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ABSTRACT 
Many hypothesized applications of mobile robotics require 
multiple robots. Multiple robots substantially increase the 
complexity of the operator’s task because attention must be 
continually shifted among robots. One approach to increasing 
human capacity for control is to remove the independence among 
robots by allowing them to cooperate. This paper presents an 
initial experiment using multiagent teamwork proxies to help 
control robots performing a search and rescue task. 
.  

Categories and Subject Descriptors 
D J.7 : Computers in Other Systems 

General Terms 
Multiagent Systems, Experimentation, Human Factors 

Keywords 
Multiagent Systems, Multirobot Systems, Human-Robot 
Interaction. 

1. INTRODUCTION 
Many hypothesized applications of mobile robotics require 
multiple robots.  Envisioned applications such as interplanetary 
construction [4] or cooperating uninhabited aerial vehicles [8] will 
require close coordination and control between human operator(s) 
and cooperating teams of robots in uncertain environments.  
Multiple robots substantially increase the complexity of the 
operator’s task because she must continually shift attention 
among robots under her control, maintain situation awareness for 
both the team and individual robots, and exert control over a 
complex system. In the simplest case an operator controls 
multiple independent robots interacting with each as needed.  
Control performance at this task has been investigated both in 
terms of average demand on human attention [1] and for 
simultaneous demands from multiple robots that lead to 
bottlenecks [5].  In these approaches increasing robot autonomy 
allows robots to be neglected for longer periods of time making it 

possible for a single operator to control more robots.  Providing 
additional autonomy by enabling robots to cooperate among 
themselves extends automation to human control activities 
previously needed to coordinate the robots’ actions.  Automating 
this function should decrease the demands on the human operator 
to the extent that attention being devoted to a robot involved 
coordination with other robots.  If substantial efforts were 
required for coordination automation should allow improvements 
in performance or control of larger teams.  

1.1 Teamwork Algorithm 
 

The teamwork algorithms used to coordinate the simulated robots 
are general algorithms that have been shown to be effective in a 
range of domains [10].  To take advantage of this generality, the 
emerging standard approach is to encapsulate the algorithms in a 
reusable software proxy. Each team member has a proxy with 
which it works closely, while the proxies work together to 
implement the teamwork.  The current version of the proxies is 
called Machinetta [8] and extends the successful Teamcore 
proxies [7].  Machinetta is implemented in Java and is freely 
available on the web.  Notice that the concept of a reusable proxy 
differs from many other ``multiagent toolkits'' in that it provides 
the coordination algorithms, e.g., algorithms for allocating tasks, 
as opposed to the infrastructure, e.g., APIs for reliable 
communication. 
 
The Machinetta software consists of five main modules, three of 
which are domain independent and two of which are tailored for 
specific domains.  The three domain independent modules are for 
coordination reasoning, maintaining local beliefs (state) and 
adjustable autonomy.  The domain specific modules are for 
communication between proxies and communication between a 
proxy and a team member.  The modules interact with each other 
only via the local state with a blackboard design and are designed 
to be ``plug and play'', thus, e.g., new adjustable autonomy 
algorithms can be used with existing coordination algorithms. 
 
The coordination reasoning is responsible for reasoning about 
interactions with other proxies, thus implementing the 
coordination algorithms.  The adjustable autonomy algorithms 
reason about the interaction with the team member, providing the 
possibility for the team member to make any coordination 
decision instead of the proxy.  For example, the adjustable 
autonomy module can reason that a decision to accept a role to 
rescue a civilian from a burning building should be made by the 
human who will go into the building rather than the proxy.  In 
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practice, the overwhelming majority of coordination decisions are 
made by the proxy, with only key decisions referred to human 
operators. 
 
Teams of proxies implement team oriented plans (TOPs) which 
describe joint activities to be performed in terms of the individual 
roles to be performed and any constraints between those roles.  
Typically, TOPs are instantiated dynamically from TOP templates 
at runtime when preconditions associated with the templates are 
filled.  Typically, a large team will be simultaneously executing 
many TOPs.  For example, a disaster response team might be 
executing multiple fight fire TOPs.  Such fight fire TOPs might 
specify a breakdown of fighting a fire into activities such as 
checking for civilians, ensuring power and gas is turned off and 
spraying water.  Constraints between these roles will specify 
interactions such as required execution ordering and whether one 
role can be performed if another is not currently being performed.  
Notice that TOPs do not specify the coordination or 
communication required to execute a plan, the proxy determines 
the coordination that should be performed. 
 
Current versions of Machinetta include state-of-the-art algorithms 
for plan instantiation, role allocation, information sharing, task 
deconfliction and adjustable autonomy.  Many of these algorithms 
utilize a logical associates network statically connecting all the 
team members.  The associates network is a scale free network 
which allows the team to balance the complexity of needing to 
know about all the team and maintaining cohesion.  Using the 
associates network key algorithms, including role allocation, 
resource allocation, information sharing and plan instantiation are 
based on the use of tokens which are ``pushed'' onto the network 
and routed to where they are required by the proxies.   
For example, the role allocation algorithm, LA-DCOP [9], 
represents each role to be allocated with a token and pushes the 
tokens around the network until a sufficiently capable and 
available team member is found to execute the role.  The 
implementation of the coordination algorithms uses the 
abstraction of a simple mobile agent to implement the tokens, 
leading to robust and efficient software. 

 

We have recently integrated Machinetta [2] with the USARsim 
simulation to provide a testbed for studying human control over 
cooperating teams of robots.  This paper reports our first tests of 
the system and does not yet fully exploit the richness and 
complexity of coordination that are available. 

1.2 Experimental Task 
In this experiment, participants were asked to control 3 

simulated P2DX robots (Figure 1) to search for victims in a 
damaged building. Each robot was equipped with a pan-tilt 
camera with a fixed 45 degrees of FOV and a front laser scanner 
with 180 degree FOV and resolution of 1 degree. The participant 
interacted with the robots through our Robots Control System 
(RCS). Status information, camera video, laser scanning range 
data, and a global map built from that data were available from 
each robot. The participant controlled the robot to explore the 
building and search for victims by issuing waypoints or 
teleoperating the robot and panning/tilting the camera,. Once a 
victim was identified, the participant marked its location on the 
global map.  

 Challenges to mobility encountered in real robotic search 
and rescue tasks were simulated in our experiment by obstacles 
including chairs, bricks, and pipes. Transparent sheets of plastic 
and mirrors were introduced to cause perceptual confusion and 
increase task difficulty. The camera’s FOV was restricted to 45 
degrees to reflect typical limitations. As with real robotic system, 
there are uncertainties and delays in our RCS. Range data had 
simulated errors, the map was based on probabilistic data and 
some obstacles such as a chair or desk might be lost on the map 
because of inaccuracies in laser detection. Walls especially thin 
ones were also subject to loss due to errors in range data.  There 
are also slight delays in video feedback and response to 
commands.  



The RCS could work in either auto or manual mode. Under auto 
mode, the robots could cooperate in a limited way to 
automatically explore the environment. In manual mode, the 
robots had no automatic exploration capabilities and stopped after 
completing their commands. The experiment followed a repeated 
measures design in which participants controlled in both manual 
and auto modes.  Order of presentation was counterbalanced and 
participants explored the same sequence of environments.  The 
robots’ location, orientation and the users’ actions were recorded 
and timestamped  throughout the experiment. The final map with 
marked victims was also saved. Demographic information and 
posttest survey were also collected. 

1.3 The Robot and Environment Simulation 
In this experiment, we used USARSim [11], a high-fidelity 
simulation of urban search and rescue (USAR) robots and 
environments. USARSim supports human-robot interaction (HRI) 
by accurately rendering user interface elements (particularly 
camera video), accurately representing robot automation and 
behavior, and accurately representing the remote environment that 

links the operator’s awareness with the robot’s behaviors. It was 
built based on a multi- player game engine, UnrealEngine2, an so 
is well suited for simulating multiple robots.  
 USARSim uses the Karma Physics engine to provide physics 
modeling, rigid-body dynamics with constraints and collision 
detection. It uses other game engine capabilities to simulate 
sensors including camera video, sonar, and laser range finder.  
The experiment uses USARsim’s model of the NIST Yellow 
Arena [3]. The victims are evenly distributed within the arena and 
may appear as partial or whole human bodies .  Victims were 
designed and placed to make the difficulty of finding them 
roughly the same. Two similar arenas (Figure 2) are used in the 
experiment. The two arenas were constructed from the same 
elements but with different arrangements.  

1.4 The Robot and Environment Simulation 
 

a) Arena 1     b) Arena 2 
Figure 2. The Arenas. 
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Figure 3. System Architecture. 

The Robots Control System is based on Machinetta [2], a 
multiagent system based on teamwork proxies. The system’s 
architecture is shown in Figure 3. Each virtual robot connects 
with Machinetta through a robot driver. The driver parses the 
robot’s sensor data and transfers them to the Machinetta proxy. It 
also has limited low-level autonomy to interpret the proxy’s plan 
as robot commands; control the robot to avoid obstacles; and 
recover the robot when stuck. The user interface is connected to 
Machinetta as well to create a RAP (Robot, Agent and Person) 
system. There are embedded cooperation algorithms in 
Machinetta that can coordinate the robots and people through the 
Comm Server that exchanges information among the Machinetta 
proxies.  

When the system works in manual mode, cooperation among 
the robots eliminated. When it runs in auto mode, the robot proxy 
is allowed to analyze the range data to determine what nodes the 
robot team needs to explore and how to reach those nodes from 
the current position (generating the paths). By exchanging these 
nodes and route information through Machinetta, a robot proxy 
can accept and execute a plan to visit a node by following a path 
(a series of waypoints).   

Through the user interface, the operator can also directly control 
the robots’ cameras, teleoperate them or issue waypoints to the 
robots.  Robots are controlled one at a time with the selected robot 
providing a full range of data while the unselected ones provide 
camera views for monitoring.  On the user interface (figure 3), 
each robot is represented by a unique color. The control 
component’ background color is set to the currently selected 
robot’s color to help the users identify which the robot they are 
controlling. The components of the interface are: 

• Robots List (the upper left component) 

Figure 4. The Robots Control System. 

The Robots List was designed to help the user monitor the 
robots. It lists the robots with their names, states, camera video 
and colors. It is also used to select the controlled robot. Camera 
video for this component is updated at a low frame rate. 

• Map (left bottom component) 

This component displays the global map created by the 
robots. It is intended to help the user maintain situational 
awareness. On this component, blue indicates unexplored areas; 
white shows an unoccupied area that has been explored and black 
shows obstacles within an explored area. Areas with gray color 
may or may not contain objects. Dark gray indicates that an area 
contains an object with high probability.  

• Video Feedback (upper center component) 

The currently selected robot’s video is displayed on this 
component. The picture is updated frame by frame with high 
frequency. The camera’s pan and tilt angles are represented by the 
crosshair on the video.  The ‘reset’ button re-centers the camera.  
The ‘zoom’ feature was disabled for this experiment to provide a 
fixed FOV. 

• Teleoperation (upper right component) 

This component includes two sub-panels. The “Camera” 
panel is used to pan, tilt or center the camera. The “Wheels” panel 
is a simulated joystick that controls the robot’s movement. When 
the user uses the joystick, the robot will automatically clear its 
exploring path and enter teleoperation mode. In the auto condition 
after the user finishes teleoperating, the robot will return to auto 
mode and attempt to generate a new path, in the manual mode the 
robot remains stopped. A teleoperation episode is terminated 
when the user clicks the “Auto” button or 6 seconds has passed 
without operator input. 

• Mission (bottom center component) 

This component displays the current exploration situation on 
a “you-are-here” style map. The upper direction of the map is 
always the camera’s direction. The range data is displayed as bold 
green line overlaid on the map. The red cone emitted from the 



Table 1 Sample Demographics 

Age Gender Education 
 

19 20~35 Male Female Currently 
Undergraduate 

Complete 
Undergraduate 

Order 1 1 6 1 6 4 3 

Order 2 1 6 4 3 6 1 

Total 2 12 5 9 10 4 

robot marks the area shown in the video feedback. Combining the 
cone with video feedback can provide the user with better 
situation awareness and sense of distances. The path the robot is 
trying to follow is also shown on the map. With this component, 
the user can create a new path by issuing a series of waypoints, 
modify the current path by moving waypoints, or mark a victim 
on the map. When the user begins to mark a victim, the robot 
pauses its action until the user finishes the mark operation.  

Table 2 Participants Experience 

Computer Usage 
(hours/week) 

Game Playing (hours/week) Mouse Usage for Game Playing  

<1 1-5 5-10 >10 <1 1-5 5-10 >10 Frequently Occasionally Never 
Order 1 

1.5 Procedure 
This experiment compared robot team control performance under 
auto and manual modes. Participant demographics were collected 
at the start of the experiment using an on-screen questionnaire. 
Standard instructions explaining how to use the interface were 
followed by a ten minute practice session in which participants 
following instructions practiced each of the operations available 
in the two modes and finished after searching for and finding a 
victim in auto mode.  Order of presentation was counterbalanced 
with half of the participants assigned to search for victims in 
Arena-1 in auto mode and the other half in manual.  After 20 
minutes the trial was stopped.  Participants were given brief 
instructions reminding them of significant features of the mode 
they had not used and then began a second 20 minute trial in 
Arena-2.  At the conclusion of the experiment participants 
completed an online survey. 

14 paid participants recruited from the University of Pittsburgh 
community took part in the experiment. The participants’ 
demographic information and experience are summarized in 
tables 1 and  2. 

2. Results 

2.1 Overall Measures 
2.1.1 Subjective Measures 
Participants were asked to rate to what extent autonomy helped 
them find victims. The results show that most participants (79%) 
rated autonomy as providing either significant or minor help. 

Only 1 of the 14 participants (7%) rated autonomy as making no 
difference and 2 of the 14 participants (14%) judged autonomy to 
make things worse.  

0 2 1 4 3 4 0 0 6 1 0 

Order 2 0 0 6 1 3 3 1 0 2 5 0 

Total 0 2 7 5 6 7 1 0 8 6 0 

Outcome of autonomy

36%

43%

7%

14%

Significant Help
Minor Help
No Difference
Worse

Figure 5. Outcome of autonomy 

Figure 6. Victims found by participants. 



2.1.2 Performance Measures 
2.1.2.1 Victims 
Comparing the victims found by the same participant under auto 
mode and the victims found under manual mode using a one tail 
paired t test, we found that participants found significantly more 
victims in auto mode than in manual mode (p=0.044) (Figure 6).  

2.1.2.2 Explored Ratio 
The explored ratio is the percentage of the area scanned by the 
robots. A one tail paired t-test was used to compare auto and 
manual modes.  Participants were found to explore wider areas 
under auto mode than in manual mode (p=0.002).  

2.2 Distribution of Attention among Robots 
Measuring the distribution of attention among robots as the 
standard deviation of the total time spent with each robot no 
difference (p=0.232) was found between auto and manual modes.  
However, we found that under auto mode, the same participant 
switched robots significantly more frequently than under manual 
mode (p=0.027).  The posttest survey showed that most 

participants switched robots based on the Robots List component. 
Only 2 of the 14 participants (14%) reported switching robot 
control independent of this component.  

We also found that switches in control among robots led to 
finding more victims.  Figure 9 shows the regression of victims 
found on the number of switches in attention among the robots 
(R2=0.477 p=0.006).  

2.3 Forms of Control 

Switches vs. Victims
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Participants had three forms of control to locate victims: 
waypoints, teleoperation, and camera control.  No difference was 
found between auto and manual modes in the use of these forms 
of control.  However, in the auto mode, participants were less 
likely to control waypoints (p=0.004) or teloperate (p=0.046) 
during any single control episode.  

Comparing the victims found with control operations (waypoints 
and teleoperation), we found an inverted U relationship between 
control operations and the victims found (figure 12). Too few or 
too much movement control led to fewer found victims.  

Victims Linear (Victims)

Figure 9. Switches vs. Victims. 

Figure 7. Explored Ratio. 

Figure 10. Waypoints controls in one switching. Figure 8. Switching Times. 



2.4 Trust and Capability of Using Interface 
 In the posttest we collected participants ratings of their level of 
trust in the system’s automation and their ability to use the 
interface to control the robots.  43% of the participants trusted the 
autonomy and only changed the robot’s plans when they had 

spare time. 36% of the participants reported changing about half 
of the robot’s plans while 21% of the participants showed less 
trust and changed the robot’s plans more often. A one tail t-test, 
indicates that the total victims found by participants trusting the 
autonomy is larger than the number victims found by other 
participants (p=0.05).  42% of the participants reported being able 
to use the interface well or very well while 58% of the 
participants reported having difficulty using the full range of 
features while maintaining control of the robots.  A one tail t test 
shows that participants reporting using the interface well or very 
well found more victims (p<0.001) based on a one tail t-test.  
Participants trusting the autonomy reported significantly higher 
capability in using the user interface (p=0.001) and conversely 
participants reporting using the interface well also had greater 
trust in the autonomy (p=0.032). 

3. Discussion 

Figure 11. Teleoperations in one switching. 

This experiment is the first of a series investigating control of 
cooperating teams of robots using Machinetta. In this experiment 
cooperation was extremely limited primarily involving the 
deconflicting of plans so that robots did not explore or re-explore 
the same regions.  The presence of simple path planning 
capabilities and limited autonomy in addition to coordination in 
the auto condition prevents us from attributing our results solely 
to the presence of a coordination mechanism.  In future 
experiments we intend to extend the range of coordination to 
include heterogeneity in sensors, mobility, and resources such as 
battery power to provide richer opportunities for cooperation and 
the ability to contrast multirobot coordination with simple 
automation. 

 Although only half of the participants reported trusting the 
autonomy or being able to use the interface well, the results 
showed that autonomy helped the operators explore more areas 
and find more victims.   In both the conditions participants 
divided their attention approximately equally among the robots 
but in the auto mode they switched among robots more rapidly 
thereby getting more detailed information about different areas of 
the arena being explored. 

The frequency of this sampling among robots was strongly 
correlated with the number of victims found.  This effect, 
however, cannot be attributed to a change from a control to a 
monitoring task because the time devoted to control was 
approximately equal in the two conditions.  We believe instead 
that searching for victims in a building can be divided into a 
series of  subtasks involving things such as moving a robot from 
one point to another, and/or turning a robot from one direction to 
another with or without panning or tilting the camera. To 
effectively finish the searching task, we must interact with these 
subtasks within their neglect time[6] that is proportional to the 
speed of movement. When we control multiple robots and every 
robot is moving, there are many subtasks whose neglect time is 
usually short. Missing a subtask means we failed to observe a 
region that might contain a victim. So switching robot control 
more often gives us more opportunity to find and finish subtasks 
and therefore helps us find more victims.  This focus on subtasks 
extends to our results for movement control which suggest there 
may be some optimal balance between monitoring and control.  If 
this is the case it may be possible to improve an operator’s 
performance through training or online monitoring and advice. 
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Figure 12. Robot Controls vs. Victims. 
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