The CMUnited-98 Champion Simulator Team *

Peter Stone, Manuela Veloso, and Patrick Riley

Computer Science Department,Carnegie Mellon University
Pittsburgh, PA 15213
{pstone,veloso}@cs.cmu.edu, priley@andrew.cmu.edu
http://www.cs.cmu.edu/{ pstone, " mmv}, http://www.andrew.cmu.edu/ priley

A shortened version of this paper appears in
“RoboCup-98: Robot Soccer World Cup II.” M. Asada and H. Kitano eds.
Springer Verlag, Berlin, 1999.

Abstract. The CMUnited-98 simulator team became the 1998 RoboCup
simulator league champion by winning all 8 of its games, outscoring
opponents by a total of 66-0. CMUnited-98 builds upon the success-
ful CMUnited-97 implementation, but also improves upon it in many
ways. This article describes the complete CMUnited-98 software, em-
phasizing the recent improvements. Coupled with the publicly-available
CMUnited-98 source code, it is designed to help other RoboCup and
multi-agent systems researchers build upon our success.

1 Introduction

The CMUnited-98 simulator team became the 1998 RoboCup [4] simulator league
champion by winning all 8 of its games, outscoring opponents by a total of 66-0.
CMUnited-98 builds upon the successful CMUnited-97 implementation [8], but
also improves upon it in many ways.

The most notable improvements are the individual agent skills and the strate-
gic agent positioning in anticipation of passes from teammates. While the success
of CMUnited-98 also depended on our previous research innovations including
layered learning [9], a flexible teamwork structure [10], and a novel communi-
cation paradigm [10], these techniques are all described elsewhere. The purpose
of this article is to clearly and fully describe the low-level CMUnited-98 agent
architecture as well as the key improvements over the previous implementation.

Coupled with the publicly-available CMUnited-98 source code [11], this arti-
cle is designed to help researchers involved in the RoboCup software challenge [5]
build upon our success. Throughout the article, we assume that the reader is
familiar with the soccer server [1].

* This research is sponsored in part by the DARPA/RL Knowledge Based Planning
and Scheduling Initiative under grant number F30602-95-1-0018. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies or endorsements, either expressed or
implied, of the U. S. Government.

The rest of the article is organized as follows. Section 2 gives an overview of
the entire agent architecture. Section 3 describes the agents’ method of keeping
an accurate and precise world model. Section 4 details the low-level skills avail-
able to the agents. Section 5 presents the CMUnited-98 collaborative coordina-
tion mechanisms. Section 6 summarizes the RoboCup-98 results and Section 7
concludes.

2 Agent Architecture Overview

CMUnited-98 agents are capable of perception, cognition, and action. By per-
ceiving the world, they build a model of its current state. Then, based on a set
of behaviors, they choose an action appropriate for the current world state.

A driving factor in the design of the agent architecture is the fact that the
simulator operates in fixed cycles of length 100 msec. As presented in Section [1],
the simulator accepts commands from clients throughout a cycle and then up-
dates the world state all at once at the end of the cycle. Only one action command
(dash, kick, turn, or catch) is executed for a given client during a given cycle.

Therefore, agents (simulator clients) should send exactly one action command
to the simulator in every simulator cycle. If more than one command is sent in
the same cycle, a random one is executed, possibly leading to undesired behavior.
If no command is sent during a simulator cycle, an action opportunity has been
lost: opponent agents who have acted during that cycle may gain an advantage.

In addition, since the simulator updates the world at the end of every cycle,
it is advantageous to try to determine the state of the world at the end of the
previous cycle when choosing an action for the current cycle. As such, the basic
agent loop during a given cycle ¢ is as follows:

— Assume the agent has consistent information about the state of the world at
the end of cycle t — 2 and has sent an action during cycle ¢ — 1.

— While the server is still in cycle ¢t — 1, upon receipt of a sensation (see, hear,
or sense_body), store the new information in temporary structures. Do not
update the current state.

— When the server enters cycle ¢ (determined either by a running clock or
by the receipt of a sensation with time stamp t), use all of the information
available (temporary information from sensations and predicted effects of
past actions) to update the world model to match the server’s world
state (the “real world state”) at the end of cycle ¢ — 1. Then choose and
send an action to the server for cycle t.

— Repeat for cycle ¢t + 1.

While the above algorithm defines the overall agent loop, much of the chal-
lenge is involved in updating the world model effectively and choosing an appro-
priate action. The remainder of this section goes into these processes in detail.

3 World Modeling

When acting based on a world model, it is important to have as accurate and
precise a model of the world as possible at the time that an action is taken.
In order to achieve this goal, CMUnited-98 agents gather sensory information
over time, and process the information by incorporating it into the world model
immediately prior to acting.

3.1 Object Representation

There are several objects in the world, such as the goals and the field markers
which remain stationary and can be used for self-localization. Mobile objects are
the agent itself, the ball, and 21 other players (10 teammates and 11 opponents).
These objects are represented in a type hierarchy as illustrated in Figure 1.

Object

Stationary ~ Mobile
Object Object

Ball Player

Fig. 1. The agent’s object type hierarchy.

Each agent’s world model stores an instantiation of a stationary object for
each goal, sideline, and field marker; a ball object for the ball; and 21 player
objects. Since players can be seen without their associated team and/or uniform
number, the player objects are not identified with particular individual players.
Instead, the variables for team and uniform number can be filled in as they
become known.

Mobile objects are stored with confidence values within [0,1] indicating the
confidence with which their locations are known. The confidence values are
needed because of the large amount of hidden state in the world: no object
is seen consistently. While it would be a mistake to only remember objects that
are currently in view, it is also wrong to assume that a mobile object will stay
still (or continue moving with the same velocity) indefinitely. By decaying the
confidence in unseen objects over time, agents can determine whether or not to
rely on the position and velocity values [2].

All information is stored as global coordinates even though both sensor and
actuator commands are specified in relative coordinates (angles and distances
relative to the agent’s position on the field). Global coordinates are easier to
store and maintain as the agent moves around the field because the global coor-
dinates of stationary objects do not change as the agent moves, while the relative

coordinates do. It is a simple geometric calculation to convert the global coor-
dinates to relative coordinates on demand as long as the agent knows its own
position on the field.

The variables associated with each object type are as follows:

Object :
e Global (z,y) position coordinates
e Confidence within [0,1] of the coordinates’ accuracy

Stationary Object : nothing additional
Mobile Object :
e Global (dz, dy) velocity coordinates
e Confidence within [0,1] of the coordinates’ accuracy

Ball : nothing additional
Player :

e Team
Uniform number
Global 6 facing angle

Confidence within [0,1] of the angle’s accuracy

3.2 Updating the World Model
Information about the world can come from

— Visual information;

Audial information;
— Sense_body information; and
— Predicted effects of previous actions.

Visual information arrives as relative distances and angles to objects in the
player’s view cone. Audial information could include information about global
object locations from teammates. Sense_body information pertains to the client’s
own status including stamina, view mode, and speed.

Whenever new information arrives, it is stored in temporary structures with
time stamps and confidences (1 for visual information, possibly less for audial in-
formation). Visual information is stored as relative coordinates until the agent’s
exact location is determined.

When it is time to act during cycle ¢, all of the available information is used
to best determine the server’s world state at the end of cycle ¢ — 1. If no new
information arrived pertaining to a given object, the velocity and actions taken
are used by the predictor to predict the new position of the object and the
confidence in that object’s position and velocity are both decayed.

When the agent’s world model is updated to match the end of simulator
cycle t — 1, first the agent’s own position is updated to match the time of the
last sight; then those of the ball and players are updated.

The Agent Itself: Since visual information is given in coordinates relative to
the agent’s position, it is important to determine the agent’s exact position
at the time of the sight. When updating the world model to match the end
of simulator cycle t — 1, there may have been visual information with time
stamp ¢ — 1 and/or ¢ (anything earlier would have been incorporated into
the previous update of the world model at the end of cycle ¢ — 1).

If the latest visual information has time stamp ¢ — 1, then the agent’s own
position is not updated until after the other objects have been updated as
their coordinates are stored relative to the old agent position. On the other
hand, if the latest visual information has time stamp ¢, or if there has been no
new visual information since the last world-state update, the agent’s status
can be updated immediately.

In either case, the following process is used to update the information about
the agent:

— If new visual information has arrived:
e The agent’s position can be determined accurately by using the rel-
ative coordinates of one seen line and the closest stationary object.
— If no visual information has arrived:
e Bring the velocity up to date, possibly incorporating the predicted
effects of any actions (a dash) taken during the previous cycle.
e Using the previous position and velocity, predict the new position
and velocity.

If available, reset the agent’s speed as per the sense_body information.
Assume velocity is in the direction the agent is facing.

— Bring the player’s stamina up to date either via the sense_body informa-
tion or from the predicted action effects.

The Ball: As the key focus of action initiative in the domain, the ball’s position
and velocity drives a large portion of the agents’ decisions. As such, it is
important to have as accurate and up-to-date information about the ball as
possible.

The ball information is updated as follows:

— If there was new visual information, use the agent’s absolute position at
the time (determined above), and the ball’s temporarily stored relative
position to determine the ball’s absolute position at the time of the sight.

— If velocity information is given as well, update the velocity. Otherwise,
check if the old velocity is correct by comparing the new ball position
with the expected ball position.

— If no new visual information arrived or the visual information was from
cycle t — 1, estimate its position and velocity for cycle ¢ using the values
from cycle t — 1. If the agent kicked the ball on the previous cycle, the
predicted resulting ball motion is also taken into account.

— If the ball should be in sight (i.e. its predicted position is in the player’s
view cone), but isn’t (i.e. visual information arrived, but no ball infor-
mation was included), set the confidence to 0.

— Information about the ball may have also arrived via communication
from teammates. If any heard information would increase the confidence
in the ball’s position or velocity at this time, then it should be used
as the correct information. Confidence in teammate information can be
determined by the time of the information (did the teammate see the ball
more recently?) and the teammate’s distance to the ball (since players
closer to the ball see it more precisely).

Ball velocity is particularly important for agents when determining whether
or not (or how) to try to intercept the ball, and when kicking the ball. How-
ever, velocity information is often not given as part of the visual information
string, especially when the ball is near the agent and kickable. Therefore,
when necessary, the agents attempt to infer the ball’s velocity indirectly
from the current and previous ball positions.

Teammates and Opponents: The biggest challenge in keeping track of player
positions is that the visual information often does not identify the player that
is seen [1]. One might be tempted to ignore all ambiguously-specified players.
However, for strategic planning it is very useful to have a complete picture
of the player positions around the field.

In general, player positions and velocities are determined and maintained in
the same way as in the case of the ball. A minor addition is that the direction
a player is facing is also available from the visual information.

When a player is seen without full information about its identity, previous
player positions can be used to help disambiguate the identity. Knowing the
maximum distance a player can move in any given cycle, it is possible for the
agent to determine whether a seen player could be the same as a previously
identified player. If it is physically possible, the agent assumes that they are
indeed the same player.

Since different players can see different regions of the field in detail, com-
munication can play an important role in maintaining accurate information
about player locations.

From the complete set of player locations, an agent can determine both the
defensive and offensive offsides lines. It is particularly important for forwards
to stay in front of the last opponent defender in order to avoid being called
offsides. Forwards periodically look towards the opponent defenders in order
to increase the accuracy of their location information.

4 Agent Skills

Once the agent has determined the server’s world state for cycle ¢ as accurately
as possible, it can choose and send an action to be executed at the end of the
cycle. In so doing, it must choose its local goal within the team’s overall strategy.
It can then choose from among several low-level skills which provide it with basic
capabilities. The output of the skills are primitive movement commands.

The skills available to CMUnited-98 players include kicking, dribbling, ball

interception, goaltending, defending, and clearing. The implementation details

of these skills are described in this section.

The common thread among these skills is that they are all predictive, locally
optimal skills (PLOS). They take into account predicted world models as well
as predicted effects of future actions in order to determine the optimal primitive
action from a local perspective, both in time and in space.

One simple example of PLOS is each individual agent’s stamina management.
The server models stamina as having a replenishable and a non-replenishable
component. Each is only decremented when the current stamina goes below a
fixed threshold. Each player monitors its own stamina level to make sure that it
never uses up any of the non-replenishable component of its stamina. No matter
how fast it should move according to the behavior the player is executing, it slows
down its movement to keep itself from getting too tired. While such behavior
might not be optimal in the context of the team’s goal, it is locally optimal
considering the agent’s current tired state.

Even though the skills are predictive, the agent commits to only one action
during each cycle. When the time comes to act again, the situation is completely
reevaluated. If the world is close to the anticipated configuration, then the agent
will act similarly to the way it predicted on previous cycles. However, if the
world is significantly different, the agent will arrive at a new sequence of actions
rather than being committed to a previous plan. Again, it will only execute the
first step in the new sequence.

4.1 Kicking

There are three points about the kick model of the server that should be under-
stood before looking at our kicking style. First, a kick changes the ball’s velocity
by vector addition. That is, a kick accelerates the ball in a given direction, as
opposed to setting the velocity. Second, an agent can kick the ball when it is in
the “kickable area” which is a circle centered on the player (see Figure 2). Third,
the ball and the player can collide. The server models a collision when the ball
and player are overlapping at the end of a cycle. If there is a collision, the two
bodies are separated and their velocities multiplied by —0.1.

As a first level of abstraction when dealing with the ball, all reasoning is done
as a desired trajectory for the ball for the next cycle. Before a kick is actually
sent to the server, the difference between the ball’s current velocity and the
ball’s desired velocity is used to determine the kick to actually perform. If the
exact trajectory can not be obtained, the ball is kicked such that the direction
is correct, even if the speed is not.

In order to effectively control the ball, a player must be able to kick the
ball in any direction. In order to do so, the player must be able to move the
ball from one side of its body to the other without the ball colliding with the
player. This behavior is called the turnball behavior. It was developed based on
code released by the PaSo’97 team[7]. The desired trajectory of a turnball kick is
calculated by getting the ray from the ball’s current position that is tangent to
a circle around the player (see Figure 3). Note that there are two possible such
rays which correspond to the two directions that the ball can be turned around

the player. Care is taken to ensure that the ball stays well within the kickable
area from kick to kick so that the player keeps control of the ball.

Temporary
Target Q

Kickable Area Kickable Area

Fig. 2. Basic kicking with velocity pre- Fig. 3. The turnball skill.
diction.

The next important skill is the ability to kick the ball in a given direction,
either for passing or shooting. The first step is to figure out the target speed of
the ball. If the agent is shooting, the target speed is the maximum ball speed,
but for a pass, it might be better to kick the ball slower so that the receiving
agent can intercept the ball more easily. In this case, the agent must take into
account the ball’s deceleration over time when determining how hard to kick the
ball.

In order to get the ball to the desired speed, several kicks in succession
are usually required. By putting the ball to the side of the player (relative to
the desired direction of the kick) the agent can kick the ball several times in
succession. If a higher ball speed is desired, the agent can use the turnball kicks
to back the ball up so that enough kicks can be performed to accelerate the ball.

This skill is very predictive in that it looks at future velocities of the ball
given slightly different possible kicks. In some cases, doing a weaker kick one cycle
may keep the ball in the kickable area so that another kick can be executed the
following cycle. In Figure 2, the agent must choose between two possible kicks.
Kicking the ball to position A will result in the ball not being kickable next cycle;
if the ball is already moving quickly enough, this action may be correct. However,
a kick to position B followed by a kick during the next cycle may result in a
higher overall speed. Short term velocity prediction is the key to these decisions.

4.2 Dribbling

Dribbling is the skill which allows the player to move down the field while keeping
the ball close to the player the entire time. The basic idea is fairly simple:
alternate kicks and dashes so that after one of each, the ball is still close to the
player.

Every cycle, the agent looks to see that if it dashes this cycle, the ball will
be in its kickable area (and not be a collision) at the next cycle. If so, then the
agent dashes, otherwise it kicks. A kick is always performed assuming that on
the next cycle, the agent will dash. As an argument, the low-level dribbling code
takes the angle relative to the direction of travel at which the player should aim
the ball (see Figure 4). This is called the “dribble angle” and its valid values are
[—90,90]. Deciding what the dribble angle should be is discussed in Section 4.3.

@
Bal

.\» Dribble Angle
|
I current Position || Prediicted Position in 2 cycles

Fig. 4. The basic dribbling skill.

First the predicted position of the agent (in 2 cycles) is calculated:

Pnew = Pcurrent + v+ (U * pdecay + a)

where ppe 1s the predicted player position, peyrrent 18 the current position of
the player, v is the current velocity of the player, pdecay is the server parameter
player_decay, and a is the acceleration that a dash gives. The a value is usually
just the dash power times the dash_power rate in the direction the player is
facing, but stamina may need to be taken into account.

Added to ppew is a vector in the direction of the dribble angle and length
such that the ball is in the kickable area. This is the target position p;qrget of the
ball. Then the agent gets the desired ball trajectory by the following formula:

Ptarget — Pball

traj =
i 1+ bdecay

where traj is the target trajectory of the ball, ppqn 18 the current ball position,
and bdecay is the server parameter ball_decay. This process is illustrated in
Figure 4.

If for some reason this kick can not be done (it would be a collision for
example), then a turnball kick is done to get the ball in the right position. Then
the next cycle, a normal dribble kick should work.

As can be seen from these calculations, the basic dribbling is highly predictive
of the positions and velocities of the ball and player. It is also quite local in that
it only looks 2 cycles ahead and recomputes the best action every cycle.

4.3 Smart Dribbling

The basic dribbling takes one parameter that was mentioned above: the dribble
angle. Smart dribbling is a skill layered on the basic dribbling skill that decides

the best dribble angle based on opponent positions. Intuitively, the agent should
keep the ball away from the opponents, so that if an opponent is on the left, the
ball is kept on the right, and vice versa.

The agent considers all nearby opponents that it knows about. Each opponent
is given a “vote” about what the dribble angle should be; each opponent votes
for the valid angle [—90, 90] that is farthest from itself. For example, an opponent
at 45 degrees, would vote for -90, while an opponent at -120 degrees would vote
for 60. Each opponent’s vote is weighted by the distance and angle relative to
the direction of motion. Closer opponents and opponents more in front of the
agent are given more weight (see Figure 5).

Distance Weight Angle Weight

Distance from Player Angle from Center
(of agent’ s direction)

Fig. 5. The weights for smart dribbling.

4.4 Ball Interception

There are two types of ball interception, referred to as active and passive inter-
ception. The passive interception is used only by the goaltender in some particu-
lar cases, while the rest of the team uses only the active interception. Each cycle,
the interception target is recomputed so that the most up to date information
about the world is used.

The active interception is similar to the one used by the Humboldt ’97
team[3]. The active interception predicts the ball’s position on successive cy-
cles, and then tries to predict whether the player will be able to make it to that
spot before the ball does, taking into account stamina and the direction that the
player is facing. The agent aims for the earliest such spot.

This process can be used for teammates as well as for the agent itself. Thus,
the agent can determine which player should go for the ball, and whether it can
get there before the opponents do.

The passive interception is much more geometric. The agent determines the
closest point along the ball’s current trajectory that is within the field. By pre-
diction based on the ball’s velocity, the agent decides whether it can make it to
that point before the ball. If so, then the agent runs towards that point.

4.5 Goaltending

The assumption behind the movement of the goaltender is that the worst thing
that could happen to the goaltender is to lose sight of the ball. The sooner

the goaltender sees a shot coming, the greater chance it has of preventing a
goal. Therefore, the goaltender generally uses the widest view mode and uses
backwards dashing when appropriate to keep the ball in view to position itself
in situations that are not time-critical.

Every cycle that the ball is in the defensive zone, the goaltender looks to see
if the ball is in the midst of a shot. It does this by extending the ray of the ball’s
position and velocity and intersecting that with the baseline of the field. If the
intersection point is in the goaltender box and the ball has sufficient velocity to
get there, the ball is considered to be a shot (though special care is used if an
opponent can kick the ball this cycle). Using the passive interception if possible
(see Section 4.4), the goaltender tries to get in the path of the ball and then run
at the ball to grab it. This way, if the goaltender misses a catch or kick, the ball
may still collide with the goaltender and thus be stopped.

When there is no shot coming the goaltender positions itself in anticipation
of a future shot. Based on the angle of the ball relative to the goal, the goaltender
picks a spot in the goal to guard; call this the “guard point.” The further the
ball is to the side of the field, the further the goaltender guards to that side.
Then, a rectangle is computed that shrinks as the ball gets closer (though it
never shrinks smaller than the goaltender box). The line from the guard point
to the ball’s current position is intersected with the rectangle, and that is the
desired position of the goaltender.

4.6 Defending

CMUnited-98 agents are equipped with two different defending modes: opponent
tracking and opponent marking. In both cases, a particular opponent player is
selected as the target against which to defend. This opponent can either be
selected individually or as a defensive unit via communication (the latter is the
case in CMUnited-98).

In either case, the agent defends against this player by observing its position
over time and position itself strategically so as to minimize its usefulness to the
other team. When tracking, the agent stays between the opponent and the goal
at a generous distance, thus blocking potential shots. When marking, the agent
stays close to the opponent on the ball-opponent-goal angle bisector, making it
difficult for the opponent to receive passes and shoot towards the goal. Defensive
marking and tracking positions are illustrated in Figure 6.

When marking and tracking, it is important for the agent to have accurate
knowledge about the positions of both the ball and the opponent (although the
ball position isn’t strictly relevant for tracking, it is used for the decision of
whether or not to be tracking). Thus, when in the correct defensive position,
the agent always turns to look at the object (opponent or ball) in which it is
least confident of the correct position. The complete algorithm, which results in
the behavior of doggedly following a particular opponent and glancing back and
forth between the opponent and ball, is as follows:

— If the ball position is unknown, look for the ball.

Opponent @- __

/O - Tracker

Marker ~ "T--__
Angle C GoaII
Bisector

Fig. 6. Positioning for defensive tracking and marking.

— Else, if the opponent position is unknown, look for the opponent.

— Else, if not in the correct defensive position, move to that position.

— else, look towards the object, ball or opponent, which has been seen less
recently (lower confidence value).

This defensive behavior is locally optimal in that it defends according to
the opponent’s current position, following it around rather than predicting its
future location. However, in both cases, the defensive positioning is chosen in
anticipation of the opponent’s future possible actions, i.e. receiving a pass or
shooting.

4.7 Clearing

Often in a defensive position, it is advantageous to just send the ball upfield,
clearing it from the defensive zone. If the agent decides that it cannot pass
or dribble while in a defensive situation, it will clear the ball. The important
decision in clearing the ball is where to clear it to. The best clears are upfield,
but not to the middle of the field (you don’t want to center the ball for the
opponents), and also away from the opponents.

The actual calculation is as follows. Every angle is evaluated with respect
to its usefulness, and the expected degree of success. The usefulness is a sine
curve with a maximum of 1 at 30 degrees, .5 at 90 degrees, and 0 at -90, where
a negative angle is towards the middle of the field. The actual equation is (O is
in degrees):

sin(260 + 45) + 1

usefulness(@) = 5 (1)

The expected degree of success is evaluated by looking at an isosceles triangle

with one vertex where the ball is;, and congruent sides extending in the direction
of the target being evaluated. For each opponent in the triangle, its distance
from the center line of the triangle is divided by the distance from the player
on that line. For opponent C in Figure 7, these values are w and d respectively.
The expected success is the product of all these quotients. In Figure 7, opponent
A would not affect the calculation, being outside the triangle, while opponent

A -~
-
L -
-
-
Player - B
G—— o>
~
~ w Clear
~ -
~ Direction
=~ c
~
~
~

Fig. 7. Measuring the expected success of a clear.

B would lower the expected success to 0, since it is on the potential clear line
(w=0).

By multiplying the usefulness and expected success together for each possible
clear angle, and taking the maximum, the agent gets a crude approximation to
maximizing the expected utility of a clear.

There is a closely related behavior of offensive “sending.” Rather than trying
to clear the ball to the sides, the agent sends the ball to the middle of the
offensive zone with hopes that a teammate will catch up to the ball before the
defenders. This is useful if the agent is too tired or unable to dribble for some
reason. It is especially useful to beat an offsides trap because it generally requires
the defenders to run back to get the ball.

The only difference with defensive clearing is the usefulness function. For
sending, the usefulness function is linear, with slope determined by the agent’s
Y position on the field. The closer the agent is to the sideline, the steeper the
slope, and the more that it favors sending to the middle of the field.

5 Coordination

Given all of the individual skills available to the CMUnited-98 clients, it becomes
a significant challenge to coordinate the team so that the players are not all trying
to do the same thing at the same time. Of course one and only one agent should
execute the goaltending behavior. But it is not so clear how to determine when
an agent should move towards the ball, when it should defend, when it should
dribble, or clear, etc.

If all players act individually — constantly chase the ball and try to kick
towards the opponent goal — they will all get tired, there will be nowhere to
pass, and the opponents will have free reign over most of the field. Building
upon the innovations of the CMUnited-97 simulator team [8], the CMUnited-98
team uses several complex coordination mechanisms, including reactive behav-
ior modes, pre-compiled multi-agent plans and strategies, a flexible teamwork
structure, a novel anticipatory offensive positioning scheme, and a sophisticated
communication paradigm.

5.1 Behavior Modes

A player’s top-level behavior decision is its behavior mode. Implemented as a
rule-based system, the behavior mode determines the abstract behavior that the
player should execute. For example, there is a behavior mode for the set of states
in which the agent can kick the ball. Then, the decision of what to do with the
ball is made by way of a more involved decision mechanism. On each action
cycle, the first thing a player does is re-evaluate its behavior mode.

The behavior modes include:

Goaltend: Only used by the goaltender.

Localize: Find own field location if it’s unknown.

Face Ball: Find the ball and look at it.

Handle Ball: Used when the ball is kickable.

Active Offense: Go to the ball as quickly as possible. Used when no teammate
could get there more quickly.

Auxiliary Offense: Get open for a pass. Used when a nearby teammate has
the ball.

Passive Offense: Move to a position likely to be useful offensively in the future.

Active Defense: Go to the ball even though another teammate is already go-
ing. Used in the defensive end of the field.

Auxiliary Defense: Mark an opponent.

Passive Defense: Track an opponent or go to a position likely to be useful
defensively in the future.

The detailed conditions and effects of each behavior mode are beyond the
scope of this article. However, they will become more clear in subsequent sections
as the role-based flexible team structure is described in Section 5.3.

5.2 Locker-Room Agreement

At the core of the CMUnited-98 coordination mechanism is what we call the
Locker-Room Agreement [10]. Based on the premise that agents can periodi-
cally meet in safe, full-communication environments, the locker-room agreement
specifies how they should act when in low-communication, time-critical, adver-
sarial environments.

The locker-room agreement includes specifications of the flexible teamwork
structure (Section 5.3) and the inter-agent communication paradigm (Section 5.5).
A good example of the use of the locker-room agreement is CMUnited-98’s abil-
ity to execute pre-compiled multi-agent plans after dead-ball situations. While
it is often difficult to clear the ball from the defensive zone after goal kicks,
CMUnited-98 players move to pre-specified locations and execute a series of
passes that successfully move the ball out of their half of the field. Such “set
plays” exist in the locker-room agreement for all dead-ball situations.

A new addition to CMUnited-98’s locker-room agreement is a defensive off-
sides strategy. Since the rules of the soccer server prohibit an opponent from

receiving a pass when located behind the last defender on the opponent’s at-
tacking half of the field?, it is an effective defensive strategy to move all the
defenders forward towards midfield. However, if only one defender is farther
back than the rest of the team, the strategy can back-fire horribly.

To take advantage of this rule using the locker-room agreement, the team
agrees on a formula based on the location of the ball and the opponent’s furthest-
back defender. This strategy relies on relatively consistent sensing by all of the
defensive players, but it does not require any communication. Independently, the
players can dynamically adjust their positions as the ball and opponents move
so that the team’s defenders stay in a coordinated line.

The CMUnited-98 offsides line was always at least 15 meters behind the
current ball position to prevent opponents from dribbling through to goal and
at least 40 meters behind the opponents last defender to allow enough room in
the midfield to pass the ball amongst teammates.

5.3 Roles and Formations

Like CMUnited-97, CMUnited-98 is organized around the concept of flexible
formations consisting of flexible roles. Roles are defined independently of the
agents that fill them: homogeneous agents (all except the goalie) can freely switch
roles as time progresses. Each role specifies the behavior of the agent filling the
role, both in terms of positioning on the field and in terms of the behavior modes
that should be considered. For example, forwards never go into auxiliary defense
mode and defenders never go into auxiliary offense mode.

A formation is a collection of roles, again defined independently from the
agents. Just as agents can dynamically switch roles within a formation, the entire
team can dynamically switch formations. After testing about 10 formations, the
CMUnited-98 team ended up selecting from among 3 different formations. A
standard formation with 4 defenders, 3 midfielders, and 3 forwards (4-3-3) was
used at the beginnings of the games. If losing by enough goals relative to the
time left in the game (as determined by the locker-room agreement), the team
would switch to an offensive 3-3-4 formation. When winning by enough, the team
switched to a defensive 5-3-2 formation.

Formations also include sub-formations, or units, for dealing with issues of
local importance. For example, the defensive unit can be concerned with marking
opponents while not involving the midfielders or forwards. A player can be a part
of more than one unit.

For a detailed presentation of roles, formations, and units, see [10].

5.4 SPAR

The flexible roles defined in the CMUnited-97 software were an improvement over
the concept of rigid roles. Rather than associating fixed (z,y) coordinates with

2 Asin real soccer, the offsides rule is more complicated than that. But for the purposes
of this article, the above definition is sufficient.

each position, an agent filling a particular role was given a range of coordinates
in which it could position itself. Based on the ball’s position on the field, the
agent would position itself so as to increase the likelihood of being useful to the
team in the future.

However, by taking into account the positions of other agents as well as
that of the ball, an even more informed positioning decision can be made. The
idea of strategic position by attraction and repulsion (SPAR) is one of the novel
contributions of the CMUnited-98 research which has been applied to both the
simulator and the small robot teams [12].

When positioning itself using SPAR, the agent uses a multi-objective function
with attraction and repulsion points subject to several constraints. To formalize
this concept, we introduce the following variables:

— P - the desired position for the passive agent in anticipation of a passing
need of its active teammate;

— n - the number of agents on each team,;

— O - the current position of each opponent, i =1,...,n;

— T; - the current position of each teammate, : = 1,...,(n — 1);

— B - the current position of the active teammate and ball;

— G - the position of the opponent’s goal.

SPAR extends similar approaches of using potential fields for highly dynamic,
multi-agent domains [6]. The probability of collaboration in the robotic soccer
domain is directly related to how “open” a position is to allow for a successful
pass. Thus, SPAR maximizes the distance from other robots and minimizes the
distance to the ball and to the goal, namely:

— Repulsion from opponents, i.e., maximize the distance to each opponent:
Vi, max dist(P, O;)

— Repulsion from teammates, i.e., maximize the distance to other passive team-
mates: Vi, max dist(P, T;)

— Attraction to the active teammate and ball: min dist(P, B)

— Attraction to the opponent’s goal: min dist(P, G)

This formulation is a multiple-objective function. To solve this optimization
problem, we restate the problem as a single-objective function. As each term may
have a different relevance (e.g. staying close to the goal may be more important
than staying away from opponents), we want to apply a different weighting
function to each term, namely fo,, fr;, fB, and fg, for opponents, teammates,
the ball, and the goal, respectively. Our anticipation algorithm then maximizes
a weighted single-objective function with respect to P:

max(z fo,(dist(P, Oi))—}—z_: fr,(dist(P,T;))— fB(dist(P, B)) — fa(dist(P, G)))

In our case, we use fo, = fr, = x, fg = 0, and fg = z2. For example, the
last term of the objective function above expands to (dist(P, G))%.

One constraint in the simulator team relates to the position, or role, that the
passive agent is playing relative to the position of the ball. The agent only con-
siders locations that within one of the four rectangles, illustrated in Figure 5.4:
the one closest to the position home of the position that it is currently playing.
This constraint helps ensure that the player with the ball will have several dif-
ferent passing options in different parts of the field. In addition, players don’t
need to consider moving too far from their positions to support the ball.

eBall

Fig. 8. The four possible rectangles, each with one corner at the ball’s location, con-
sidered for positioning by simulator agents when using SPAR.

Since this position-based constraint already encourages players to stay near
the ball, we set the ball-attraction weighting function fg to the constant function
y = 0. In addition to this first constraint, the agents observe three additional
constraints. In total, the constraints in the simulator team are:

Stay in an area near home position;

— Stay within the field boundaries;

— Avoid being in an offsides position;

— Stay in a position in which it would be possible to receive a pass.

This last constraint is evaluated by checking that there are no opponents in
a cone with vertex at the ball and extending to the point in consideration.

In our implementation, the maximum of the objective function is estimated
by sampling its values over a fine-grained mesh of points that satisfy the above
constraints.

Using this SPAR algorithm, agents are able to anticipate the collaborative
needs of their teammates by positioning themselves in such a way that the player
with the ball would have several useful passing options.

5.5 Communication

The soccer server provides a challenging communication environment for teams
of agents. With a single, low-bandwidth, unreliable communication channel for
all 22 agents and limited communication range and capacity, agents must not
rely on any particular message reaching any particular teammate. Nonetheless,

when a message does get through, it can help distribute information about the
state of the world as well as helping to facilitate team coordination.

All CMUnited-98 messages include a certain amount of state information
from the speaker’s perspective. Information regarding object position and team-
mate roles are all given along with the confidence values associated with this
data. All teammates hearing the message can then use the information to aug-
ment their visual state information.

The principle functional uses of communication in CMUnited-98 are

— To ensure that all participants in a set play are ready to execute the multi-
step plan. In this case, since the ball is out of play, time is not a critical
issue.

— To assign defensive marks. The captain of the defensive unit (the goaltender
in most formations) determines which defenders should mark or track which
opponent forwards. The captain then communicates this information peri-
odically until receiving a confirmation message.

For a detailed specification of the communication paradigm as it was first

developed for CMUnited-97, see [10].

5.6 Ball Handling

One of the most important decisions in the robotic soccer domain arises when
the agent has control of the ball. In this state, it has the options of dribbling the
ball in any direction, passing to any teammate, shooting the ball, clearing the
ball, or simply controlling the ball.

In CMUnited-98, the agent uses a complex heuristic decision mechanism, in-
corporating a machine learning module, to choose its action. The best teammate
to receive a potential pass (called potential receiver below) is determined by a de-
cision tree trained off-line [9]. Following is a rough sketch of the decision-making
process without all of the parametric details.

To begin with, since kicks (i.e. shots, passes, and clears) can take several
cycles to complete (Section 4.1), the agent remembers the goal of a previously
started kick and continues executing it. When no kick is in progress (do the first
that applies):

— If close to the opponent’s goal and no defenders are blocking the path to
the goal (defined as a cone with vertex at the ball): shoot or dribble based
on the goaltender’s position, the position of the closest opponent, and the
distance to the goal.

— At the other extreme, if close to the agent’s own goal and there is an opponent
nearby: clear the ball.

— If approaching the line of the last opponent defender: dribble the ball forward
if possible; otherwise send the ball (clear) past the defender.

— If the potential receiver is closer to the goal and has a clear shot: pass to the
potential receiver.

— If no opponents are in the direct path to the goal: dribble to the goal.

— If fairly close to the opponent’s goal and there is at most one opponent in
front of the goal: shoot.

— If no opponents are in the way of one of the corner flags: dribble towards the

corner flag.

If there is a potential receiver: pass.

— If it’s possible to hold onto the ball without moving (at most one opponent
is nearby): hold the ball.

— Otherwise: Kick the ball away (clear).

6 Results

In order to test individual components of the CMUnited-98 team, it is best to
compile performance results for the team with and without these components as
we have done elsewhere [10]. However, competition against other, independently-
created teams is useful for evaluating the system as a whole.

At the RoboCup-98 competition, CMUnited-98 won all 8 of its games by a
combined score of 660, finishing first place in a field of 34 teams. Table 1 details
the game results.

Opponent Affiliation Score
(CMU-Opp.)
uu Utrecht University, The Netherlands 22 - 0
TUM / TUMSA Technical University Munich, Germany 2 - 0
Kasuga-Bitos 1 Chubu University, Japan 5 - 0
Andhill’98 NEC, Japan 8 - 0
ISIS Information Sciences Institute (USC), USA 12 - 0
Rolling Brains Johannes Gutenberg-University Mainz, Germany| 13 - 0
Windmill Wanderers|University of Amsterdam, The Netherlands 1 - 0
AT-Humboldt’98 |Humboldt University of Berlin, Germany 3 -0
I TOTAL 66 — 0 |

Table 1. The scores of CMUnited-98’s games in the simulator league of RoboCup-98.
CMUnited-98 won all 8 games, finishing in 1st place out of 34 teams.

From observing the games, it was apparent that the CMUnited-98 low-level
skills were superior in the first 6 games: CMUnited-98 agents were able to drib-
ble around opponents, had many scoring opportunities, and suffered few shots
against.

However, in the last 2 games, the CMUnited-98 strategic formations, commu-
nication, and ball-handling routines were put more to the test as the Windmill

Wanderers (3rd place) and AT-Humboldt’98 (2nd place) also had similar low-
level capabilities. In these games, CMUnited-98’s abilities to use set-plays to
clear the ball from its defensive zone, to get past the opponents’ offsides traps,
and to maintain a cohesive defensive unit became very apparent. Many of the
goals scored by CMUnited-98 were a direct result of the opponent team being
unable to clear the ball from its own end after a goal kick: a CMUnited-98 player
would intercept the clearing pass and quickly shoot it into the goal. In particu-
lar, two of the goals in the final game against AT-Humboldt’98 were scored in
this manner. On the other hand, the CMUnited-98 simulator team was able to
clear the ball successfully from its own zone using its ability to execute set-plays,
or pre-compiled multi-agent plans. Rather than kicking the ball up the middle
of the field, one player would pass out to the sideline to a second player that
would then clear the ball up the field. After a series of 3 or 4 passes, the ball
was usually safely in the other half of the field.

Another strategic advantage that was clear throughout CMUnited-98’s games
was the players’ abilities to maintain a coherent defensive unit exploiting the off-
sides rule, and conversely, its ability to get through the defense of other teams.
Often, the opposing teams were unable to get anywhere near the CMUnited-98
goal because of the defenders’ ability to stay in front of some of the opposing for-
wards, thus rendering them offsides and prohibiting them from ever successfully
receiving the ball.

In order to deal with opposing teams that tried to use a similar technique,
the CMUnited-98 forwards would kick the ball towards the offensive corners of
the field (the “sending” skill described in Section 4.7) and then either get to the
ball before the defenders or intercept defenders’ clearing passes. CMUnited-98
scored several nice goals after such kicks to the corners.

In addition to the strategic reasoning that helped the team win its final two
games, the fine points of the dribbling and goaltending skills also came into
play. Using their predictive, locally optimal skills (PLOS—see Section 4), the
CMUnited-98 players were occasionally able to dribble around opponents for
shots. At a crucial moment against the Windmill Wanderers, the CMUnited-98
goaltender made a particularly important save: winning 1-0 near the end of the
game, a shot got past the goaltender, but it was able to turn and catch the ball
before the ball entered the goal.

7 Conclusion

The success of CMUnited-98 at RoboCup-98 was due to several technical inno-
vations ranging from predictive locally optimal skills (PLOS) to strategic posi-
tioning using attraction and repulsion (SPAR). Building on the innovations of
CMUnited-97, including flexible formation, a novel communication paradigm,
and machine learning modules, CM United-98 successfully combines low-level in-
dividual and high-level strategic, collaborative reasoning in a single multi-agent
architecture.

For a more thorough understanding of the implementation details involved,
the reader is encouraged to study the algorithms described here in conjunc-
tion with the CMUnited-98 source code [11]. Other RoboCup researchers and
multi-agent researchers in general should be able to benefit and build from the
innovations represented therein.

References

1. David Andre, Emiel Corten, Klaus Dorer, Pascal Gugenberger, Marius Jol-
dos, Johan Kummeneje, Paul Arthur Navratil, Itsuki Noda, Patrick Riley, Pe-
ter Stone, Romoichi Takahashi, and Travlex Yeap. Soccer server manual, ver-
sion 4.0. Technical Report RoboCup-1998-001, RoboCup, 1998. At URL
http://ci.etl.go.jp/ noda/soccer/server/Documents.html.

2. Mike Bowling, Peter Stone, and Manuela Veloso. Predictive memory for an inac-
cessible environment. In Proceedings of the IROS-96 Workshop on RoboCup, pages
28-34, Osaka, Japan, November 1996.

3. Hans-Diter Burkhard, Markus Hannebauer, and Jan Wendler. AT humboldt —
development, practice and theory. In Hiroaki Kitano, editor, RoboCup-97: Robot
Soccer World Cup I, pages 357-372. Springer Verlag, Berlin, 1998.

4. Hiroaki Kitano, Yasuo Kuniyoshi, Itsuki Noda, Minoru Asada, Hitoshi Matsubara,
and Eiichi Osawa. RoboCup: A challenge problem for Al. Al Magazine, 18(1):73-
85, Spring 1997.

5. Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeschi,
Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The RoboCup
synthetic agent challenge 97. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 24-29, San Francisco, CA, 1997. Mor-
gan Kaufmann.

6. Jean-Claude Latombe. Robot Motion Planning. Kluwer, 1991.

7. E. Pagello, F. Montesello, A. D’Angelo, and C. Ferrari. A reactive architecture
for RoboCup competition. In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer
World Cup I, pages 434-442. Springer Verlag, Berlin, 1998.

8. Peter Stone and Manuela Veloso. The CMUnited-97 simulator team. In Hiroaki
Kitano, editor, RoboCup-97: Robot Soccer World Cup I, pages 387-397. Springer
Verlag, Berlin, 1998.

9. Peter Stone and Manuela Veloso. A layered approach to learning client behaviors
in the RoboCup soccer server. Applied Artificial Intelligence, 12:165-188, 1998.

10. Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork. Artificial
Intelligence, 1999. To appear.

11. Peter Stone, Manuela Veloso, and Patrick Riley. CMUnited-98 source code,
1998. Accessible from http://www.cs.cmu.edu/” pstone/RoboCup/CMUnited98-
sim.html.

12. Manuela Veloso, Michael Bowling, Sorin Achim, Kwun Han, and Peter Stone. The
CMUnited-98 champion small robot team. In Minoru Asada and Hiroaki Kitano,
editors, RoboCup-98: Robot Soccer World Cup II. Springer Verlag, Berlin, 1999.

