
A Generalized Graph-Based Method for Engineering
Swarm Solutions to Multiagent Problems�

R. Paul Wiegand1, Mitchell A. Potter1, Donald A. Sofge1, and William M. Spears2

1 U.S. Naval Research Lab
{wiegand, mpotter, sofge}@aic.nrl.navy.mil

2 University of Wyoming
wspears@cs.uwyo.edu

Abstract. We present two key components of a principled method for construct-
ing modular, heterogeneous swarms. First, we generalize a well-known technique
for representing swarm behaviors to extend the power of multiagent systems by
specializing agents and their interactions. Second, a novel graph-based method
is introduced for designing swarm-based behaviors for multiagent teams. This
method includes engineer-provided knowledge through explicit design decisions
pertaining to specialization, heterogeneity, and modularity. We show the repre-
sentational power of our generalized representation can be used to evolve a solu-
tion to a challenging multiagent resource protection problem. We also construct
a modular design by hand, resulting in a scalable and intuitive heterogeneous
solution for the resource protection problem.

1 Introduction

Natural examples of emergent complexity from collections of simple components have
led to the development of a number of methods that provide swarm intelligence —
collective capabilities from simple autonomous agents [1]. Application of swarm meth-
ods to discrete and real-valued optimization problems include ant colony optimization
[2] and particle swarm optimization [3] respectively, while other swarm methods have
been applied to the area of collective robotics [4]. Designing swarms in simple situa-
tions is primarily a matter of replicating agents with the same behaviors, but more chal-
lenging problems require varying degrees of heterogeneity, where agents may share
key behaviors and may also be capable of specialization. However, few swarm methods
address issues of heterogeneity and modularity.

Historically, problems in Artificial Intelligence have been approached using meth-
ods that involve representing and incorporating domain knowledge. Unfortunately, such
methods are difficult to implement, due to the amount of human engineering required.
This is especially true for multiagent problems, where the number of interactions be-
tween agents becomes prohibitive. In response, swarm-based solutions to multiagent
problems have been knowledge-poor. This raises other issues, especially with respect
to scalability and intuition. What is missing is a principled and practical method for
finding a middle ground: incorporating some human knowledge into the system, while
providing as much representational flexibility as possible.

� This work was performed under Office of Naval Research Work Orders N0001406WX20006
and N0001406WX30002.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 741–750, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

742 R.P. Wiegand et al.

We present a method for designing swarm-based behaviors for multiagent teams that
achieves this objective. While our method is general, this paper will focus on one par-
ticular swarm control paradigm, physicomimetics. Specifically, we will illustrate how
physicomimetics can be generalized to include heterogeneity explicitly as part of the
swarm design process, and will introduce a graph-based method to design heteroge-
neous, modular swarms. Our method allows engineers to embed knowledge about the
domain into the system to constrain agent interactions for improved scalability, as well
as to maintain intuition about the system’s operation.

The paper first presents background information on physicomimetics, then describes
our generalizations to this framework. An example of how this can be used to de-
velop heterogeneous solutions is given. We follow by describing our graph-based design
method and use it to construct a heterogeneous, modular solution by hand. The result is
a very scalable solution that was intuitively designed and easily understood. We finish
by discussing how our work relates to other swarm engineering methods, then provide
some concluding remarks, including intended future endeavors.

2 Physicomimetics

Physicomimetics provides a framework for the control of multiple agents [5]. Agents
are treated as point-mass (m) particles. Each particle has a position, x, and velocity, v.
We use a discrete time simulation, with time-step Δt. At each time step, the particle is
repositioned based on the velocity and the size of the step, Δx = vΔt. The change in
velocity of the particles is determined by the artificial forces operating on the particles,
Δv = FΔt/m, where F is the aggregate force on the particle as a result of interactions
with other particles and the environment. Each particle also has a coefficient of friction,
cf ∈ [0, 1]. Velocity in the next step becomes (v + Δv)cf , stabilizing the system [6,7].

There are two constraints: the magnitude of the force cannot exceed Fmax and the
magnitude of the velocity cannot exceed Vmax. These restrict acceleration and velocity
of particles in the model. Also, since there is an emphasis on local interactions, there
are further restrictions on the range of effect particles have on other particles.

The simplicity of this framework creates a number of benefits. First, a variety of force
laws can be employed to different effect. Moreover, the parameters of the above model,
coupled with the force law parameters, provide engineers with mechanisms to adjust the
behaviors of agents. Finally, since physicomimetics is based on physics, practical anal-
yses are possible using traditional physics techniques such as force balance equations,
conservation of energy and potential energy [6,8].

A slight variation of the well-known Newtonian force law will be used in this paper.
The range of effect of the force is C, while R is the desired range of separation between
agents. The gravitational constant is G, and there are two parameterized exponents: one
for distance, d, and one for mass, a. The distance between two particles i and j is rij .
The magnitude of the force between particles i and j is computed as follows.

Fij =

⎧
⎪⎪⎨

⎪⎪⎩

−G
(mimj)a

rd
ij

if rij ∈ [0, R)

G
(mimj)a

rd
ij

if rij ∈ [R, C]

0 otherwise

(1)

A Generalized Graph-Based Method for Engineering Swarm Solutions 743

This force law repels particles closer than R and attracts particles past that distance
but within the range of effect. The gradient of the force can be controlled using d,
and a can raise or lower the importance of mass on the force. In total, there are two
parameters associated with each particle (m and cf) and five parameters associated with
their interactions (G, C, R, a, and d). Distance variable rij is an observed phenomenon.

3 Generalizing Physicomimetics

3.1 Differentiating Particle Types and Their Interactions

In heterogeneous multiagent systems, different types of agents will have different be-
havioral profiles. When heterogeneity is necessary, the first step is to explicitly consider
different particle types during the swarm design process — each type having its own
mass and coefficient of friction. Differentiating particle types provides some degree of
specialized behaviors. For example, we can generate a variety of ring formations of ar-
bitrary radii by creating two different particle types: one with a relatively small mass
and one with a relatively large mass. However, only a limited subset of ring behaviors
are possible when all particles are homogeneous.

In addition to differentiating particles, interactive forces between the types of par-
ticles can vary. When heterogeneity is important, the second step a swarm engineer
should consider is specializing the different interactions between those types. With the
combination of different types of interactions and different particle types, a wide range
of complex heterogeneous behaviors are now possible. Moreover, by controlling how
many particle types there are, and how many agents there are of each particle type,
engineers can explicitly control the level of heterogeneity in cooperative teams.

In the simplest cases, the same force law is imposed for all interactions, but the
parameters differ. For example, Spears et al. [6] showed that, while one can generate
hexagonal lattice formations using traditional Newtonian physics, to produce square
lattices one must differentiate particles1 and vary the parameters of their interactions.

Force interactions between different particle types may also be asymmetric. That is,
particle type A may affect particle type B differently than B affects A. This idea was
leveraged by the online evolutionary learning system applied by [9,10] to an obstacle
avoidance problem. In this case, particles representing agents reacted to each other dif-
ferently than those representing the goal or the obstacles, yet the particles representing
the goal and obstacles remained fixed.

More generally, the underlying force law itself can vary for different interactions.
There is a physical metaphor for this — particles in the natural world affect one another
via a variety of forces and one often dominates. An example of where this might be
useful is the game capture the flag. Those agents retrieving the opponent flag might
be better off using a force law that takes advantage of fluid-like effects for movement
and obstacle avoidance, while those protecting the home flag may be better off using
something more appropriate for strong structural formations [10].

1 In the referenced work, they used the artificial label “spin” to differentiate particles.

744 R.P. Wiegand et al.

3.2 An Example Problem

To begin exploring the advantages and limitations of our generalized physicomimetic
framework, we introduce a simple resource protection problem. A centrally-located, im-
mobile resource is encircled by a defense perimeter. Nine protector agents are deployed
from the vicinity of the resource. Two slightly faster intruder agents appear in random
locations just outside the perimeter and begin attack runs at the resource, attempting
to avoid protectors during the run. If an intruder is destroyed, hits the resource, or is
chased out of the perimeter, it is removed from the simulation, and a new intruder will
begin a new run from just outside the perimeter after a short random waiting period.

Fig. 1. Example resource protection problem. Castle marks resource to be protected, outer circle
marks defense perimeter, gray and white circles with dots indicate protectors (two types), and the
triangles indicate intruders (one type).

The problem is multiobjective. Ultimately, we want to reduce the extent of incursions
into the defense perimeter, but also we want to avoid damage to the resource. Thus
we define two objectives: the average per-step incursion distance of intruders into the
perimeter and the ratio of resource hits taken over the total number of intruder runs at
the resource. While these two objectives overlap a great deal, they are not the same —
particularly when there are multiple intruders as is the case here.

As a result of its multiobjective nature, the resource protection problem is a good one
for exploring questions about heterogeneity. By changing aspects of the problem, such
as the relative importance of the two objectives, the number of intruders, or the types
of possible intruder behaviors, we can begin to address questions about how heteroge-
neous teams of protectors can help, and what level of heterogeneity is useful in what
circumstances. Specifically, we will consider solutions that allow for two different types
of protectors (6 of one and 3 of the other) defending against a single type of intruder.
The intuition here is to allow the system to deal with each objective separately bypro-
viding it with different protective mechanisms for each objective. For example, it might
be useful to have one set of protectors on the frontier chasing away intruders as soon
as they enter the perimeter, while also having a few protectors back by the resource to
prevent last-minute strikes.

A Generalized Graph-Based Method for Engineering Swarm Solutions 745

3.3 Optimizing a General Physicomimetic Solution

Solutions to the resource protection problem can be represented using generalized physi-
comimetics; intruders and protectors use this model in all cases in this paper. Addition-
ally, since their behaviors will be significantly influenced by the resource itself, it is also
useful to model this as a separate particle type.

If we allow all possible instantiations, the parameter space is quite large, but we can
reduce it somewhat. Since the central resource does not move, we need not worry about
its coefficient of friction or interactions from other types of particles. Additionally, we
limit the intruders to a single pre-defined strategy and focus on optimizing a solution
for the protectors. Still, protector behaviors require eight interactions (one from each of
the four types affecting each of the two protector types) and a total of 46 parameters (8
interactions with 5 parameters each + 4 for the mass of each type + 2 for the cf of the
protectors). If we were to add another protector type, there would be 6 more interactions
and 32 more parameters. Indeed, the number of parameters scales quadratically with the
number of particle types.

In spite of these simplifications, the size and complexity of the parameter space make
it intractable for us to solve this by hand. Instead, we turned to evolutionary computation
to help learn the parameters for the problem. Evolution was performed with a simple
ES(2 + 10). The physicomimetic parameters were encoded as real values in the range
[0.0, 1.0] and mapped to the ranges shown in Table 1. An adaptive Gaussian mutation
was used, where σ ∈ [0.005, 0.2], initialized at 0.2. The ES optimized two equally
weighted measures: the average incursion distance of intruders into a defense perimeter
of radius 150, scaled to the range [0.0, 1.0], and the hit ratio of the intruders on the
resource. These measures were evaluated using five discrete-time, 350×350 continuous
space simulations of the problem run for 1000 steps each. This time is sufficient to allow
approximately 20 intruder attack runs per simulation. The simulation was implemented
with MASON, a multiagent simulation library [11].

Table 1. Legal physicomimetic parameter ranges for resource protector agents

Cuv Ruv Guv duv auv mu cfu

[0, 350] [0, C] [0, 2400] [−5, 5] [0, 5] [0.1, 50.0] [0, 1]

We performed 10 independent evolutionary runs, each for 100 generations, and tested
the final best parameter set for an additional 100 simulations. The resulting average
scaled incursion distance measure and 95% confidence interval for this solution was
0.120 ± 0.0016, and it allowed 4 hits on the resource over the 100 simulations. As
hoped, the ES took advantage of the generalized physicomimetic framework byevolving
a heterogeneous solution in which 6 protectors formed an outer ring to block incoming
intruders as far away from the resource as possible, while 3 protectors formed a tight
cluster around the resource to block any intruders making it through the outer defense.
However, the inner ring of defenders was too close to the resource to be physically
plausible. The majority of the other evolutionary runs produced physically implausible
solutions as well. Furthermore, all the evolved solutions had an unnatural jitter that
would not be acceptable if deployed.

746 R.P. Wiegand et al.

A more carefully considered EA might have produced more natural and physically
plausible solutions in this case. Additionally, it is clear that some kind of representa-
tional constraints are necessary if one wishes to increase the level of heterogeneity: the
parameter space scales quadratically as the number of particle types increases. Such
considerations are attempts to implicitly add domain knowledge into the algorithm.
We detail an approach that addresses the scale-up problem while allowing the engineer
more control over the final solution by explicitly incorporating domain knowledge in the
design process. Our approach is meant to complement the learning algorithm, though
for our example problem it is sufficient to allow us to develop solutions by hand.

4 Engineering Physicomimetic Solutions Using Directed Graphs

Our goal is to systematically design formation-oriented, collaborative multiagent teams
capable of true heterogeneity and modularity. While generalized physicomimetics is
capable of representing such solutions, it isn’t clear how to design them.

It isn’t a trivial problem. The parameter space of generalized physicomimetics, in
which any level of heterogeneity of team members is possible, is very large. Every agent
could be represented by a different particle type. Hence, due to pair-wise interactions,
the parameter space can grow quadratically with the number of types. Moreover, since
there can be strong non-linear influences between these parameters, designing solutions
will become increasingly intractable as the level of heterogeneity increases. Finally,
with this system it is unclear how to share successful partial solutions.

We provide a principled and practical method of engineering solutions using general-
ized physicomimetics by noticing two key facts: We do not always need every possible
interaction, and we can often reuse an interaction’s parameters. Reasoning about the
types of interactions is necessary for designing successful heterogeneous, swarm-based
multiagent solutions. Digraphs are natural and useful tools for this type of reasoning.

4.1 A Graph-Based Force Interaction Model

Let each type of particle be a node in a digraph and each interaction be a directed edge
in that graph. An edge is associated with a force law as follows: for two particle types,
u and v, a directed edge (u, v, Fuv) denotes an interaction where particles of type u
impart a force on particles of type v according to the force law defined by Fuv. Fig. 2
illustrates a graph for a two-agent example.

These digraphs can have isolated nodes and cycles. Omitted edges imply there is no
direct interaction between the particle types represented by those nodes in the graph.

i pFii Fpp

Fip

Fpi

Fig. 2. An example force interaction digraph. There are two particle types, (i) and (p), and there
are separate force laws between every possible pair of particle types.

A Generalized Graph-Based Method for Engineering Swarm Solutions 747

4.2 Modularity Via Condensed Subgraphs

In swarm engineering, the concept of modularity is particularly important. Here, we ad-
dress two different views of modularity: modularity of design and behavioral modules.

When designing something complex, engineers often decompose systems, build com-
ponents separately, and then combine them. We employ a similar idea for constructing
complex multiagent simulations. Using our graph-based approach, we break the graph
into relevant subgraphs, and then consider them in conjunction with one another. It is
helpful to categorize agents by developing subgraphs that profile how agents of a group
interact with other agents in the system. This constitutes modular design.

In addition to modular design, there may be times when modularizing behaviors
(sharing subsets of behaviors) in a heterogeneous multiagent team is important. One
way to introduce modularity to generalized physicomimetics is to allow particles to
share force laws and parameters. We do this by allowing the engineer to condense a
subgraph by consolidating particle types into a single node.

Some simple notational elements can be added to the digraph to aid with these sorts
of design issues. This is illustrated in the next section.

4.3 A Simple Graph-Based Solution

Our generalized physicomimetic solution to the resource protection problem was versa-
tile, but yielded a large parameter space that was quadratic with respect to the number of
protector types. Careful analysis, however, reveals obvious ways that engineer-guided
knowledge can limit the space in order to craft a solution to the problem by hand.

We begin our design by considering the agent types: an arbitrary number of protector
types (p1, p2, . . .), one intruder type (i), and a resource type (r). Next we consider the
types of interactions that we believe will be necessary. Since intruders cannot distin-
guish types of protectors, we can condense some of the intruder behaviors. Moreover, if
we consider each protector type as nearly independent, we need provide only limited in-
teractions between types of protectors — just enough to avoid hitting one another. Both
of these pieces of knowledge lead to fairly obvious reductions in the model.

We designed the interactions using three subgraphs (see Figure 3), profiling protec-
tors (all types) separately from intruders (one type). The first subgraph represents a
module of behaviors for the intruder, while the second two represent two modules of
behaviors for the protector types. The notation p∗ in a node means all protector types
are represented by that node. Links connecting such nodes represent identical force laws
between the nodes. Additionally, rather than drawing many subgraphs for each type of
protector, we abbreviate the design using the pj notational convenience. Our designso-
lution for the interactions can be seen below. We omit the F labels in the graph since
they are implied by the existence of the edge and identified by the nodes they connect.

Notice that we must resolve a notational conflict. The middle subgraph shows a spe-
cific edge between a particle protector type and itself, while the third subgraph shows
a general edge between any two protector types. A specific edge has precedence over a
general one, so the way to read the graph is as follows. Every interaction between dif-
ferent protector types is identical, except for the interaction of the protector type with
itself — that is specified explicitly and is different for each type.

748 R.P. Wiegand et al.

i

r

p∗Intruder Profile

i

pj

r

p∗

Protector Profile

Fig. 3. Force interaction models for the resource protection problem. The graph on the left repre-
sents all the interactions affecting the intruders. Note this does not depend on the protector type.
The two on the right represent those affecting the protector types. Each type of protector can react
to its own type and to intruders in a different way, but they react identically to all other protectors.

We have designed our subgraphs in such a way as to capture both senses of mod-
ularity. The first and third subgraphs condense reactions toward any kind of protector,
creating reusable modules. The second subgraph provides a design-level modularity. By
using this visualization, we can compute the number of required parameters for the pro-
tector profile. Each interaction requires five parameters (G, C, R, a, and d). If there are
P protector types, then 3P +1 edges (interactions) must be defined, requiring 5(3P +1)
parameters. Each protector type requires two more parameters (m and cf), resulting in
2P additional parameters. Hence, for P protector types, 17P + 5 parameters must be
optimized. This means there will be a constant number of new parameters (17) with the
addition of each protector type: a linear scaling of parameters.

With the above interaction design, it was easy to construct a solution to the resource
protection problem by hand. Beginning with the first protector type, we adjusted the
parameters such that these agents form a large ring around the resource. They attempt
to maintain formation, but will chase off or destroy intruders that come close to them.
The rest of the ring will redistribute if a protector is pulled away in pursuit of an in-
truder. Next we designed the second protector type to stay close to the resource, but
aggressively pursue intruders that are moderately far from them. These protectors are
pulled back to the resource if they get too far away, but are given a fair amount of lat-
itude to pursue enemies that are in close quarters. In this case, combining these two
behaviors was trivial — we merely sought to keep them out of the way of one another.
The combined behaviors are smooth, easily understood, and physically plausible.

The parameter values for the above solution are shown below. We ran this model of
100 independent simulations; the resulting average scaled incursion distance and confi-
dence interval was 0.199 ± 0.004. Of the 100 trials, 94 of them resulted in runs where no
intruder ever struck the resource. The remaining six admitted just a single strike each.

Table 2. Model parameters for hand-coded solution to the resource protection problem

i → p1 r → p1 p1 → p1 i → p2 r → p2 p1 → p2 p∗ → p∗

C 80 350 250 150 350 300 20
R 5 100 110 5 15 200 20
G 2400 600 1200 2400 0.05 1200 1200
d 2 2 1.5 2 -0.5 2 2
a 0 1 1 0 0 1 1

i p1 p2 r
m 1.0 1.0 1.0 60.0
cf 0.15 0.15 0.15 -

A Generalized Graph-Based Method for Engineering Swarm Solutions 749

5 Related Swarm Engineering Work

Swarm engineering, the process of designing, building, and validating swarm behaviors,
has sparked much interest of late. In a recent survey of case studies applying conven-
tional engineering approaches for dependability to swarm design, Winfield et al. [12]
point out the need for better tools for swarm engineering.

In response to such needs, Kazadi [13] developed a formalism of swarm intelli-
gence and described an approach to engineering the behavior of swarms according to
that formalism. Chang [14] describes this approach as a middle-meeting method that
combines both top-down macroscopic with bottom-up microscopic swarm design tech-
niques. While the method provides guidance to the swarm designer in decomposing the
swarm engineering problem, low-level behaviors must still be created by the designer.

In work contemporaneous with the initial development of physicomimetics, Reif and
Wang [15] develop a method called social potential fields as a way to program large
teams of robots. Like generalized physicomimetics, their method models the agents as
particles, provides for multiple types of agents, and generates behaviors through inter-
actions of forces between agents. Reif and Wang propose a hierarchical methodology
for determining the set of potential force laws, laying out a step-by-step procedure for
developing system behaviors with different levels of interactions.

Both Kazadi and Reif and Wang proffer methodologies for designing interactions
between agents. However, both methods largely leave it to the designer to determine
how to discover or create behaviors that achieve the global goal (Kazadi) or required
behaviors (Reif and Wang). Our work complements these approaches to force law de-
sign by presenting an intuitive graph-based means for designing such behaviors while
incorporating some human knowledge into the design process.

6 Conclusions and Future Work

This paper presented two key components of a principled method for constructing
swarms in a modular way, capable of both shared and specialized behaviors using physi-
comimitics. We responded to the growing need to find a middle ground between open-
ended, knowledge-poor representations and brittle, knowledge-rich representations by
illustrating how some engineer-guided knowledge can be incorporated into a multia-
gent system. Our intent is to provide one view on how to practically develop complex
swarm-based solutions in a principled way.

First, we clarified how physicomimetics can be generalized to extend the power of
multiagent systems by specializing particles and their interactions. We advocate making
such choices explicitly a part of the design process in constructing swarm-based sys-
tems. This gives one control over the ability of the system to produce specialized, coor-
dinated behaviors. We illustrated these points using a challenging multiagent resource
protection problem. The representational power of the generalized physicomimetic so-
lution is more than sufficient to solve the problem; however, the scale of the parameter
space necessitated heuristic optimization. This resulted in specialized squads of agents
that effectively protected a central resource from intrusion, but sacrificed predictability
and physical plausibility.

750 R.P. Wiegand et al.

Second, we presented a graph-based method for designing interaction models in
physicomimetic systems. This method allows engineers to construct graphs that clearly
define what interactions are possible. By using our technique for condensed subgraphs,
engineers can think more modularly about the design process and produce reusable
behavioral modules, giving the engineer the ability to directly control the scalability
of the system. We illustrated this method by hand designing a heterogeneous, modu-
lar solution to the aforementioned resource protection problem. Our solution is easy to
understand, physically plausible, and performs quite well on the task.

Our next step is to apply our method to design swarm-based solutions to well-known
multiagent problems, such as the art gallery problem, multi-asset surveillance, and prob-
lems from the search and rescue domain. We are also interested in combining our graph-
based design method with heuristic optimization methods, designing the force interac-
tion models by hand and eliciting the model parameters algorithmically.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University Press
(1999)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press (2004)
3. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)
4. Kube, C.R., Zhang, H.: Collective Robotics: From Social Insects to Robots. Adaptive Be-

havior 2 (1994) 189–218
5. Spears, W., Gordon, D.: Using Artificial Physics to control agents. In: IEEE International

Conference on Information, Intelligence, and Systems, IEEE (1999) 281–288
6. Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of swarms

of vehicles. Autonomous Robots 17 (2004) 137–162
7. Howard, A., Mataric, M., Sukhatme, G.: Mobile sensor network deployment using potential

fields: A distributed, scalable solution to the area coverage problem. In: Sixth International
Symposium on Distributed Autonomous Robotics Systems. (2002)

8. Spears, W., Spears, D., Heil, R.: A formal analysis of potential energy in a multiagent sys-
tems. In: Lecture Notes in Artificial Intelligence. Volume 3228., Springer (2004)

9. Hettiarachchi, S., Spears, W., Kerr, W., Zarzhitsky, D., Green, D.: Distributed agent evolution
with dynamic adaptation to local unexpected scenarios. In: Second GSFC/IEEE Workshop
on Radical Agent Concepts, Springer (2006)

10. Hettiarachchi, S., Spears, W.: Moving swarm formations through obstacle fields. In: Inter-
national Conference on Artificial Intelligence. Volume 1., CSREA Press (2005) 97–103

11. Luke, S., Balan, G.C., Panait, L., Cioffi-Revilla, C., Paus, S.: MASON: A java multi-agent
simulation library. In: Agent 2003 Conference on Challenges in Social Simulation. (2003)

12. Winfield, A., Harper, C., Nembrini, J.: Towards dependable swarms and a new discipline of
swarm engineering. In: 2004 SAB Swarm Robotics Workshop. (2004) 133–148

13. Kazadi, S.: On the Development of a Swarm Engineering Methodology. In: IEEE Conference
on Systems, Man, and Cybernetics, IEEE (2005) 1423–1428

14. Chang, K., Hwang, J., Lee, E., Kazadi, S.: The Application of Swarm Engineering Tech-
nique to Robust Multi-chain Robot System. In: IEEE Conference on Systems, Man, and
Cybernetics, IEEE (2005) 1429–1434

15. Reif, J.H., Wang, H.: Social Potential Fields: A Distributed Behavioral Control for Au-
tonomous Robots. Robotics and Autonomous Systems 27 (1999) 171–194

	Introduction
	Physicomimetics
	Generalizing Physicomimetics
	Differentiating Particle Types and Their Interactions
	An Example Problem
	Optimizing a General Physicomimetic Solution

	Engineering Physicomimetic Solutions Using Directed Graphs
	A Graph-Based Force Interaction Model
	Modularity Via Condensed Subgraphs
	A Simple Graph-Based Solution

	Related Swarm Engineering Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

