ontologies and reason with complex worlds.
This formalism has been studied for several years and its
features are well defined. An ontology is compound of a
TBox (terminological information or concepts) and a ABox
(asserted information or instances). The TBox contains the
concepts, roles (relations between concepts) and their defi-
nitions, and the ABox contains the instances. For example,
the concept Ancient Advance is defined as the intersection
of the concepts Advance and Ancient Item. In the same way,
an Ancient Item is defined as anything with a role hasAge
with the value AG Ancient.

Ancient Advance ≡ Advances uAncient Item
Advances ≡ {AD Agriculture AD Chemistry . . .}
Ancient Item ≡ ∃hasAge.{AG Ancient}
Ages ≡ {AG Ancient AG Renaissance . . .}
. . .

We use the TBox to represent the domain constraints, i.e.
the domain information that will not change, and the ABox
to represent the current state of the world. This way the
concept City will represent the terminological definition of
what is a city in our domain, and its instances will represent
the current cities in an specific state of the game. The idea of
using an ontology to represent the state in planning has been
previously proposed in (Sirin 2006), for the Semantic Web
Services domain. However, in that work they use a different
approach than ours for the planning part.

The main features of DLs are that they can automati-
cally check the consistency of the ontology (if there exists
at least one model for the ontology), and they can classify
new concepts and instances. The consistency checking is
useful when creating the ontology to check that there are
no “impossible definitions”. The reader must take into ac-
count that we are modeling very complex worlds and it is
very easy to make mistakes. The automatic classification of
new concepts and instances classifies the information about
the new states and will make easier to compute similarities
(González-Calero, Dı́az-Agudo, & Gómez-Albarrán 1999;
Salotti & Ventos 1998).

The main two approaches to compute the similarity using
ontologies are:

• Classification based retrieval using DL classification ca-
pabilities. A new concept is built with the common prop-
erties that we are looking for, then this concept is classi-
fied and its instances are retrieved. Another variation is to
start with an instance, look for the most specific concepts
of which this individual is an instance, and then retrieve
all the instances of those concepts.



Figure 3: Small part of the ontology used to represent the domain in the game CTP2

• Computational based retrieval. In this approach numeri-
cal similarity functions are used to assess and order the
instances. The use of structured representations of the
knowledge requires similarity metrics to compare two dif-
ferently structured objects, in particular, objects belong-
ing to different classes. Usually the similarity is deter-
mined recursively in a bottom up fashion (Bergmann &
Stahl 1998), i.e., for each simple attribute, a local simi-
larity measure determines the similarity between the two
attribute values, and for each complex attribute a recursive
call compares the two related sub-objects. Then the simi-
larity values returned are aggregated (e.g., by a weighted
sum) to obtain the global similarity between the initial ob-
jects. Different weights can be used to represent the var-
ied importance of properties in the similarity measure.
In general, the similarity computation between two struc-

tured cases can be divided into two components that are ag-
gregated (Bergmann & Stahl 1998): the computation of a
concept based similarity that depends on the location of the
objects in the ontology (or intra-class similarity) and the
computation of a slot-based similarity (or inter-class simi-
larity) that depends on the fillers of the common attributes
between the compared objects. Figure 4 shows the intra-
class similarities implemented in jCOLIBRI .

In our system we will use both approaches. The classifica-
tion based retrieval will retrieve a set of most similar cases to
our current problem taken into account only the most impor-
tant features, and then, numerical similarity functions will
be used to order those retrieved cases using more accurate
metrics. All this functionality will be provided by the frame-
work jCOLIBRI that has already implemented all these simi-
larity metrics.

Here we propose a very trivial example in which the ad-
vantages of our approach in terms of quality are easy to
check. Imagine that in the current state of the world we have
2 units: a warrior and a submarine, and our goal is to destroy
an enemy city. In our case base there are only two cases with

the same goal. In case 1 there is only one unit, a warrior. In
case 2, there are two units: a knight and a destroyer. If the
foot-print similarity is used for retrieval, then case 1 will be
selected because there is 1 match (the warrior unit) against
0 matches with the second case. However, case 2 is in ac-
tuality more similar because a knight is similar to a warrior
(both are from the ancient age and ground military units) and
a submarine is similar to a destroyer (modern age and water
military units). Using the ontological approach all of these
similar qualities will be taken into account and case 2 will
consequentially be selected.

Current Status and Future Work
In this paper we have presented our ongoing effort to in-
tegrate case-based planning techniques with knowledge in-
tensive case-based reasoning using ontologies. In order to
reduce the size of the search space, most approaches to
planning represent the state of the world using propositional
logic. In complex domains, such as real time strategy games,
the expert may find more natural ways to describe the world
using object-oriented representations with inheritance.

One of the main features of Repair-SHOP is its ability to
accelerate the planning process. It does so by reusing pre-
vious plans that can be efficiently adapted when some con-
ditions required by the plan are not met in the current state.
The ultimate goal of the work presented here is to determine
whether using a rich representation of the domain for re-
trieval purposes may result in gains on speed and accuracy
of the planning process.

Speed ups may come from a more accurate retrieval that
results in reduced adaptation effort and therefore reduce the
time to obtain a plan, or from the reduction of the size of the
case base resulting from a more expressive language to de-
scribe the cases. The accuracy of the case retrieval process
will need to be measured in terms of the adaptation effort
required along with the performance (i.e., game score) ob-
tained by the resulting plans.



fdeep basic(i1, i2) =
max(prof(LCS(i1, i2)))

max
Ci∈CN

(prof(Ci))
fdeep(i1, i2) =

max(prof(LCS(i1, i2)))
max(prof(i1), prof(i2))

cosine(i1, i2) = sim(t(i1), t(i2)) =

∣∣∣∣∣∣
 ⋃

di∈t(i1)

(super(di, CN))

⋂ ⋃
di∈t(i2)

(super(di, CN))

∣∣∣∣∣∣√√√√√
∣∣∣∣∣∣
⋃

di∈t(i1)

(super(di, CN))

∣∣∣∣∣∣ ·
√√√√√
∣∣∣∣∣∣
⋃

di∈t(i2)

(super(di, CN))

∣∣∣∣∣∣
detail(i1, i2) = detail(t(i1), t(i2)) = 1− 1

2 ·

∣∣∣∣∣∣
 ⋃

di∈t(i1)

(super(di, CN))

⋂ ⋃
di∈t(i2)

(super(di, CN))

∣∣∣∣∣∣
CN is the set of all the concepts in the current knowledge base
super(c, C) is the subset of concepts in C which are direct or indirect superconcepts of c
LCS(i1, i2) is the set of the least common subsumer concepts of the two given individuals, i.e.,

the most specific concepts both individuals are instances of
prof(c) is the depth of concept c, i.e., the number of links in the longest path from c

to the top concept following the concept-superconcept relation
t(i) is the set of concepts in CN the individual i is instance of
prof(i) = max(prof(t(i))), where i is an individual

Figure 4: Concept based similarity functions in jCOLIBRI

At this point we have successfully integrated in a sin-
gle architecture the game CTP2 with Repair-SHOP and
jCOLIBRI , demonstrating the technological feasibility of the
approach. From this point, we are going to start building a
case base large enough to run the experiments that would
demonstrate the benefits of the approach. Cases may be ob-
tained by recording actual users playing the game and by
using Repair-SHOP to generate plans by running it against
human or artificial oponents.

References
Aha, D. W.; Molineaux, M.; and Ponsen, M. J. V. 2005.
Learning to win: Case-based plan selection in a real-time
strategy game. In Muñoz-Avila, H., and Ricci, F., eds., IC-
CBR, volume 3620 of Lecture Notes in Computer Science,
5–20. Springer.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F. 2003. The description logic
handbook: theory, implementation, and applications. New
York, NY, USA: Cambridge University Press.
Bergmann, R., and Stahl, A. 1998. Similarity measures for
object-oriented case representations. In EWCBR, 25–36.
El-Kholy, A., and Richards, B. 1996. Temporal and re-
source reasoning in planning: The parcPLAN approach. In
Wahlster, W., ed., Proc. of the 12th European Conference
on Artificial Intelligence (ECAI-96), 614–618. Wiley &
Sons.
González-Calero, P. A.; Dı́az-Agudo, B.; and Gómez-
Albarrán, M. 1999. Applying DLs for retrieval in case-

based reasoning. In Lambrix, P.; Borgida, A.; Lenzerini,
M.; Möller, R.; and Patel-Schneider, P. F., eds., Descrip-
tion Logics, volume 22 of CEUR Workshop Proceedings.
CEUR-WS.org.
Gundevia, U. 2006. Integrating war game simulations with
ai testbeds: Integrating call to power 2 with tielt. Master’s
thesis, Lehigh University.
Hoang, H.; Lee-Urban, S.; and Muñoz-Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
ai. In Young, R. M., and Laird, J. E., eds., AIIDE, 63–68.
AAAI Press.
Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Ar-
tificial Intelligence 55(2-3):193–258.
Muñoz-Avila, H., and Weberskirch, F. 1996. Planning for
manufacturing workpieces by storing, indexing and replay-
ing planning decisions. In AIPS, 150–157.
Muñoz-Avila, H.; Aha, D. W.; Nau, D. S.; Weber, R.; Bres-
low, L.; and Yaman, F. 2001. Sin: Integrating case-based
reasoning with task decomposition. In IJCAI, 999–1004.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), 968–973.
Paolucci, M.; Shehory, O.; Sycara, K. P.; Kalp, D.; and
Pannu, A. 1999. A planning component for RETSINA
agents. In Agent Theories, Architectures, and Languages,
147–161.



Petrie, C. 1991. Planning and Replanning with Reason
Maintenance. Ph.D. Dissertation, University of Texas at
Austin, Computer Science Dept.
Recio-Garcı́a, J. A.; Sánchez-Ruiz, A. A.; Dı́az-Agudo,
B.; and González-Calero, P. A. 2005. jCOLIBRI 1.0 in
a nutshell. a software tool for designing CBR systems. In
Petridis, M., ed., Proccedings of the 10th UK Workshop on
Case Based Reasoning, 20–28. CMS Press, University of
Greenwich.
Recio-Garcı́a, J. A.; Dı́az-Agudo, B.; González-Calero,
P. A.; and Sánchez-Ruiz, A. A. 2006. Ontology based
CBR with jCOLIBRI. In Ellis, R.; Allen, T.; and Tuson,
A., eds., Applications and Innovations in Intelligent Sys-
tems XIV, 149–162. Springer-Verlag London.
Salotti, S., and Ventos, V. 1998. Study and Formaliza-
tion of a Case-Based Reasoning system using a Description
Logic. In EWCBR, 286–297.
Sánchez-Pelegrı́n, R.; Gómez-Martı́n, M. A.; and Dı́az-
Agudo, B. 2005. A CBR module for a strategy videogame.
In Aha, D. W., and Wilson, D., eds., 1st Workshop on Com-
puter Gaming and Simulation Environments, at 6th Inter-
national Conference on Case-Based Reasoning (ICCBR),
217–226.
Sharma, M.; Holmes, M.; Santamaria, J.; ; Irani, A.; Isbell,
C.; and Ram, A. 2007. Transfer learning in real-time strat-
egy games using hybrid cbr/rl. In Proc. of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
07).
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2007. Pellet: A practical OWL-DL reasoner. Journal of
Web Semantics 5(2).
Sirin, E. 2006. Combining Description Logic reasoning
with ai planning for composition of web services. Ph.D.
Dissertation, University of Maryland.
Souto, J. 2007. A turn-based strategy game testbed for
artificial intelligence. Master’s thesis, Lehigh University.
Srivastava, B.; Kambhampati, S.; and Do, M. B. 2001.
Planning the project management way: Efficient planning
by effective integration of causal and resource reasoning in
realplan. Artificial Intelligence 131(1-2):73–134.
van der Krogt, R., and de Weerdt, M. 2005. Plan repair
as an extension of planning. In Proceedings of the Inter-
national Conference on Planning and Scheduling (ICAPS-
05), 161–170.
Veloso, M. M. 1994. Planning and Learning by Analogi-
cal Reasoning, volume 886 of Lecture Notes in Computer
Science. Springer.
Warfield, I.; Hogg, C.; Lee-Urban, S.; and Munoz-Avila,
H. 2007. Adaptation of hierarchical task network plans. In
Proceedings of the Twentieth International FLAIRS Con-
ference (FLAIRS-07).


