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Abstract
The ability to learn a consistent model of its environ-

ment is a prerequisite for autonomous mobile robots. A
particularly challenging problem in acquiring environment
maps is that of closing loops; loops in the environment
create challenging data association problems [9]. This
paper presents a novel algorithm that combines Rao-
Blackwellized particle filtering and scan matching. In our
approach scan matching is used for minimizing odomet-
ric errors during mapping. A probabilistic model of the
residual errors of scan matching process is then used for
the resampling steps. This way the number of samples
required is seriously reduced. Simultaneously we reduce
the particle depletion problem that typically prevents the
robot from closing large loops. We present extensive
experiments that illustrate the superior performance of our
approach compared to previous approaches.

I. Introduction
Learning maps with mobile robots is one of the fun-
damental problems in mobile robotics. In the literature,
the mobile robot mapping problem is often referred to
as thesimultaneous localization and mapping problem
(SLAM) [5], [6], [9], [12], [13], [19]. This is because
mapping includes both, estimating the position of the robot
relative to the map and generating a map using the sensory
input and the estimates about the robot’s pose.

One of the hardest problems in robotic mapping is
that of loop closure. As a robot traverses a large cycle
in the environment, it faces the hard data association of
correctly connecting to its own map under large position
errors. This problem has long been acknowledged for its
hardness, and a number of approaches have addressed
it [4], [9], [20]. Recently, Murphy and colleagues have
presented Rao-Blackwellized particle filters [8], [17] as
an effective way of representing alternative hypotheses on
robot paths and associated maps. Montemerloet al. [14],
[15] extended this idea to efficient landmark-based SLAM
using Gaussian representations to and were the first to
successfully realize it on real robots.

In this paper we present a highly efficient approach to
simultaneous localization and mapping with laser scans.

As previously proposed by Murhpy [17], our approach
applies a Rao-Blackwellized particle filter to estimate a
posterior of the path of the robot, in which each particle
has associated to it an entire map. This differs from
work in [20], where only a single map is retained. To
scale to large-scale environments, we transform sequences
of laser range-scans into odometry measurements using
range-scan registration techniques [10]. This way our sys-
tem can deal with significantly larger environments than
Murhpy’s approach [17], since the scan matching yields
odometry estimates that are an order of magnitude more
accurate than the raw wheel encoder data. Simultaneously,
the transformation of sequences of scans into odometry
measurements reduces the well-known particle deprivation
problem [21], since the number of resampling operations
is significantly reduced. By using a learned model of the
residual errors of the range registration our approach can
correctly integrate the corrected odometry into the particle
filtering process. As a result, we obtain a drastic reduction
in the number of particles needed to build large-scale
maps, or, put differently, an improved ability to map large
environments. This is demonstrated in our experimental
results section, in which we compare our approach to
previous techniques.

This paper is organized as follows. In the following
section, we will discuss techniques for incremental prob-
abilistic mapping and localization. In Section III, we de-
scribe our approach to integrate scan matching with Rao-
Blackwellized particle filters to achieve a robust approach
for simultaneous mapping and localization. Section IV
presents several experiments illustrating that our approach
can successfully learn accurate maps with range scan-
ners in large-scale environments. Additionally, we present
experiments illustrating that our technique outperforms
existing approaches.

II. Incremental Probabilistic Mapping and
Localization

In probabilistic terms the goal of map learning is to find
the map and the robot positions which yield the best
interpretation of the datadt gathered by the robot [19].
Here the datadt = {u0:t−1, z1:t} consists of a stream



of odometry measurementsu0:t−1 and perceptions of the
environmentz1:t. The mapping problem can be phrased
as recursive Bayesian filtering for estimating the robot
positions along with a map of the environment:

p(x1:t,m | z1:t, u0:t−1) = α · p(zt | xt,m)·∫
p(xt |xt−1, ut−1)p(x1:t−1,m |z1:t−1, u0:t−2)dx1:t−1(1)

In probabilistic mapping and localization it is typically
assumed that the odometry measurements are governed by
a so-called probabilistic motion modelp(xt | xt−1, ut−1)
which specifies the likelihood that the robot is atxt given
that it previously was atxt−1 and the motionut−1 was
measured. On the other hand, the observations follow the
so-called observation modelp(z | x), which defines for
every possible locationx in the environment the likelihood
of the observationz.

Unfortunately, estimating the full posterior in Equa-
tion 1 is not tractable in general. One popular approach is
to restrict observations to landmark detections, and repre-
sents robot positions by Gaussians [6]. In this context,
the Bayes filter can be approximated efficiently by an
EKF for which the state consists of the robot positions
along with positions of the landmarks. Other researchers
attempted to overcome the restrictions to landmark ob-
servations by using laser range-finders and incremental
scan matching [2], [18], [22]. The general idea of these
approaches can be summarized as follows (see also [19]).
At any pointt−1 in time, the robot is given an estimate of
its posex̂t−1 and a map̂m(x̂1:t−1, z1:t−1). After the robot
moved further on and after taking a new measurementzt,
the robot determines the most likely new posex̂t such
that

x̂t = argmax
xt

{p(zt | xt, m̂(x̂1:t−1, z1:t−1))

·p(xt | ut−1, x̂t−1)}. (2)

It does this by trading off the consistency of the measure-
ment with the map (first term on the right-hand side in
(2)) and the consistency of the new pose with the control
action and the previous pose (second term on the right-
hand side in (2)). The map is then extended by the new
measurementzt, using the posêxt as the pose at which
this measurement was taken.

Whereas this approach has the advantage that it yields
accurate results and can be implemented efficiently if the
registration is performed with respect to a global map or
with respect to only a fixed number of scans. Its major
disadvantage lies in the greedy maximization step. When
the robot has to close larger loops, this approach suffers
from registration errors during loop closures and therefore
tends to fail in large environments. To overcome this
problem, extensions of this approach have been developed
which maintain a posterior about the position of the
vehicle [9], [19]. The key idea of these techniques is
to delay the maximization until the robot detects that a
loop has been closed. This is usually done by identifying
that the robot enters an already known area from an
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Fig. 1. Graphical model of concurrent mapping and localization
as filtering process.

unknown area and simultaneously observes a high like-
lihood of its observations for potential positions that are
under consideration. If the registration of the vehicle in
its map can be done with high likelihood, the previous
poses are corrected backwards in time according to the
pose correction that is necessary to properly close the
loop. The position posterior is then replaced by a Dirac
distribution which has its mode at the most likely position
when the robot closes the loop. Furthermore, subsequent
backwards corrections are stopped when the robot reaches
this node. Whereas this approach can reliably close even
large loops, it has the disadvantage that it under-estimates
the uncertainty in the robot pose when closing loops.

More recently, Murphy and colleagues [17], [8] have
presented Rao-Blackwellized particle filters as an efficient
way to represent the full posterior of the robot pose.
Figure 1 depicts a graphical model of Rao-Blackwellized
simultaneous mapping and localization. The key idea of
this approach is to solve the recursive Bayes filter update
by the following equation:

p(x1:t,m | z1:t, u0:t−1) =
p(m | x1:t, z1:t, u0:t−1)p(x1:t | z1:t, u0:t−1) (3)

Here, a particle filter is used to represent robot trajec-
tories x1:t and a different map is conditioned on each
sample of the particle filter. The importance weights of
the samples are computed according to the likelihoods
of the observations in the maximum likelihood map con-
structed using exactly the positions this particular particle
has taken. The key advantage of this approach is that
the samples approximate at every point in time the full
posterior over robot poses and maps. The first successful
realization on real robots of an extended version of this
technique has been presented by Montemerloet al. [15].

However, particle filters are known to be subject to
major approximation errors. One of these errors is known
as the particle depletion problem [21]. This problem
can lead to a divergence of the filter and can result in
the lack of particles in the vicinity of the correct state.
In the SLAM context this can prevent the robot from
closing a given loop. There are two parameters that have
a major influence on the approximation error. First, the
number of particles needs to be high enough to represent
the posterior. However, too many samples can prevent
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Fig. 2. Parameters of the probabilistic motion model.

the filtering process from being fast enough for online-
processing. Furthermore, the number of resampling steps
needs to be limited in order to avoid that the samples
converge too quickly to the maximum likelihood state
which is undesirable especially in ambiguous situations.
On the other side, too few resampling steps could result in
a divergence of the filter since many samples are wasted
on unlikely states and the uncertainty typically introduced
by robot motions would exceed the certainty gained by
incorporating observations of the environment.

In the following section we will describe our solution
to this problem. This approach transforms sequences of
laser measurements into odometry measurements using a
scan matching procedure and utilizes the remaining laser
scans for map estimation.

III. Combining Laser-based FastSLAM with
Scan Matching
Our approach to reduce the problems described above is
to use a scan matching routine to correct the odometry
and to use this corrected path information as input for the
sampling step in the Rao-Blackwellized particle filter.

The 2d scan matching we apply, which is described
in detail in [10], aligns a scan relative to the previous
scans by computing an occupancy grid map [16] from the
previous measurements. To avoid the time consuming ray-
tracing operation required to compute the likelihood of a
measurementp(z | x) we apply an approximation which
considers only the endpoint of a beam [11], [19]. This way,
p(z | x) can be computed efficiently using fast look-up
operations. To also be able to incorporate maximum range
measurements, our system assumes that the cell 20cm in
front of that in which the maximum range measurement
ends must be unoccupied.

A key question when combining a scan matching rou-
tine with a probabilistic technique is how to estimate the
uncertainty of the scan matching process so as to cor-
rectly incorporate the corresponding uncertainty during the
prediction step of the sampling procedure. In our current
system we use a parametric model of the odometry error
and learn the parameters of this model using data acquired
during experiments. To learn the parameters of the model
used for the experiments described here we performed an
experiment in which we generated a statistics of alignment
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Fig. 3. Sample densities obtained with the models for the raw
odometry (left image) and for scan matching (right image) for
ten incremental movements of a real robot.

errors after convergence of scan matching. Using a data set
recorded in the Intel Research Lab Seattle, we applied our
system equipped with a manually designed motion model.
We then took the resulting map (see Figure 9) as ground
truth and compared the raw odometry and the results of
the scan matching with the positions corrected by the
routine. The error model we use has three parameters as
it assumes that in every single movement there are three
errors involved (see also Figure 2). First, whenever the
robot starts to move, it makes a small rotational error
α′−α. Second, the robot introduces a certain errord′−d
to the distance between the final location and the starting
position. Finally, the true final orientation differs by a
certain amount from the measured orientation which is
expressed by a non-zero differenceβ − β′. The means
and the variances of the relative errors in these three
parameters were learned by comparing the approximated
displacement after convergence of the scan matching
routine with the (estimated) ground truth information.
Alternative models of odometry errors and corresponding
techniques for parameter estimation have been proposed
by Borenstein and Feng [3], Dohet al. [7], as well as
Bengtsson and Baerveldt [1].

Figure 3 plots the resulting sample densities obtained
when relying on pure odometry (left image) and the
densities obtain with the error model for the scan matching
process (right image). As the figure shows, the samples are
much more focused if the scan matching routine is used.
This leads to the desired effect that the variance of the
posterior is reduced, that fewer samples can be used, and
that larger loops can be closed.

A graphical model of our approach to integrate re-
sults from the scan matching process into the Rao-
Blackwellized sampling routine is depicted in Figure 4
(c.f. 1). The key idea is to compute everyk steps a
new odometry measurementu′j out of thek − 1 previous
observationsz and thek most recent odometry readings.
Thek-th observation is then used to compute the weights
of the samples in the particle filter. Note that this clear
separation between laser scans used for odometry and
laser scans used for map estimation ensures that all
information is used only once.

One important aspect when using Rao-Blackwellized
particle filters for mapping is the efficient update of the
maps of the individual particles. Montemerloet al. [15]
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Fig. 4. Graphical model of the integration of scan matching
and probabilistic mapping.

proposed a tree-structure to efficiently update the map. In
the system described here, we only use a limited number
of scans gathered by the robot to update the map of
a particle. The scans chosen need to intersect with the
area visible according to the pose of the corresponding
particle. This way, the update of the map of every particle
can be achieved in constant time. Although this is an
approximation only, we never found any evidence that the
quality of the resulting maps was decreased significantly.

IV. Experimental Results
The approach described above has been implemented and
tested using different robotic platforms and in different
environments as well as in extensive simulation runs. In
all experiments, we found out that the system can operate
online and can also robustly close large and nested loops.

A. Mapping Large-Scale Environments with
Multiple Cycles
The first experiment was carried out using a Pioneer 2
robot equipped with a SICK LMS laser range-finder in
the Intel Research Lab, Seattle, WA. The size of this
environment is 28m× 28m. The robot traveled 491m
with an average speed of 0.19m/s. Figure 5 shows the map
generated based on the raw odometry data provided by the
robot. As can be seen from the figure, the robot suffers
from serious errors in odometry so that the resulting
map is useless without any correction. Figure 6 (left)
shows the map created with our scan matching technique.
Although local structures of the map appear to be very
accurate, the map is globally inconsistent. For example
many structures like walls, doors etc. can be found twice
and with a small offset between them. Finally, the right
image of Figure 6 shows the resulting map obtained with
our system. Although the sharpness of this map is not as
high as that of the map created only with scan matching,
they are globally consistent. The map was created in real-
time, i.e. the computation time needed to process the data
did not exceeded the time to record them. We used 100
samples, a number we found to yield satisfactory results
on all data sets. Figure 9 shows a map created using

Fig. 5. Mapping of the Intel Research Lab with the raw
odometry data.

Fig. 6. Map of the Intel Research Lab after scan matching (left)
and obtained in real-time with 100 samples (right).

500 particles. Whereas this map is more accurate and
has a similar crispness as the scan matching map, the
time to compute this map was several hours. Figure 7
visualizes the trajectories of all samples shortly before
and after closing the major loop in this data set. As the
left image illustrates, the robot is quite uncertain about its
position relative to the starting position upon its return.
However, after a few resampling steps the uncertainty has
been reduced drastically (right image).

A second example map obtained with our approach is
depicted in Figure 8. The map shows the fourth floor
of the 50m× 12m large Sieg Hall of the University of
Washington. As can be seen from the figure, the robot
went several times around the circle and still successfully
learned a consistent map. This map was generated in real-
time using 100 samples. The grid resolution was 10cm.

Fig. 7. Trajectories of all 100 samples shortly before (left) and
after (right) closing the loop.



Fig. 8. Map of the Sieg Hall at the University of Washington
created in real-time.

B. Comparison to Previous Online Techniques
The second experiment is designed to show the advantage
of our integrated technique over previous approaches that
represent a posterior over poses in a single map only [19],
[9]. For this experiment we used a data set generated for
the Wean Hall of the Carnegie Mellon University using
our B21r simulator. The size of this environment is 32m
× 10m. In the simulation the robot moved 251m with
an average speed of 0.78m/s. To obtain realistic data, we
added a serious amount of noise to the ground truth data
provided by the simulation system. The resulting input
trajectory is depicted in Figure 10 (left). Please note,
that pure scan matching again failed to correctly close
the loop using this data set. We implemented the particle
filter strategy presented by Thrunet al. [20], [19]. In our
system we achieve this by using only that sample with the
highest likelihood during the resampling process whenever
the robot closes a loop. After this, we continue with the
normal resampling procedure described above. The middle
image in Figure 10 shows the result of this procedure. The
point in time when the system discovered that it closed
the loop and the resulting inconsistencies are also labeled.
The inconsistencies are a consequence of the fact that only
the particle with the highest importance factor survives at
the time the robot closes the loop. Since this particle does
not always correspond to the correct position of the robot
(as it is the case in this example) and since the motion
model cannot compensate for this error, the resulting
map contains errors. In contrast to that, our approach,
that integrates scan matching with a Rao-Blackwellized
particle filter, yields a consistent map of the environment
(see right image of Figure 10) since it provides accurate
predictions and simultaneously maintains the robot pose
uncertainty in the posterior.

Finally, we analyzed whether the standard Rao-
Blackwellized particle filter without odometry correction
by scan matching provides the same performance as our
approach. For this purpose we run the standard procedure
using the input data for the Intel Research Lab. We used
shorter resampling steps (three times more often than
in the other runs to avoid a fast divergence) and 200
samples which was the maximum number of samples
that allowed updates in real-time on our 1.8GHz Pentium
IV PC. Since the standard procedure was not able to
learn a consistent map, we repeated this experiment with
increasing numbers of samples. It turned out that under
1000 samples, which was the maximum number our PC
equipped with 768MB of main memory could handle, we

Fig. 9. Map of the Intel Research Lab obtained offline with
500 samples.

Fig. 11. Map created with the standard Rao-Blackwellized
particle filtering technique in real-time using 100 samples and
based on the raw odometry data.

could not observe a case in which the standard algorithm
converged. An example map typically obtained using the
standard algorithm is depicted in Figure 11. The fact
that our algorithm reliably converges with 100 samples
indicates that the integration of the scan matching routine
yields an enormous improvement.

V. Conclusions
In this paper we presented a highly efficient algorithm
for simultaneous mapping and localization using laser
scans that combines a scan matching procedure with Rao-
Blackwellized particle filtering. The scan matching routine
is used to transform sequences of laser measurements
into odometry measurements. The corrected odometry
and the remaining laser scans are then used for map
estimation in the particle filter. The lower variance in
the corrected odometry reduces the number of necessary
resampling steps and this way decreases the particle deple-
tion problem. In practical experiments we demonstrated
that our approach allows to learn maps of large-scale
environments in real-time with as few as 100 samples.
Simultaneously, it outperforms previous approaches with
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Fig. 10. (left) Map obtained from the raw input data in the simulation experiment. In the middle, the resulting map is shown if the
mapping process is continued with the maximum likelihood sample after closing the loop at the marked place. The inconsistencies in
the right part of the map show that the loop is not correctly closed. The map on the right was built using our approach.

respect to robustness and efficiency.
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