
IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 3, SEPTEMBER 2019 227

StarCraft AI Competitions, Bots, and Tournament
Manager Software

Michal Čertický , David Churchill, Kyung-Joong Kim , Martin Čertický, and Richard Kelly

Abstract—Real-time strategy games have become an increas-
ingly popular test bed for modern artificial intelligence (AI) tech-
niques. With this rise in popularity has come the creation of several
annual competitions, in which AI agents (bots) play the full game
of StarCraft: Broodwar by Blizzard Entertainment. The three ma-
jor annual StarCraft AI Competitions are the Student StarCraft
AI Tournament, the Computational Intelligence in Games compe-
tition, and the Artificial Intelligence and Interactive Digital Enter-
tainment competition. In this paper, we will give an overview of
the current state of these competitions, describe the bots that com-
pete in them, and describe the underlying open-source Tournament
Manager software that runs them.

Index Terms—Artificial intelligence, computational intelligence,
education, computer science education, educational programs,
learning, machine learning.

I. INTRODUCTION

R EAL-TIME strategy (RTS) games are a genre of video
games in which players manage economic and strategic

tasks by gathering resources and building bases, increase their
military power by researching new technologies and training
units, and lead them into battle against their opponent(s). They
serve as an interesting domain for artificial intelligence (AI)
research and education, since they represent well-defined, com-
plex adversarial systems [1] that pose a number of interesting
AI challenges in the areas of planning, dealing with uncertainty,
domain knowledge exploitation, task decomposition, spatial rea-
soning, and machine learning [2].

Manuscript received January 8, 2018; revised April 11, 2018, July 11, 2018,
August 27, 2018, and November 9, 2018; accepted November 13, 2018. Date
of publication November 26, 2018; date of current version September 13, 2019.
This work was supported by the Basic Science Research Program through the
National Research Foundation of Korea funded by the Ministry of Science, ICT
and Future Planning (2017R1A2B4002164). (Corresponding author: Michal
Čertický.)

M. Čertický is with the Artificial Intelligence Center, Czech Technical Uni-
versity in Prague, Prague 16000, Czech Republic (e-mail:, certicky@agents.
fel.cvut.cz).

D. Churchill and R. Kelly are with the Department of Computer Science,
Memorial University of Newfoundland, St. John’s, NF A1C 5S7, Canada
(e-mail:,dave.churchill@gmail.com; richard.kelly@mun.ca).

K.-J. Kim was with the Department of Computer Science and Engineering,
Sejong University, Seoul 143-747, South Korea. He is now with the School of
Integrated Technology, Gwangju Institute of Science and Technology (GIST),
Gwangju 61005, South Korea (e-mail:,kjkim@gist.ac.kr).

M. Čertický is with the Department of Cybernetics and Artificial Intelli-
gence, Technical University in Košice, Košice 04001, Slovakia (e-mail:,martin.
certicky@tuke.sk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TG.2018.2883499

Unlike turn-based abstract board games, such as chess and
go, which can already be played by AI at super-human skill
levels, RTS games are played in real time, meaning the state of
the game will continue to progress even if the player takes no
action, and so actions must be decided in fractions of a second.
In addition, individual turns in RTS games (game frames) can
consist of issuing simultaneous actions to hundreds of units at
any given time [3]. This, together with their partially observable
and nondeterministic nature, makes the RTS game genre one of
the hardest game AI challenges today, attracting the attention
of the academic research community, as well as commercial
companies. For example, Facebook AI Research, Microsoft,
and Google DeepMind have all recently expressed interest in
using the most popular RTS game of all time: StarCraft as a test
environment for their AI research [4].

Meanwhile, the academic community has been using Star-
Craft as a domain for AI research since the advent of the Brood
War Application Programming Interface (BWAPI) in 2009 [5].
BWAPI allows programs to interact with the game engine di-
rectly to play autonomously against human players or against
other programs (bots). The introduction of BWAPI gave rise to
many scientific publications over the last eight years, address-
ing many subproblems inherent to RTS games. A comprehensive
overview can be found in [2], [6], and [7].

In addition to AI research, StarCraft and BWAPI are often
used for educational purposes as part of AI-related courses at
universities, including the University of California at Berkeley
(USA), Washington State University (USA), University of Al-
berta (Canada), Comenius University (Slovakia), Czech Tech-
nical University (Czech Republic), and most recently Technical
University Delft (The Netherlands), where a new course titled
“Multi-agent systems in StarCraft” has been opened for more
than 200 students. The educational potential of StarCraft has re-
cently been extended even further, when Blizzard Entertainment
released the game entirely for free in April 2017.

Widespread use of StarCraft in research and education has
lead to a creation of three annual StarCraft AI competitions.
The first competition was organized at the University of Cali-
fornia, Santa Cruz in 2010 as part of the AAAI Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE) confer-
ence program. The following year gave rise to two other annual
competitions—the Student StarCraft AI Tournament (SSCAIT),
organized as a standalone long-term event at Comenius Univer-
sity and Czech Technical University, and the CIG StarCraft
AI competition colocated with the IEEE Computational Intelli-
gence in Games (CIG) conference.

2475-1502 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2424-7556
https://orcid.org/0000-0002-7732-0817
mailto:certicky@agents.fel.cvut.cz
mailto:certicky@agents.fel.cvut.cz
mailto:dave.churchill@gmail.com
mailto:richard.kelly@mun.ca
mailto:kjkim@gist.ac.kr
mailto:martin.certicky@tuke.sk
mailto:martin.certicky@tuke.sk

228 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 3, SEPTEMBER 2019

In this paper, we will talk about these three major StarCraft
AI competitions and provide the latest updates on each of them,
with the following three sections detailing the SSCAIT, AIIDE,
and CIG StarCraft AI Competitions. We will then describe the
state-of-the-art bots under active development that compete in
these competitions, and the AI methods they use. Finally, we
will introduce the open-source Tournament Manager software
powering the competitions.

II. STUDENT STARCRAFT AI TOURNAMENT

The SSCAIT is the StarCraft AI competition with the highest
number of total participants. There are three fundamental dif-
ferences between SSCAIT and the remaining two competitions.

1) SSCAIT is an online-only event. Unlike AIIDE or CIG, it
is not colocated with a scientific conference/event.

2) There are two phases of SSCAIT each year: a competitive
tournament phase, lasting for up to four weeks and a
ladder phase that runs for the rest each year. In other
words, SSCAIT is live at all times with only a few short
interruptions for maintenance.

3) Games are played one at a time and are publicly streamed
live on Twitch.tv1 and SmashCast.tv. The AIIDE and CIG
competitions instead play as many games as possible at
maximum speed, with no broadcast.

SSCAIT’s tournament phase takes place every winter in late
December and early January.

A. SSCAIT History

The first SSCAIT was organized in 2011 by Michal Čertický,
as a part of the “Fundamentals of Artificial Intelligence” course
at Comenius University, Bratislava, Slovakia. It started as a
closed event, with 50 local students competing for extra points
for their course evaluation. Since the event received a lot of
positive feedback from the participants, the organizers decided
to open it for the international public and for nonstudents next
year (although the word “Student” remained in the competition
name for historic reasons).

SSCAIT changed significantly over the course of 2012—both
in terms of the format and technology behind it. The organizers
implemented a collection of simple Python and AHK scripts
that were able to run and evaluate the bot games automatically.
This allowed for the creation of 24/7 bot ladder with online live
stream, similar to the one available today.2 The live-streamed
ladder simplifies the bot debugging process (since bot authors
can watch their creations play all kinds of AI opponents), en-
courages continuous development over the whole year and ac-
celerates the growth of StarCraft AI research community.

The registration of new bots on the ladder was simplified in
2013 with the introduction of web-based user interface for bot
creators. They can now upload new versions of their bots to the
ladder at any time. In 2014, the custom automation scripts were
replaced by Tournament Manager software, developed orig-
inally for AIIDE competition (details in Section VI), which

1http://www.twitch.tv/sscait
2The SSCAIT bot ladder was inspired by an older automated StarCraft bot

ladder, available at that time at http://bots-stats.krasi0.com/

Fig. 1. SSCAIT live stream running in HD resolution and controlled by the
custom observer script [9].

needed to be heavily modified in order to work with SSCAIT
user and game databases and to support the ladder format. Fur-
ther modifications and the introduction of the Dockerized mul-
tiplatform version of StarCraft [8] are planned soon.

Currently, SSCAIT is organized by the Games and Simula-
tions Research Group3—part of Artificial Intelligence Center,
Czech Technical University, Prague.

B. SSCAIT 2017/2018 Tournament & Ladder

The activity of bot programmers and the general public sur-
rounding SSCAIT has grown considerably over the course of
the past year, with new members to the organizing team mak-
ing a number of improvements to the live stream, and better
community engagement during the Ladder phase.

First, the ladder phase was updated, with SSCAIT introducing
so-called “weekly reports.” Every weekend, there is a 1–2-h
long segment of curated AI versus AI matches with insightful
commentary on the live stream. Second, a voting system was
implemented, allowing bot programmers and viewers to select
which bots will play the next ladder match on live stream. This
not only supports viewer engagement, but also greatly simplifies
bot debugging process. Bot programmers can now quickly test
their newest updates against specific opponents. This change
might have contributed to the significant increase in bot update
frequency. Approximately 5–6 bots are updated every day, in
contrast to 0–2 updates per week in 2015.

Another update was the introduction of “minitournaments” to
SSCAIT. These are easily configurable, irregular, and unofficial
short competitions, taking up to one day. The format of these
minitournaments and the selection of participants is usually
up to the stream viewers and moderators. Visual quality of the
stream was improved by updating the custom observer script [9],
which now moves the camera fluently to the most interesting
parts of the game in real time and displays SSCAIT-related
information on top of the game. The stream was also upgraded
to HD using a “resolution hack” (see Fig. 1). The overall number
of stream views has increased to 376 920 views on Twitch.tv
and additional 434 216 views on SmashCast.tv over the past 12
months. Two additional metrics were added to the ladder ranking
system due to popular demand: ELO rating [10], which is used in
adversarial games, such as chess, and “SSCAIT rank,” based on

3http://gas.fel.cvut.cz/

ČERTICKÝ et al.: STARCRAFT AI COMPETITIONS, BOTS, AND TOURNAMENT MANAGER SOFTWARE 229

Fig. 2. SSCAIT 2017/18 mixed division double-elimination bracket.

the so-called “ICCUP ranking system,” typical for competitive
StarCraft.

1) SSCAIT Tournament Phase Updates: The 2017/18 in-
stallment of SSCAIT’s tournament phase took place during four
weeks at the end of December 2017 and beginning of January
2018 and sported 78 participants. The tournament was divided
into the following two divisions.

a) Student Division: Round Robin tournament of 6006
games, where every bot played two games against every oppo-
nent. Only the bots created by individual students were consid-
ered “student” bots and were eligible for victory in this division.
Other bots were tagged as “mixed-division” bots (they played
the games, but could not win the student division title). Winners
of the student division in 2017/2018 were as follows.

1) Wulibot, University of Southern California (USA) with
124 wins.

2) LetaBot (Martin Rooijackers), University of Maastricht
(The Netherlands) with 109 wins.

3) Carsten Nielsen, Technical University of Denmark (Den-
mark) with 101 wins.

The student division of SSCAIT exists so that the students
stand a chance of winning in the presence of more experienced,
nonstudent participants, and team-created bots.

b) Mixed Division: After the student division ended, 16
bots with the most wins among all the participants were selected
for the additional mixed division double elimination bracket,
consisting of 30 matches (best of three, five, or seven games),
which is shown in Fig. 2.

CherryPi, created by the Facebook AI Research team won
the mixed division by beating KillerBot by Marian Devecka
4-2 in the finals. Interestingly, CherryPi encountered KillerBot
earlier in the tournament (in winner’s round 3) and lost that
match 0-3, dropping down to the losers bracket. The bot then
managed to win the whole losers bracket, meet Killerbot again
in the finals, and win by exploiting its experience from their pre-
vious games. More information about CherryPi can be found in
Section V.

All the elimination bracket games were published as videos
with commentary on SSCAIT YouTube channel4 and as replay
files on SSCAIT website.5

III. ARTIFICIAL INTELLIGENCE AND INTERACTIVE

DIGITAL ENTERTAINMENT

The AIIDE StarCraft AI Competition is the longest running
annual StarCraft competition, and has been held every year since
2010 along with the AAAI Artificial Intelligence and Interactive
Digital Entertainment conference. Unlike the CIG and SSCAIT
competitions, the AIIDE competition requires (since 2011) that
bot source code be submitted, and that the code will be published
for download after the competition has finished. Running 24
hours a day for two weeks with games played at super-human
speed, the competition is a single round-robin format with the
winner being the bot with the highest win percentage when the
time limit has been reached.

A. AIIDE StarCraft AI Competition History

The AIIDE StarCraft AI Competition was first run in 2010 by
Ben Weber at the Expressive Intelligence Studio at the Univer-
sity of California, Santa Cruz, as a part of the AIIDE conference.
In total, 26 entrants competed in four different game modes that
varied from simple combat battles to the full game of StarCraft.
As this was the first year of the competition, and little infras-
tructure had been created, each game of the tournament was run
manually on two laptop computers and monitored by hand to
record the results. Also, no persistent data were kept for bots to
learn about opponents between matches. The 2010 competition
had four different tournament categories in which to compete.
Tournament 1 was a flat-terrain unit micromanagement battle
consisting of four separate unit composition games. Tournament
2 was another microfocused game with nontrivial terrain. Tour-
nament 3 was a tech-limited StarCraft game on a single known
map with no fog-of-war enforced. Players were only allowed to
choose the Protoss race, with no late game units allowed.

Tournament 4 was considered the main event, which involved
playing the complete game of StarCraft: Brood War with fog-
of-war enforced. The tournament was run with a random pairing
double-elimination format with each match being best of five
games. A map pool of five well-known professional maps were
announced to competitors in advance, with a random map being
chosen for each game. Tournament 4 was won by Overmind—
a Zerg bot created by a large team from the University of

4https://goo.gl/icbYdK
5http://sscaitournament.com/index.php?action=2017

230 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 3, SEPTEMBER 2019

TABLE I
TOURNAMENT SETTINGS AND TOP 3 FINISHERS IN THE AIIDE, CIG, AND SSCAIT (STUDENT DIVISION) COMPETITIONS

California, Berkeley, who defeated the Terran bot Krasi0 by
Krasimir Krastev in the finals.

From 2011 to 2016, the AIIDE competition was hosted by the
University of Alberta, and was organized and run each year by
David Churchill and Michael Buro. Due to the low number of
entries to Tournaments 1, 2, and 3 from the 2010 AIIDE compe-
tition, it was decided that the AIIDE competition for 2011 would
only consist of the full game of StarCraft (with the same rules
as the 2010 Tournament 4), with no smaller micromanagement
tournaments. The 2011 tournament rules were also updated so
that all entrants must submit the source code of their bot and
allow it to be published after the competition is over, which
was done for several reasons. The first reason was to lower the
barrier to entry for future competitions—since programming a
StarCraft AI bot was very time consuming, future entrants could
download and modify the source code of previous bots to save
considerable effort. Another reason was to more easily prevent
cheating—with thousands of games being played in the tour-
nament, no longer could each game be manually inspected to
detect if any cheating tactics were being employed, which would
be more easily detected by inspecting the source code. The final
reason was to help advance the state of the art in StarCraft AI
by allowing future bots to borrow strategies and techniques of
previous bots by inspecting their source code—ideally, all bots
in future competitions should be at least as strong as the bots
from the previous year.

Since the first competition was run by a single person on
two laptops, games were played by manually starting the Star-
Craft game and creating and joining games by hand. As the
physical demand was quite high, a simple random-pairing
double-elimination tournament was played with approximately
60 games in total. This caused some negative feedback that this
elimination-style tournament was quite dependent on pairing
luck, so for the 2011 competition all chance was eliminated from
the tournament by playing a round-robin style format. Playing
a round-robin format requires far more games to be played,
and it would no longer be possible to run each game manually.
In the summer of 2011, the StarCraft AI Tournament Manager

software was written (see Section VI) that could automatically
schedule and play round-robin tournaments of StarCraft on an
arbitrary number of locally networked computers. The initial
version of this software allowed for a total of 2340 games to
be played in the same time period as the 2010 competition’s 60
games, with each bot playing each other bot a total of 30 times.
There were ten total maps in the competition, chosen from ex-
pert human tournaments that were known to be balanced for
each race, which were available for download several months
in advance on the competition website. The AIIDE competition
was modeled on human tournaments where the map pool and
opponents are known in advance in order to allow for some
expert knowledge and opponent modeling.

The 2012 AIIDE competition brought a major change to the
functionality of the StarCraft AI Competitions: persistent file
storage, which allowed the bots to learn throughout the course
of the competition. The tournament managing software was
updated so that each bot had access to a read folder and a write
folder contained on a shared folder that was accessible to all
the client machines. During each round bots could read from
their “read” folder and write to their “write” folder, and at the
end of each round robin (one game between each bot pairing
on a single map) the contents of the write folder were copied to
the read folder, giving access to all information written about
previous rounds. This new functionality was used by several
bots to implement strategy selection, in which their bot selected
which of several strategies to use based on the results of previous
rounds versus the same opponent, which typically increased
their win rates over time during the competitions.

The AIIDE competitions between 2013 and 2016 did not
have any major rule changes, and continued to use the same
pool of ten maps for each competition. Competition appeared
to stagnate between 2011 and 2013, with a relatively low num-
ber of entrants, and saw the same three bots (Aiur, Skynet,
and UAlbertaBot) trading first, second, and third place dur-
ing these years. The 2014 to 2016 competitions, however, saw
many new entries to the competition, with new bots taking the
top three positions each year. Top three finishers of each year’s

ČERTICKÝ et al.: STARCRAFT AI COMPETITIONS, BOTS, AND TOURNAMENT MANAGER SOFTWARE 231

Fig. 3. Statistics for each of the three major annual StarCraft AI Competitions: AIIDE, CIG, and SSCAIT, since the first competition in 2010. Shown on the left
is the number of total entrants for each competition, and on the right are the total number of games played in each competition.

TABLE II
RESULTS OF THE TOP EIGHT FINISHERS IN THE 2017 AIIDE COMPETITION

competition are shown in Table I. Improvements to the tour-
nament software and hardware infrastructure allowed for more
games to be played each year are shown in Fig. 3.

B. 2017 AIIDE Competition

The 2017 AIIDE competition6 had a total of 28 competitors,
and the round-robin games ran on 14 virtual machines for two
weeks. In total, 110 rounds of round-robin play were completed,
with each bot playing 2970 games for a total of 41 580 games.
Any bot that achieved a win rate of 30% or higher in the 2016
competition that did not receive a new submission was auto-
matically entered into the 2017 competition. No new rules or
maps were used for the 2017 tournament that were not in place
for the 2016 tournament. The AIIDE Tournament Manager soft-
ware had been updated with new features, such as support for
BWAPI version 4.2.0, and the ability for client machines to be
listed with special properties, such as GPU computation ability.
In combination with this update, a hardware upgrade for the
tournament allowed for GPU computation support for any bots
that required it, however, no 2017 bots used the feature. The
2017 competition had the closest top three finish of any compe-
tition yet, with the top three bots separated by less than 2% win
rate, and 3rd–6th place bots also separated by less than 2% win
rate. Statistics for the top eight finishers are shown in Table II.

The win percentage over time of the top three bots of the com-
petition is shown in Fig. 4, and demonstrates the importance of
implementing some form of opening modeling/learning over
time. Although Iron (shown in green) led for the vast majority
of the competition, it did not implement any form of learn-
ing over the course of the competition, and its win rate slowly

6http://www.cs.mun.ca/˜dchurchill/starcraftaicomp/2017/

Fig. 4. Win percentage over time for the top three bots of the 2017 AIIDE
StarCraft AI Competition. First place ZZZKBot shown in blue, second place
PurpleWave in black, and third place Iron in green.

dropped over time. ZZZKBot (blue) and PurpleWave (black) im-
plemented strategy selection learning, and their win rates slowly
climbed to the point where they overtook Iron near round 85 of
110.

IV. COMPUTATIONAL INTELLIGENCE IN GAMES

The CIG StarCraft AI Competition has been a part of the pro-
gram of the IEEE Computational Intelligence in Games confer-
ence since August 2011. Since the date of the CIG competition
was usually just before the AIIDE competition, many of the bots
submitted to both competitions ended up being nearly identical,
therefore, the CIG competition has several rule differences with
AIIDE in order to keep the results interesting. The biggest rule
difference was that the CIG competition did not disclose which
maps would be used for the competition, meaning that the bots
could not use any hard-coded map information like they could
for AIIDE.

A. CIG Competition History

The CIG conference is well known for hosting and organizing
many AI-related competitions, such as the Mario AI Competi-
tion and the General Video Game Playing Competition, and
in 2010, the first CIG StarCraft AI Competition was held. Or-
ganized by Johan Hagelback, Mike Preuss, and Ben Weber,
the CIG 2010 competition was to have a single game mode
similar to the tech-limited Tournament 3 from the AIIDE 2010

232 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 3, SEPTEMBER 2019

competition, but using the Terran race instead of the Protoss race.
Unfortunately, the first year of the CIG competition had several
technical problems, and no winner could be announced for the
competition. Mike Preuss and his team members then success-
fully organized the CIG competition each year from 2011 to
2013. Since 2014, the Sejong University team (led by Kyung-
Joong Kim) has been organizing the CIG competition at the
IEEE CIG conference. In order to provide a more diverse com-
petition, CIG rules and settings have changed each year, as
shown in Table I.

Throughout its history, CIG has had multiple changes in
the selection of tournament management software, open-source
policy, and map pool announcement policy. The tournament
management software (see Section VI) is used to distribute the
matches over multiple machines on the network and to automate
the competition operation. Although CIG organizers developed
their own JAVA-based TM software, the AIIDE TM has been
used for the competition since 2014 (see details in Section VI).
Since 2016, CIG has enforced an open-source code policy, and
all of the bots’ source code are published after the competi-
tion. Unlike the AIIDE competition, the CIG map pool was not
known to the participants before the competition to promote
generalization ability of the entries. However, it was found that
participants usually did not exploit map knowledge, and so since
2016, maps in the CIG competition have been announced in
advance.

In the 2016 competition, the organizers introduced a second
stage to the competition such that half of the entries advance to
the second stage based on the win ratio of the first stage. This
was inspired by the Simulated Car Racing Competition [11]
that adopted a two-stage competition divided into a qualification
stage and a main race. Since the single-pool round-robin format
is based on win percentage only, it is important to get high
average win ratio against all the opponents. The CIG organizers
introduced two pools with the intent to reduce the chance that
the top ranking bots win just by exploiting lower ranked bots to
boost their win ratio. Bots were randomly split into two groups,
and then the top half of bots from each group were brought
together for a final stage group, to be played as round robin,
with all learned information being deleted before the beginning
of the final stage.

B. 2017 CIG Competition

In the 2017 CIG competition, the two-stage format was
changed back to the single group format. The reason was that
the participants did not seem to change their strategy to consider
the two-stage tournament, and it did not seem to have much of
an effect on the final results. In the future, CIG organizers con-
sider adopting the SWISS-system widely used in the board game
community. In this setting, a player does not play against all the
other opponents. Instead, the participants are paired with the
opponents with similar scores. Such systems usually produce
final outcomes similar to round-robin while playing fewer total
games.

In 2017, CIG organizers tried to play as many games as pos-
sible, and reached 125 rounds with 190 games per round, which

TABLE III
RESULTS OF THE 2017 CIG COMPETITION FINAL STAGE

resulted in 23 750 games in the two-round format. Currently, AI
bots often use multiple preprepared strategies and adapt them
or their selection against specific opponents. The more games
played during a tournament, the more experience allows them to
learn which strategies are good against which opponents. As in
the 2017 AIIDE competition, many bots implemented learning
strategies that dramatically increased their win rates over time.
Detailed results of the top 6 bots in the competition can be seen
in Table III.

After the 2017 CIG competition, Sejong University organized
a special event where human players were matched against the
AI bots. The human players included one novice player (ladder
rating around 1100), one middle-level player (around 1500),
and a professional gamer: Byung-Gu Song. AI bots in the event
were ZZZKBot (winner of CIG 2017), tscmoo bot (2nd place in
CIG 2017), and MJBOT, an AI bot specially designed against
human players. MJBOT has been developed since June 2017
by Cognition Intelligence Laboratory to beat novice/middle-
level human players. Each human player played a single game
against each AI bot (nine games). The novice human player
lost two games against ZZZKBOT and TSCMOO, but won the
game against MJBOT, which was not able to finish the game
due to a programming bug. In the next session, the middle-level
human player lost all three games against the AI bots. Finally,
the professional human player Byung-Gu Song won against all
the AI bots.7 This suggests that the AI bots have a potential
to compete against novice and middle-level players, but not
professionals.

V. CURRENT STARCRAFT BOTS

Over the years, StarCraft AI competitions have motivated
many individuals and groups to implement a variety of bots ca-
pable of playing complete StarCraft 1v1 games. The structure of
most current bots emerges from the attempts to decompose the
game into a hierarchy of smaller subproblems, such as higher
level strategy, tactics, combat unit control, terrain analysis, and
intelligence gathering. For more information about the individ-
ual challenges, refer to [2] and [6].

Bots vary in complexity, and while many are rule based,
top-performing bots are now employing more sophisticated AI
techniques, such as real-time search/planning, pretrained neural
network controllers, and online learning during the competition
games. In this section, we provide an overview of a selection
of bots and discuss some of the AI approaches they implement.
We only mention those bots that were active in one of the 2017

7http://cilab.sejong.ac.kr/

ČERTICKÝ et al.: STARCRAFT AI COMPETITIONS, BOTS, AND TOURNAMENT MANAGER SOFTWARE 233

TABLE IV
OVERVIEW OF THE TECHNIQUES USED IN 2017 BOTS DESCRIBED IN SECTION V

Shown are bots’ creation year, and whether the bot uses any: “Rules” =
rule-based systems, “ML” = machine learning, “HS” = heuristic search,
“IO” = file I/O for learning during competitions, and “SIM” = simulations.

competitions, have recently been updated, and employ some
more complex AI techniques (see Table IV).

1) CherryPi: CherryPi is a TorchCraft [12] Zerg bot devel-
oped by Facebook AI Research team. It is implemented
as a collection of heterogeneous modules that can be
added, removed, or configured via the command line.
This design allows individual modules to be easily re-
placed with learning-powered modules, or to do narrow
experiments using only a subset of them. The modules
communicate by exchanging two kinds of data elements
via the blackboard architecture: Key-value pairs and so-
called UPC objects (Unit, Position, Command), which
have a generic enough meaning to be loosely interpreted
by other modules. In general, a UPC represents a prob-
ability distribution of units, a probability distribution of
positions, and a single command. Build orders are rep-
resented as a set of prioritized requests pushed into a
queue that fills in requirements and applies optimiza-
tions (like allocating resources for just-in-time construc-
tion). Fight-or-flight decisions are made by clustering
units and running a combat simulation. CherryPi’s com-
bat simulation works similarly to the SparCraft simu-
lation package (see UAlbertaBot) with a naive “attack-
the-closest-target” policy for enemy behavior. A threat-
aware path-finding is used to find the least dangerous
routes to a safety. The selection of high-level strategy
across multiple games is based on UCB1 algorithm, se-
lecting from a fixed list of strategies against each race.
The bot uses TorchCraft to communicate with BWAPI
over TCP, which allows it to run on a different host than
StarCraft.

2) cpac: A Zerg bot created by a 13-person team from
China, cpac combines hard-coded rules with a multilayer
perceptron network for unit production. The network is
trained on state-action pairs extracted from a large data
set of BroodWar games.8 The core of cpac bot is based
on the bots UAlbertaBot and Steamhammer (see ahead).

8http://www.starcraftai.com/wiki/StarCraft_Brood_War_Data_Mining

3) ForceBot: ForceBot is a Zerg bot written in GOAL—
an agent-based programming language designed on top
of BWAPI for programming cognitive agents.9 Since
the GOAL language is designed to implement multia-
gent systems, all of ForceBot’s units have their own cor-
responding agent with specific beliefs and goals. Each
agent more or less follows a rule-based AI pattern.

4) Iron10: Iron bot won the 2016 AIIDE competition, and
is a decentralized multiagent system, with each unit
controlled by a highly autonomous individual agent, able
to switch between 25 behaviors. All its units share one
simple aim: go to the main enemy base and destroy it. It
often seems like a harasser bot, which is due to its units
having mainly individual behavior. There are also so-
called “expert” agents who autonomously recommend
how resources should be spent and what units should be
trained, based on heuristics.

5) KillAll: KillAll is a Zerg bot based on the Overkill bot
by Sijia Xu, and most of its functionality is rule based.
However, its production module uses Q-learning to select
unit types to produce based on the current situation.

6) Krasi0bot: Krasi0bot has competed every year since
2010, and is still being actively developed. According
to the author, it originally started as a rule-based bot,
and currently makes some use of genetic algorithms,
neural networks, and potential fields. As the bot is not
open source, these details cannot be verified. Krasi0bot
plays the Terran race, and is known for its strong
defensive capabilities, and wide variety of strategies
implemented.

7) LetaBot11: LetaBot won the 2014, 2015, and 2016 SS-
CAIT tournaments. It uses the Monte Carlo Tree Search
to plan the movement of groups of units around the
map. A similar approach has previously been used by
the author of Nova bot, Alberto Uriarte [13]. It employs
cooperative pathfinding for resource gathering and text
mining to extract build orders from Liquipedia articles.

8) McRave: All the decisions of McRave bot are based
on current enemy unit composition—there are no hard-
coded tech choices. The bot also builds an opponent
model and uses it to select build orders.

9) MegaBot12: For every game, MegaBot [14] chooses one
of three approaches, each of which is implemented as
a different bot (Skynet, Xelnaga, or NUSBot). Algo-
rithm selection is modeled as a multiarmed bandit. At
the beginning of the game, an algorithm is selected us-
ing epsilon-greedy strategy. After the game, the reward
is perceived (+1, 0, and − 1 for victory, draw, and loss,
respectively) and the value of the selected algorithm is
updated via an incremental version of recency-weighted
exponential average (Q-learning update rule).

9http://goalapl.atlassian.net/wiki/spaces/GOAL/
10http://bwem.sourceforge.net/Iron.html
11https://github.com/MartinRooijackers/LetaBot
12https://github.com/andertavares/MegaBot

234 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 3, SEPTEMBER 2019

10) PurpleWave13: The decision making of the PurpleWave
bot is mainly based on hierarchical task networks. For
micromanagement, it uses a hybrid squad/multiagent ap-
proach and nearest neighbors clustering. The bot then
simulates the outcomes of battles and suggests tactics for
squads by min–maxing tactical approaches by each side
(e.g., “charge in,” “run away,” or “fight with workers”).
In the end, each unit takes the tactical suggestion under
advisement, but behaves independently. The units choose
between approximately two dozen simple, reusable state-
less behaviors. The bot heuristics include using potential
fields for unit movement. Strategies are chosen based
on results of previous games, race, map, and number of
starting positions. It has a graph of strategy selections,
like opening build orders paired with midgame transi-
tions and late-game compositions.

11) StarCraftGP: StarcraftGP is the first StarCraft meta-
bot—a program that autonomously creates a program
that autonomously plays StarCraft [15]. Currently, Star-
craftGP v0.1 is using (Linear) Genetic Programming and
it is able to directly write C++ code. Its first creations:
Salsa and Tequila, have been the first bots not directly
written by a human to participate in international com-
petitions.

12) Steamhammer14: The Zerg bot Steamhammer, developed
by Jay Scott, and its random-race version Randomham-
mer are based on UAlbertaBot (see ahead), employing
sophisticated combat simulation to predict the outcome
of battles. The bots also use hierarchical reactive control
for the units. For Protoss and Terran production, Ran-
domhammer uses branch-and-bound search, whereas
Zerg is currently rule based.

13) tscmoo15: tscmoo won the 2015 AIIDE and 2016 CIG
competitions. The bot uses no external libraries: it has
its own combat simulation code to predict the outcome
of battles, it does not use BWTA16 to analyze the ter-
rain and it even has its own threat-aware path-finding
for individual units. The bot is one of the most strategi-
cally diverse, and selects among its many strategies based
on their success in previous games. Recent versions of
the bot experimented with recurrent neural networks for
high-level strategy and build-order decisions.

14) UAlbertaBot17: UAlbertaBot has competed in every ma-
jor StarCraft AI Competition since 2010, and won the
2013 AIIDE competition. UAlbertaBot uses a dynamic
heuristic-search-based Build-Order Search System to
plan all its build orders in real time, as well as a StarCraft
combat simulation system called SparCraft for estimat-
ing the outcome of in-game battles. The bot uses the
results of previous games against specific opponents to
choose a strategy to implement at the beginning of each
game, with each strategy being defined in an external

13https://github.com/dgant/PurpleWave
14http://satirist.org/ai/starcraft/steamhammer/
15https://github.com/tscmoo
16https://bitbucket.org/auriarte/bwta2
17https://github.com/davechurchill/ualbertabot

JSON configuration file. Its development has focused on
its ease of use and modification, and as such has become
the basis of more than ten other bots in current competi-
tions, including LetaBot, Overkill, and Steamhammer. In
2017, UAlbertaBot became CommandCenter,18 the first
bot capable of playing both BroodWar and StarCraft 2.

15) ZZZKbot19: ZZZKBot, a Zerg bot developed by Chris
Coxe, was the winner of the 2017 AIIDE and CIG
competitions. Its overall strategy implements four sim-
ple one-base rush strategies: four-pool, Speedlings, Hy-
dralisks, and Mutalisks. If the initial rush does not end the
game, the bot switches to either Mutalisks or Guardians
for the late game, while researching upgrades for all its
units. The bot records win/loss information for each op-
ponent, and uses this information to pick the best com-
bination of strategy parameters for future games in a
rule-based manner. The majority of the bots rules for
unit control and micromanagement are simple rule-based
behaviors based on expert knowledge prioritization.

We can observe over the past few years that StarCraft AI
bots are indeed getting stronger overall. In the AIIDE and CIG
competitions, several bots from previous years are intentionally
left in the next year to serve as a benchmark for progress, and
we see each time that these benchmark bots do worse over time.
Also, expert players and enthusiasts observe replays and note
how they feel bots have gotten better or worse over time. Most
notably, many of these expert players feel that the bots have been
gradually adapting a more “standard” playing style than earlier
bots, who traditionally did one strategy such as a rush, but not
much else. More modern bots have developed mid and even late
game tactics that were not seen in earlier rushing bots. Overall,
bots seem to be getting better at army composition, build-order
selection, building placement, and overall game strategy.

While the strongest bots currently play at an amateur human
level, expert players have noted that they still appear to be weak
in a few key areas. Most importantly, bots still seem quite weak at
adapting their strategies dynamically during a match in response
to information gained about their opponent. The majority of bots
employ a playbook of several strategies that they choose from at
the start of a match and follow through to the end of the game,
with only a few bots attempting to dramatically change things
if the opponent does something unexpected. This means that
bots are still quite vulnerable to human players who are more
easily able to change strategies and tactics as a game goes on.
Current bots also seem quite vulnerable to the human ability
to quickly identify bot patterns and behavior, and exploit this
quickly during a match. For example, one human player during
a human versus machine match noted that one bot unit would
chase his Zergling when it got close to the bots’ units, and
proceeded to run the Zergling next to the bot army, and then
lead the bot on a wild goose chase throughout the entire map.
The entire time, the bot may have been reasoning that its army
could win the fight against the single Zergling unit while not
realizing that the human was just buying time until its army

18https://github.com/davechurchill/commandcenter/
19https://github.com/chriscoxe/ZZZKBot

ČERTICKÝ et al.: STARCRAFT AI COMPETITIONS, BOTS, AND TOURNAMENT MANAGER SOFTWARE 235

Fig. 5. Tournament Manager software running in a computer laboratory for
the CIG competition, which distributes bot games to multiple machines.

was ready for the final attack. This also illustrates one of the
biggest challenges in all of artificial intelligence: understanding
the long-term effects of actions that have delayed rewards. An
expert human is able to quickly understand that they are being
exploited in such a way, and that it will have negative effects
down the road, and is able to stop the behavior. This long-term
vision that is so intuitive to humans remains a problem for
current RTS AI.

VI. TOURNAMENT MANAGER SOFTWARE

All three StarCraft AI competitions covered in this paper
use the same open-source tool (with different parameters) to
automate the bot games. The tool is called StarCraft AI Tour-
nament Manager (TM)20 and was created/maintained by David
Churchill and Richard Kelly for the AIIDE competition. It al-
lows tournaments of thousands of bot versus bot games to be
played automatically on any number of physical or virtual ma-
chines, as shown in Fig. 5. The original version of the software
was created in 2011 for the AIIDE StarCraft AI Competition.
The CIG StarCraft AI Competition has used the TM software
since 2012, and SCCAIT has used a modified version of the
Tournament Manager since 2014.

The TM software supports both round robin and one versus
all tournaments for testing one bot against others. The server
stores all bot and map files, as well as results and replay files
generated by the BroodWar clients. Files are sent over Java sock-
ets between the server and client machines. The Tournament
Manager supports bots using different versions of BWAPI, and
support for new versions can easily be added, allowing bots
written in any version of BWAPI to play in the same tourna-
ment. Each client machine currently requires an installation of
StarCraft: BroodWar version 1.16.1.

The TM software uses a server–client architecture distributed
over multiple physical or virtual machines connected via LAN,
with one machine acting as a server (coordinating the matchups
and processing results) and any number of other machines act-
ing as clients (running the bots and StarCraft). The tournament
manager is written entirely in Java. The clients should run on
Windows machines due to system requirements of StarCraft,

20http://github.com/davechurchill/StarcraftAITournamentManager

Fig. 6. Tournament Manager server GUI.

whereas the server is fully platform independent. All the data
sent and received are compressed and passed through Java sock-
ets over TCP/IP.

A. Server

When running the software, one machine acts as a server for
the tournament. The server machine holds central repository of
all the bot files, their custom I/O data files, cumulative results,
and replay files. The server monitors and controls each client
remotely and displays the tournament’s progress in real time via
the server GUI (see Fig. 6), also writing the current results to an
HTML file every few seconds.

The server program has a threaded component that monitors
client connections and detects disconnections, maintaining a
current list of clients. Each client is in one of the following
states at all times (column “Status” in Fig. 6).

1) READY: Client is ready to start a game of StarCraft.
2) STARTING: Client has started the StarCraft LAN lobby

but the match has not yet begun.
3) RUNNING: A game of StarCraft is currently in progress

on the client machine.
4) SENDING: Client has finished the game and is sending

results and data back to the server.
The server’s main scheduling loop tries to schedule the next

game from the games list every 2 s. A new game is started
whenever both of these conditions are true:

1) two or more Clients are in READY state;
2) no clients are in STARTING state.
Once these two conditions are met, the server sends the re-

quired bot files, BWAPI version used by the bots, map file, and
DLL injector to the client machines. The state of those clients
is then set to STARTING.

Each client is handled by a separate thread in the server, and
if the client is STARTING, RUNNING, or SENDING, it sends
periodic status updates back to the server once per second for
remote monitoring. Data updates include current game time,
time-out information, map name, game ID, etc. When a client
finishes a game, it also sends the results, I/O data files created
by the bots and replay files, which are all stored on the server.
This process is repeated until the tournament has finished.

Shutting down the server via the GUI will cause all the client
games to stop and all clients to shut down and properly clean

236 IEEE TRANSACTIONS ON GAMES, VOL. 11, NO. 3, SEPTEMBER 2019

up remote machines. The tournament can be resumed upon
relaunching the server as long as the results file, games list, and
settings files do not change. If the server is shut down with games
in progress (results not yet received by the server), those games
will be rescheduled and played again. The server GUI can send
commands to the client machines, take screenshots of the client
machine desktops, and remove clients from the tournament.
Individual client machines can be added and removed without
stopping the current tournament.

B. Client

The client software can be run on as many machines as
needed. After an initial setup of the client machine (installing
StarCraft, required libraries, etc.) the client software connects
to the server machine via TCP/IP and awaits instructions.

The client machine will stay idle until it receives instructions
from the server that a game should be run. Once the client
receives the instructions and required files from the server, it
ensures that no current StarCraft processes are running, ensures
a clean working StarCraft directory, records a current list of
the running processes on the client machine, writes the BWAPI
settings file, and starts the game. When the game starts, a custom
BWAPI Tournament Module DLL is injected into the StarCraft
process. It updates a special GameState file on the hard drive
every few frames—this is used to monitor the current state of the
running StarCraft game. The client software watches this file
to check for various conditions, such as bot time outs, crashes,
game frame progression, and game termination. While the game
is running, the client also sends the contents of the GameState
file to the server once per second for centralized monitoring.

Once the game has ended or was terminated for any reason,
the results of the game, replay files, and bot’s I/O data files are
sent to the server. After this, the client shuts down any processes
on the machine, which were not running when the game began,
to prevent crashed proxy bots or stray threads from hogging
system resources from future games. StarCraft is shut down,
the machine is cleaned of any files written during the previous
game, and the client state is reverted to READY.

Since 2017, client machines can be labeled with custom prop-
erties such as extra ram or GPU, and bots can be labeled with
matching custom requirements. Only clients that have all the
requirements of a bot will be used for hosting that bot, and
clients with special properties will be reserved to be used last to
increase their availability for bots requiring them. The TM soft-
ware also supports both DLL-based bots and bots with their own
executable file that interface with BWAPI. This server-client ar-
chitecture has allowed tens of thousands of games to be played
in AI competitions each year.

VII. CONCLUSION

In this paper, we have given an overview of the three major
annual StarCraft AI competitions, introduced the open-source
software powering them, and described some of the top perform-
ing bot participants. As shown in Fig. 3, each year, participation
in these competitions has continued to rise, as well as the number
of games played between bots in the competitions. In the past

two to three years, the bots in these competitions have become
more strategically complex and functionally robust, employ-
ing a range of state-of-the-art AI techniques from the fields of
heuristic search, machine learning, neural networks, and rein-
forcement learning. For many researchers, StarCraft AI com-
petitions continue to be the environment of choice to showcase
state-of-the art techniques for real-time strategic AI systems.
With the increase in participation in StarCraft AI competitions,
combined with the surge in activity in the field of RTS AI from
hobbyist programmers, academic institutions, and industry re-
searchers, we are hopeful that we may see a StarCraft AI capable
of challenging human experts within the next few years.

REFERENCES

[1] M. Buro, “Call for AI research in RTS games,” in Proc. 4th Workshop
Challenges Game AI, 2004, pp. 139–142.

[2] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M.
Preuss, “A survey of real-time strategy game AI research and competition
in StarCraft,” IEEE Trans. Comput. Intell. AI Games, vol. 5, no. 4, pp. 293–
311, Dec. 2013.

[3] M. Buro and D. Churchill, “Real-time strategy game competitions,” AI
Mag., vol. 33, no. 3, 2012, Art. no. 106.

[4] E. Gibney, “What Google’s winning go algorithm will do next,” Nature,
vol. 531, no. 7594, pp. 284–285, 2016.

[5] A. Heinermann, “Broodwar API,” 2013. [Online]. Available:
https://github.com/bwapi/bwapi

[6] D. Churchill et al., “StarCraft bots and competitions,” Encyclopedia
of Computer Graphics and Games. New York, NY, USA: Springer,
2016.

[7] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M.
Preuss, “RTS AI: Problems and techniques,” in Encyclopedia of Computer
Graphics and Games. New York, NY, USA: Springer, 2015.

[8] J. Malý, M. Šustr, and M. Čertický, “Multi-platform version of Star-
Craft: Brood war in a Docker container: Technical report,” 2018,
arXiv:1801.02193.

[9] B. P. Mattsson, T. Vajda, and M. Čertický, “Automatic observer
script for StarCraft: Brood War bot games (technical report),” 2015,
arXiv:1505.00278.

[10] A. E. Elo, The Rating of Chessplayers, Past and Present. New York, NY,
USA: Arco, 1978.

[11] D. Loiacono et al., “The 2009 simulated car racing championship,” IEEE
Trans. Comput. Intell. AI Games, vol. 2, no. 2, pp. 131–147, Jun. 2010.

[12] G. Synnaeve et al., “Torchcraft: A library for machine learning research
on real-time strategy games,” 2016, arXiv:1611.00625.

[13] A. Uriarte and S. Ontanón, “High-level representations for game-tree
search in RTS games,” in Proc. 10th Artif. Intell. Interactive Digit. Enter-
tainment Conf., 2014.

[14] A. Tavares, H. Azpúrua, A. Santos, and L. Chaimowicz, “Rock, paper,
starCraft: Strategy selection in real-time strategy games,” in Proc. 12th
Artif. Intell. Interactive Digit. Entertainment Conf., 2016, pp. 93–99.

[15] P. Garćıa-Sánchez, A. Tonda, A. M. Mora, G. Squillero, and J. Merelo,
“Towards automatic starCraft strategy generation using genetic program-
ming,” in Proc. IEEE Conf. Comput. Intell. Games, 2015, pp. 284–291.

Michal Čertický received the M.Sc. degree in cog-
nitive science and Ph.D. degree in computer science.

He is currently Senior Researcher with the Artifi-
cial Intelligence Center, Czech Technical University,
Prague, Czech Republic.

His research interests include machine learning
and agent-based modeling. Since 2011, he has also
been involved in computer game AI research. He is
the Founder of the Student StarCraft AI tournament.

ČERTICKÝ et al.: STARCRAFT AI COMPETITIONS, BOTS, AND TOURNAMENT MANAGER SOFTWARE 237

David Churchill received the M.Sc. degree in com-
puter science and the Ph.D. degree in computing
science.

He is currently an Assistant Professor in
computer science with the Memorial University of
Newfoundland, St. John’s, NF, Canada.

Since 2011, he has been organizing and running
the AIIDE StarCraft AI Competition. He is also the
author of UAlbertaBot and CommandCenter Star-
Craft AI agents.

Kyung-Joong Kim received the B.S., M.S., and
Ph.D. degrees in computer science from Yonsei Uni-
versity, Seoul, South Korea, in 2000, 2002, and 2007,
respectively.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
Sejong University, Seoul, South Korea. His research
interests include artificial intelligence, game, and
robotics.

Martin Čertický is currently working toward the
Ph.D. degree in the field of AI at the Department
of Cybernetics and Artificial Intelligence, Technical
University of Košice, Košice, Slovakia.

His research is focused on optimizing user ex-
perience in electronic entertainment and the use of
artificial intelligence in video games.

Richard Kelly is currently working toward the Grad-
uate degree at the Memorial University of Newfound-
land, St. John’s, NF, Canada.

Since 2016, he has been a co-organizer of the AI-
IDE StarCraft AI Competition.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

