
To appear in Proceedings of the RoboCup International Symposium 2012 (RoboCup 2012),
Mexico City, Mexico, June 2012.

Positioning to Win: A Dynamic Role

Assignment and Formation Positioning System

Patrick MacAlpine, Francisco Barrera, and Peter Stone

Department of Computer Science, The University of Texas at Austin
{patmac,tank225,pstone}@cs.utexas.edu

Abstract. This paper presents a dynamic role assignment and forma-
tion positioning system used by the 2011 RoboCup 3D simulation league
champion UT Austin Villa. This positioning system was a key component
in allowing the team to win all 24 games it played at the competition dur-
ing which the team scored 136 goals and conceded none. The positioning
system was designed to allow for decentralized coordination among phys-
ically realistic simulated humanoid soccer playing robots in the partially
observable, non-deterministic, noisy, dynamic, and limited communica-
tion setting of the RoboCup 3D simulation league simulator. Although
the positioning system is discussed in the context of the RoboCup 3D
simulation environment, it is not domain specific and can readily be em-
ployed in other RoboCup leagues as it generalizes well to many realistic
and real-world multiagent systems.

1 Introduction

Coordinated movement among autonomous mobile robots is an important re-
search area with many applications such as search and rescue [1] and warehouse
operations [2]. The RoboCup 3D simulation competition provides an excellent
testbed for this line of research as it requires coordination among autonomous
agents in a physically realistic environment that is partially observable, non-
deterministic, noisy, and dynamic. While low level skills such as walking and
kicking are vitally important for having a successful soccer playing agent, the
agents must work together as a team in order to maximize their game perfor-
mance.

One often thinks of the soccer teamwork challenge as being about where the
player with the ball should pass or dribble, but at least as important is where
the agents position themselves when they do not have the ball [3]. Positioning
the players in a formation requires the agents to coordinate with each other and
determine where each agent should position itself on the field. While there has
been considerable research done in the 2D soccer simulation domain (for example
by Stone et al. [4] and Reis et al. [5]), relatively little outside of [6] has been
published on this topic in the more physically realistic 3D soccer simulation
environment. [6], as well as related work in the RoboCup middle size league
(MSL) [7], rank positions on the field in order of importance and then iteratively
assign the closest available agent to the most important currently unassigned



position until every agent is mapped to a target location. The work presented in
this paper differs from the mentioned previous work in the 2D and 3D simulation
and MSL RoboCup domains as it takes into account real-world concerns and
movement dynamics such as the need for avoiding collisions of robots.

In UT Austin Villa’s positioning system players’ positions are determined in
three steps. First, a full team formation is computed (Section 3); second, each
player computes the best assignment of players to role positions in this formation
according to its own view of the world (Section 4); and third, a coordination
mechanism is used to choose among all players’ suggestions (Section 4.4). In this
paper, we use the terms (player) position and (player) role interchangeably.

The remainder of the paper is organized as follows. Section 2 provides a
description of the RoboCup 3D simulation domain. The formation used by UT
Austin Villa is given in Section 3. Section 4 explains how role positions are
dynamically assigned to players. Collision avoidance is discussed in Section 5.
An evaluation of the different parts of the positioning system is given in Section 6,
and Section 7 summarizes.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark,1 a generic phys-
ical multiagent system simulator. SimSpark uses the Open Dynamics Engine2

(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

The robot agents in the simulation are homogeneous and are modeled after
the Aldebaran Nao robot,3 which has a height of about 57 cm, and a mass of
4.5 kg. The agents interact with the simulator by sending torque commands and
receiving perceptual information. Each robot has 22 degrees of freedom: six in
each leg, four in each arm, and two in the neck. In order to monitor and control
its hinge joints, an agent is equipped with joint perceptors and effectors. Joint
perceptors provide the agent with noise-free angular measurements every simu-
lation cycle (20 ms), while joint effectors allow the agent to specify the torque
and direction in which to move a joint. Although there is no intentional noise
in actuation, there is slight actuation noise that results from approximations in
the physics engine and the need to constrain computations to be performed in
real-time. Visual information about the environment is given to an agent every
third simulation cycle (60 ms) through noisy measurements of the distance and
angle to objects within a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well as force resistance
perceptors on the sole of each foot. Additionally, agents can communicate with
each other every other simulation cycle (40 ms) by sending messages limited to
20 bytes.

1 http://simspark.sourceforge.net/
2 http://www.ode.org/
3 http://www.aldebaran-robotics.com/eng/



3 Formation

This section presents the formation used by UT Austin Villa during the 2011
RoboCup competition. The formation itself is not a main contribution of this
paper, but serves to set up the role assignment function discussed in Section 4
for which a precomputed formation is required.

In general, the team formation is determined by the ball position on the field.
As an example, Figure 1 depicts the different role positions of the formation and
their relative offsets when the ball is at the center of the field. The formation can
be broken up into two separate groups, an offensive and a defensive group. Within
the offensive group, the role positions on the field are determined by adding a
specific offset to the ball’s coordinates. The onBall role, assigned to the player
closest to the ball, is always based on where the ball is and is therefore never
given an offset. On either side of the ball are two forward roles, forwardRight and
forwardLeft. Directly behind the ball is a stopper role as well as two additional
roles, wingLeft and wingRight, located behind and to either side of the ball.
When the ball is near the edge of the field some of the roles’ offsets from the
ball are adjusted so as to prevent them from moving outside the field of play.

Within the defensive group there are two roles, backLeft and backRight. To
determine their positions on the field a line is calculated between the center
of the team’s own goal and the ball. Both backs are placed along this line at
specific offsets from the end line. The goalie positions itself independently of its
teammates in order to always be in the best position to dive and stop a shot
on goal. If the goalie assumes the onBall role, however, a third role is included
within the defensive group, the goalieReplacement role. A field player assigned
to the goalieReplacement role is told to stand in front of the center of the goal.

During the course of a game there are occasional stoppages in play for events
such as kickoffs, goal kicks, corner kicks, and kick-ins. When one of these events
occur UT Austin Villa adjusts its team formation and behavior to assume situ-
ational set plays which are detailed in a technical report [8].

Kicking and passing have yet to be incorporated into the team’s formation.
Instead the onBall role always dribbles the ball toward the opponent’s goal.

Fig. 1. Formation role positions.



4 Assignment of Agents to Role Positions

Given a desired team formation, we need to map players to roles (target positions
on the field). A näıve mapping having each player permanently mapped to one
of the roles performs poorly due to the dynamic nature of the game. With such
static roles an agent assigned to a defensive role may end up out of position
and, without being able to switch roles with a teammate in a better position to
defend, allow for the opponent to have a clear path to the goal. In this section, we
present a dynamic role assignment algorithm. A role assignment algorithm can
be thought of as implementing a role assignment function, which takes as input
the state of the world, and outputs a one-to-one mapping of players to roles. We
start by defining three properties that a role assignment function must satisfy
(Section 4.1). We then construct a role assignment function that satisfies these
properties (Section 4.2). Finally, we present a dynamic programming algorithm
implementing this function (Section 4.3).

4.1 Desired Properties of a Valid Role Assignment Function

Before listing desired properties of a role assignment function we make a couple
of assumptions. The first of these is that no two agents and no two role positions
occupy the same position on the field. Secondly we assume that all agents move
toward fixed role positions along a straight line at the same constant speed. While
this assumption is not always completely accurate, the omnidirectional walk used
by the agent, and described in [9], gives a fair approximation of constant speed
movement along a straight line.

We call a role assignment function valid if it satisfies three properties:

1. Minimizing longest distance - it minimizes the maximum distance from a
player to target, with respect to all possible mappings.

2. Avoiding collisions - agents do not collide with each other as they move to
their assigned positions.

3. Dynamically consistent - a role assignment function f is dynamically con-
sistent if, given a fixed set of target positions, if f outputs a mapping m

of players to targets at time T , and the players are moving toward these
targets, f would output m for every time t > T .

The first two properties are related to the output of the role assignment func-
tion, namely the mapping between players and positions. We would like such a
mapping to minimize the time until all players have reached their target posi-
tions because quickly doing so is important for strategy execution. As we assume
all players move at the same speed, we start by requiring a mapping to minimize
the maximum distance any player needs to travel. However, paths to positions
might cross each other, therefore we additionally require a mapping to guaran-
tee that when following it, there are no collisions. The third property guarantees
that once a role assignment function f outputs a mapping, f is committed to it
as long as there is no change in the target positions. This guarantee is necessary
as otherwise agents might unduly thrash between roles thus impeding progress.
In the following section we construct a valid role assignment function.



4.2 Constructing a Valid Role Assignment Function

Let M be the set of all one-to-one mappings between players and roles. If the
number of players is n, then there are n! possible such mappings. Given a state
of the world, specifically n player positions and n target positions, let the cost

of a mapping m be the n-tuple of distances from each player to its target, sorted
in decreasing order. We can then sort all the n! possible mappings based on
their costs, where comparing two costs is done lexicographically. Sorted costs of
mappings from agents to role positions for a small example are shown in Figure 2.

Fig. 2. Lowest lexicographical cost (shown with arrows) to highest cost ordering of
mappings from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents
the cost of a single mapping.

1:
√

2 (A2→P2),
√

2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)

3:
√

5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)

6: 3 (A1→P3),
√

2 (A2→P2),
√

2 (A3→P1)

Denote the role assignment function that always outputs the mapping with
the lexicographically smallest cost as fv. Here we provide an informal proof
sketch that fv is a valid role assignment; we provide a longer, more thorough
derivation in a technical report [8].

Theorem 1 fv is a valid role assignment function.

It is trivial to see that fv minimizes the longest distance traveled by any
agent (Property 1) as the lexicographical ordering of distance tuples sorted in
descending order ensures this. If two agents in a mapping are to collide (Property
2) it can be shown, through the triangle inequality, that fv will find a lower cost
mapping as switching the two agents’ targets reduces the maximum distance
either must travel. Finally, as we assume all agents move toward their targets at
the same constant rate, the distance between any agent and target will not de-
crease any faster than the distance between an agent and the target it is assigned
to. This observation serves to preserve the lowest cost lexicographical ordering
of the chosen mapping by fv across all timesteps thereby providing dynamic
consistency (Property 3). Section 4.3 presents an algorithm that implements fv.

4.3 Dynamic Programming Algorithm for Role Assignment

In UT Austin Villa’s basic formation, presented in Section 3, there are nine
different roles for each of the nine agents on the field. The goalie always fills the
goalie role and the onBall role is assigned to the player closest to the ball. The



other seven roles must be mapped to the agents by fv. Additionally, when the
goalie is closest to the ball, the goalie takes on both the goalie and onBall roles
causing us to create an extra goalieReplacement role positioned right in front
of the team’s goal. When this occurs the size of the mapping increases to eight
agents mapped to eight roles. As the total number of mapping permutations is
n!, this creates the possibility of needing to evaluate 8! different mappings.

Clearly fv could be implemented using a brute force method to compare
all possible mappings. This implementation would require creating up to 8! =
40, 320 mappings, then computing the cost of each of the mappings, and finally
sorting them lexicographically to choose the smallest one. However, as our agent
acts in real time, and fv needs to be computed during a decision cycle (20 ms),
a brute force method is too computationally expensive. Therefore, we present
a dynamic programming implementation shown in Algorithm 1 that is able to
compute fv within the time constraints imposed by the decision cycle’s length.

Algorithm 1 Dynamic programming implementation

1: HashMap bestRoleMap = ∅

2: Agents = {a1, ..., an}
3: Positions = {p1, ..., pn}
4: for k = 1 to n do

5: for each a in Agents do

6: S =
`

n−1

k−1

´

sets of k − 1 agents from Agents − {a}
7: for each s in S do

8: Mapping m0 = bestRoleMap[s]
9: Mapping m = (a → pk) ∪ mo

10: bestRoleMap[{a} ∪ s] = mincost(m, bestRoleMap[{a} ∪ s])
11: return bestRoleMap[Agents]

Theorem 2 Let A and P be sets of n agents and positions respectively. Denote

the mapping m := fv(A,P ). Let m0 be a subset of m that maps a subset of

agents A0 ⊂ A to a subset of positions P0 ⊂ P . Then m0 is also the mapping

returned by fv(A0, P0).

A key recursive property of fv that allows us to exploit dynamic programming
is expressed in Theorem 2. This property stems from the fact that if within any
subset of a mapping a lower cost mapping is found, then the cost of the complete
mapping can be reduced by augmenting the complete mapping with that of
the subset’s lower cost mapping. The savings from using dynamic programming
comes from only evaluating mappings whose subset mappings are returned by fv.
This is accomplished in Algorithm 1 by iteratively building up optimal mappings
for position sets from {p1} to {p1, ..., pn}, and using optimal mappings of k − 1
agents to positions {p1, ..., pk−1} (line 8) as a base when constructing each new
mapping of k agents to positions {p1, ..., pk} (line 9), before saving the lowest
cost mapping for the current set of k agents to positions {p1, ..., pk} (line 10).

An example of the mapping combinations evaluated in finding the optimal
mapping for three agents through the dynamic programming approach of Al-
gorithm 1 can be seen in Table 1. In this example we begin by computing the



distance of each agent to our first role position. Next we compute the cost of all
possible mappings of agents to both the first and second role positions and save
off the lowest cost mapping of every pair of agents to the the first two positions.
We then proceed by sequentially assigning every agent to the third position and
compute the lowest cost mapping of all agents mapped to all three positions. As
all subsets of an optimal (lowest cost) mapping will themselves be optimal, we
need only evaluate mappings to all three positions which include the previously
calculated optimal mapping agent combinations for the first two positions.

{P1} {P2,P1} {P3,P2,P1}
A1→P1 A1→P2, fv(A2→P1) A1→P3, fv({A2,A3}→{P1,P2})
A2→P1 A1→P2, fv(A3→P1) A2→P3, fv({A1,A3}→{P1,P2})
A3→P1 A2→P2, fv(A1→P1) A3→P3, fv({A1,A2}→{P1,P2})

A2→P2, fv(A3→P1)
A3→P2, fv(A1→P1)
A3→P2, fv(A2→P1)

Table 1. All mappings evaluated during dynamic programming using Algorithm 1
when computing an optimal mapping of agents A1, A2, and A3 to positions P1, P2,
and P3. Each column contains the mappings evaluated for the set of positions listed
at the top of the column.

Recall that during the kth iteration of the dynamic programming process to
find a mapping for n agents, where k is the current number of positions that
agents are being mapped to, each agent is sequentially assigned to the kth po-
sition and then all possible subsets of the other n − 1 agents are assigned to
positions 1 to k−1 based on computed optimal mappings to the first k−1 posi-
tions from the previous iteration of the algorithm. These assignments result in a
total of

(

n−1
k−1

)

agent subset mapping combinations to be evaluated for mappings
of each agent assigned to the kth position. The total number of mappings com-
puted for each of the n agents across all n iterations of dynamic programming
is thus equivalent to the sum of the n − 1 binomial coefficients. That is,

n
∑

k=1

(

n − 1

k − 1

)

=

n−1
∑

k=0

(

n − 1

k

)

= 2n−1

Therefore the total number of mappings that must be evaluated using our dy-
namic programming approach is n2n−1. For n = 8 we thus only have to evaluate
1024 mappings which takes about 3.3 ms for each agent to compute compared to
upwards of 50 ms using a brute force approach to evaluate all possible mappings.4

4.4 Voting Coordination System

In order for agents on a team to assume correct positions on the field they all
must coordinate and agree on which mapping of agents to roles to use. If every
agent had perfect information of the locations of the ball and its teammates this
would not be a problem as each could independently calculate the optimal map-
ping to use. Agents do not have perfect information, however, and are limited to

4 As measured on an Intel Core 2 Duo CPU E8500 @3.16GHz.



noisy measurements of the distance and angle to objects within a restricted vi-
sion cone (120◦). Fortunately agents can share information with each other every
other simulation cycle (40 ms). The bandwidth of this communication channel
is very limited, however, as only one agent may send a message at a time and
messages are limited to 20 bytes.

We utilize the agents’ limited communication bandwidth in order to coor-
dinate role mappings as follows. Each agent is given a rotating time slice to
communicate information, as in [4], which is based on the uniform number of an
agent. When it is an agent’s turn to send a message it broadcasts to its team-
mates its current position, the position of the ball, and also what it believes
the optimal mapping should be. By sending its own position and the position
of the ball, the agent provides necessary information for computing the optimal
mapping to those of its teammates for which these objects are outside of their
view cones. Sharing the optimal mapping of agents to role positions enables
synchronization between the agents, as follows.

First note that just using the last mapping received is dangerous, as it is
possible for an agent to report inconsistent mappings due to its noisy view of
the world. This can easily occur when an agent falls over and accumulates error
in its own localization. Additionally, messages from the server are occasionally
dropped or received at different times by the agents preventing accurate syn-
chronization. To help account for inconsistent information, a sliding window of
received mappings from the last n time-slots is kept by each agent where n is the
total number of agents on a team. Each of these kept messages represents a sin-
gle vote by each of the agents as to which mapping to use. The mapping chosen
is the one with the most votes or, in the case of a tie, the mapping tied for the
most votes with the most recent vote cast for it. By using a voting system, the
agents on a team are able to synchronize the mapping of agents to role positions
in the presence of occasional dropped messages or an agent reporting erroneous
data. As a test of the voting system the number of cycles all nine agents shared
a synchronized mapping of agents to roles was measured during 5 minutes of
gameplay (15,000 cycles). The agents were synchronized 100% of the time when
using the voting system compared to only 36% of the time when not using it.

5 Collision Avoidance

Although the positioning system discussed in Section 4 is designed to avoid
assigning agents to positions that might cause them to collide, external factors
outside of the system’s control, such as falls and the movement of the opposing
team’s agents, still result in occasional collisions. To minimize the potential for
these collisions the agents employ an active collision avoidance system. When
an obstacle, such as a teammate, is detected in an agent’s path the agent will
attempt to adjust its path to its target in order to maneuver around the obstacle.
This adjustment is accomplished by defining two thresholds around obstacles: a
proximity threshold at 1.25 meters and a collision threshold at .5 meters from
an obstacle. If an agent enters the proximity threshold of an obstacle it will



adjust its course to be tangent to the obstacle thereby choosing to circle around
to the right or left of said obstacle depending on which direction will move the
agent closer to its desired target. Should the agent get so close as to enter the
collision proximity of an obstacle it must take decisive action to prevent an
otherwise imminent collision from occurring. In this case the agent combines the
corrective movement brought about by being in the proximity threshold with an
additional movement vector directly away from the obstacle. Figure 3 illustrates
the adjusted movement of an agent when attempting to avoid a collision.

Fig. 3. Collision avoidance examples where agent A is traveling to target T but wants
to avoid colliding with obstacle O. The left diagram shows how the agent’s path is
adjusted if it enters the proximity threshold of the obstacle while the right diagram
depicts the agent’s movement when entering the collision threshold. The dotted arrow
is the agent’s desired path while the solid arrow is the corrected path to avoid a collision.

6 Formation Evaluation

To test how our formation and role positioning system5 affects the team’s per-
formance we created a number of teams to play against by modifying the base
positioning system and formation of UT Austin Villa.

UT Austin Villa Base agent using the dynamic role positioning system described in
Section 4 and formation in Section 3.

NoCollAvoid No collision avoidance.
AllBall No formations and every agent except for the goalie goes to the ball.
NoTeamwork Similar to AllBall except that collision avoidance is also turned off.
NoCommunication Agents do not communicate with each other.
Static Each role is statically assigned to an agent based on its uniform number.
Defensive Defensive formation in which only two agents are in the offensive group.
Offensive Offensive formation in which all agents except for the goalie are positioned

in a close symmetric formation behind the ball.
Boxes Field is divided into fixed boxes and each agent is dynamically assigned to a

home position in one of the boxes. Similar to system used in [4].

5 Video demonstrating our positioning system can be found online at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

AustinVilla3DSimulationFiles/2011/html/positioning.html



NearestStopper The stopper role position is mapped to nearest agent.

PathCost Agents add in the cost of needing to walk around known obstacles (using
collision avoidance from Section 5), such as the ball and agent assuming the onBall

role, when computing distances of agents to role positions.

PositiveCombo Combination of Offensive, PathCost, and NearestStopper attributes.

Table 2. Full game results, averaged over 100 games. Each row corresponds to an agent
with varying formation and positioning systems as described in Section 6. Entries show
the goal difference (row − column) from 10 minute games versus our base agent, using
the dynamic role positioning system described in Section 4 and formation in Section 3,
as well as the Apollo3D and CIT3D agents from the 2011 RoboCup China Open. Values
in parentheses are the standard error.

UTAustinVilla Apollo3D CIT3D
PositiveCombo 0.33 (.07) 2.16 (.11) 4.09 (.12)

Offensive 0.21 (.09) 1.80 (.12) 3.89 (.12)
AllBall 0.09 (.08) 1.69 (.13) 3.56 (.13)

PathCost 0.07 (.07) 1.27 (.11) 3.25 (.11)
NearestStopper 0.01 (.07) 1.26 (.11) 3.21 (.11)
UTAustinVilla — 1.05 (.12) 3.10 (.12)

Defensive -0.05 (.05) 0.42 (.10) 1.71 (.11)
Static -0.19 (.07) 0.81 (.13) 2.87 (.11)

NoCollAvoid -0.21 (.08) 0.82 (.12) 2.84 (.12)
NoCommunication -0.30 (.06) 0.41 (.11) 1.94 (.10)

NoTeamwork -1.10 (.11) 0.33 (.15) 2.43 (.12)
Boxes -1.38 (.11) -0.82 (.13) 1.52 (.11)

Results of UT Austin Villa playing against these modified versions of itself are
shown in Table 2. The UT Austin Villa agent is the same agent used in the 2011
competition, except for a bug fix,6 and so the data shown does not directly match
with earlier released data in [9]. Also shown in Table 2 are results of the modified
agents playing against the champion (Apollo3D) and runner-up (CIT3D) of the
2011 RoboCup China Open. These agents were chosen as reference points as they
are two of the best teams available with CIT3D and Apollo3D taking second
and third place respectively at the main RoboCup 2011 competition. The China
Open occurred after the main RoboCup event during which time both teams
improved (Apollo3D went from losing by an average of 1.83 to 1.05 goals and
CIT3D went from losing by 3.75 to 3.1 goals on average when playing 100 games
against our base agent).

Several conclusions can be made from the game data in Table 2. The first of
these is that it is really important to be aggressive and always have agents near
the ball. This finding is shown in the strong performance of the Offensive agent.
In contrast to an offensive formation, we see that a very defensive formation
used by the Defensive agent hurts performance likely because, as the saying
goes, the best defense is a good offense. The poor performance of the Boxes

agent, in which the positions on the field are somewhat static and not calculated
as relative offsets to the ball, underscores the importance of being around the
ball and adjusting positions on the field based on the current state of the game.

6 A bug in collision avoidance present in the 2011 competition agent where it always
moved in the direction away from the ball to avoid collisions was fixed.



The likely reason for the success of offensive and aggressive formations grouped
close to the ball is because few teams in the league have managed to successfully
implement advanced passing strategies, and thus most teams primarily rely on
dribbling the ball. Should a team develop good passing skills then a spread out
formation might become useful.

The NearestStopper agent was created after noticing that the stopper role is
a very important position on the field so as to always have an agent right behind
the ball to prevent breakaways and block kicks toward the goal. Ensuring that the
stopper role is filled as quickly as possible improved performance slightly. This
result is another example of added aggression improving game performance.

Another factor in team performance that shows up in the data from Table 2 is
the importance of collision avoidance. Interestingly the AllBall agent did almost
as well as the Offensive agent even though it does not have a set formation. While
this result might come as a bit of surprise, collision avoidance causes the AllBall

agent to form a clumped up mass around the ball which is somewhat similar to
that of the Offensive agent’s formation. For the strategy of all the agents running
to the ball to work well it is imperative to have good collision avoidance. This
conclusion is evident from the poor performance of the NoTeamwork agent where
collision avoidance is turned off with everyone running to the ball, as well as from
a result in [9] where the AllBall agent lost to the base agent by an average of .43
goals when both agents had a bug in their collision avoidance systems. Turning
off collision avoidance, but still using formations, hurts performance as seen in
the results of the NoCollAvoid agent. Additionally the PathCost agent showed
an improvement in gameplay by factoring in known obstacles that need to be
avoided when computing the distance required to walk to each target.

Another noteworthy observation from the data in Table 2 is that dynamically
assigning roles is better than statically fixing them. This finding is clear in the
degradation in performance of the Static agent. It is important that the agents
are synchronized in their decision as to which mapping of agents to roles to use,
however, as is noticeable by the dip in performance of the NoCommunication

agent which does not use the voting system presented in Section 4.4 to synchro-
nize mappings. The best performing agent, that being the PositiveCombo agent,
demonstrates that the most successful agent is one which employs an aggressive
formation coupled with synchronized dynamic role switching, path planning, and
good collision avoidance. While not shown in Table 2, the PositiveCombo agent
beat the AllBall agent (which only employs collision avoidance and does not use
formations or positioning) by an average of .31 goals across 100 games with a
standard error of .09. This resulted in a record of 43 wins, 20 losses, and 37 ties
for the PositiveCombo agent against the AllBall agent.

7 Summary and Discussion

We have presented a dynamic role assignment and formation positioning system
for use with autonomous mobile robots in the RoboCup 3D simulation domain —
a physically realistic environment that is partially observable, non-deterministic,



noisy, and dynamic. This positioning system was a key component in UT Austin
Villa7 winning the 2011 RoboCup 3D simulation league competition.

For future work we hope to add passing to our strategy and then develop
formations for passing, possibly through the use of machine learning. Addition-
ally we intend to look into ways to compute fv more efficiently as well as explore
other potential functions for mapping agents to role positions.

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. Thanks es-
pecially to UT Austin Villa 2011 team members Daniel Urieli, Samuel Barrett, Shivaram Kalyanakr-
ishnan, Michael Quinlan, Nick Collins, Adrian Lopez-Mobilia, Art Richards, Nicolae Ştiurcă, and
Victor Vu. LARG research is supported in part by grants from the National Science Foundation
(IIS-0917122), ONR (N00014-09-1-0658), and the Federal Highway Administration (DTFH61-07-H-
00030). Patrick MacAlpine is supported by a NDSEG fellowship.

References

1. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A.,
Shimada, S.: Robocup rescue: search and rescue in large-scale disasters as a domain
for autonomous agents research. In: Proc. of 1999 IEEE Int. Conf. on Systems,
Man, and Cybernetics (SMC). Volume 6. (1999) 739 –743 vol.6

2. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine 29 (2008) 9–20

3. Kalyanakrishnan, S., Stone, P.: Learning complementary multiagent behaviors: A
case study. In: RoboCup 2009: Robot Soccer World Cup XIII, Springer (2010)
153–165

4. Stone, P., Veloso, M.: Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelligence
110 (1999) 241–273

5. Reis, L., Lau, N., Oliveira, E.: Situation based strategic positioning for coordinating
a team of homogeneous agents. In Hannebauer, M., Wendler, J., Pagello, E., eds.:
Balancing Reactivity and Social Deliberation in Multi-Agent Systems. Volume 2103
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2001) 175–197

6. Chen, W., Chen, T.: Multi-robot dynamic role assignment based on path cost. In:
2011 Chinese Control and Decision Conference (CCDC). (2011) 3721 –3724

7. Lau, N., Lopes, L., Corrente, G., Filipe, N.: Multi-robot team coordination through
roles, positionings and coordinated procedures. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2009). (2009) 5841 –5848

8. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011 3D Simulation
Team report. Technical Report AI11-10, The Univ. of Texas at Austin, Dept. of
Computer Science, AI Laboratory (2011)

9. MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: A champion
agent in the RoboCup 3D soccer simulation competition. In: Proc. of 11th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2012). (2012)

7 More information about the UT Austin Villa team, as well as video highlights from
the 2011 competition, can be found at the team’s website:
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/


