
Fast Hierarchical Goal Schema Recognition

Nate Blaylock
Cycorp, Inc.

3721 Executive Center Dr. Ste 100
Austin, Texas, USA

blaylock@cyc.com

James Allen
Department of Computer Science

University of Rochester
PO Box 270262

Rochester, New York, USA
james@cs.rochester.edu

Abstract

We present our work on using statistical, corpus-based
machine learning techniques to simultaneously recog-
nize an agent’s current goal schemas at various levels of
a hierarchical plan. Our recognizer is based on a novel
type of graphical model, a Cascading Hidden Markov
Model, which allows the algorithm to do exact inference
and make predictions at each level of the hierarchy in
time quadratic to the number of possible goal schemas.
We also report results of our recognizer’s performance
on a plan corpus.

Introduction
Much work has been done over the years inplan recognition
which is the task of inferring an agent’s goal and plan based
on observed actions.Goal recognitionis a special case of
plan recognition in which only the goal is recognized.

For most applications, there are several properties re-
quired in order for goal recognition to be useful:
1. Speed: Most applications use goal recognition “online”,

meaning they use recognition results before the observed
agent has completed its activity. Ideally, goal recognition
should take a fraction of the time it takes for the agent
to execute its next action. Plan recognition in the general
case has been shown to be intractable (Kautz 1987).

2. Early/partial prediction: In a similar vein, applications
need accurate goal prediction as early as possible in the
observed agent’s task execution. Even if a recognizer is
fast computationally, if it is unable to predict the goal until
after it has seen the last action in the agent’s task, it will
not be suitable for applications which need recognition
resultsduring task execution. If full recognition is not
immediately available, applications can often make use
of partial predictions.
In this paper, we build on our recent work (Blaylock &

Allen 2005b) on using statistical, corpus-based techniques
for goal recognition. Whereas that work was concerned only
with recognition of an agent’s top-level goal, we concentrate
here on the more general task ofhierarchical goal recogni-
tion — recognition of the chain of an agent’s currently ac-
tive top-level goal and subgoals. As an illustration, consider

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

G

S1:1

S2:1

A1

S2:2

A2 A3

S1:2

S2:3

A4 A5

Figure 1: A Sample Hierarchical Plan Execution Tree

the tree shown in Figure 1 which represents an execution
trace based on a hierarchical transition network (HTN) plan.
Here we model goals and subgoals as parameterized action
schemas from the SHOP2 HTN planner (Nauet al. 2003).

Here the root of the treeG is the agent’s top-level goal.
Leaves of the treeA1–A5 represent the atomic actions exe-
cuted by the agent. Nodes in the middle of the tree represent
the agent’s various subgoals within the plan. For each exe-
cuted atomic action, we can define agoal chainwhich is the
subgoals which were active at the time it was executed. This
is the path which leads from the atomic action to the top-
level goalG. The goal chains associated with each atomic
action in the tree in Figure 1 are shown in Figure 2. We cast
hierarchical goal recognition as the recognition of the goal
chain corresponding to the agent’s last observed action.

Recognizing such goal chains can provide valuable infor-
mation not available from a top-level goal recognizer. First,
though not full plan recognition, hierarchical goal recogni-
tion provides information about which goal an agent is pur-
suing as well as a partial description ofhow.

Additionally, the prediction of subgoals can be seen as
a type of partial prediction. As mentioned above, when a
full prediction is not available, a recognizing agent can often
make use of partial predictions. A hierarchical recognizer
may be able to predict an agent’s subgoals even when it is
still not clear what the top-level goal is. This can allow a
recognizer to potentially make predictions much earlier in
an execution stream.

G G G G G

S1:1 S1:1 S1:1 S1:2 S1:2

S2:1 S2:2 S2:2 S2:3 S2:3

A1 A2 A3 A4 A5

Figure 2: Goal Chains Corresponding to the Execution Tree
in Figure 1

In this paper, we limit ourselves to hierarchical recogni-
tion of goal schemas(cf. (Blaylock & Allen 2005b)). As
we discuss below, we have recently done work on extend-
ing this schema recognizer to doinstantiated recognition
(recognition of goal schemas and their instantiated param-
eter values), which we plan to report soon.

The goal recognizer we describe here uses a novel type
of graphical model which we term aCascading Hidden
Markov Model(CHMM). We first describe this model and
then describe our schema recognition algorithm. We then
detail our recognition experiments and results, compare pre-
vious work and finally conclude and discuss future direc-
tions.

Cascading Hidden Markov Models

In our hierarchical schema recognizer, we utilize aCascad-
ing Hidden Markov Model (CHMM), which consists ofD
stacked state-emission HMMs (H0,D−1). Each HMM (Hd)
is defined by a 5-tuple(σd, κd,Πd, Ad, Bd) whereσd is the
set of possible hidden states;κd is the set of possible output
states;Πd = {πd:i}, i ∈ σd is the initial state probability
distribution;Ad = {ad:ij}, i, j ∈ σd is the set of state tran-
sition probabilities; andBd = {bd:ik}, i ∈ σd, k ∈ κd is the
set of output probabilities.

The HMMs are stacked such that for each HMM (Hd), its
output state is the hidden state of the HMM below it (Hd+1).
For the lowest level (HD−1), the output state is the actual
observed output. In essence, at each timestept, we have
a chain of hidden state variables (X0,D−1:t) connected to a
single observed outputOt at the bottom level. An example
of a CHMM is shown in Figure 3.

Here, thedth HMM (i.e., the HMM which starts with the
hidden stateXd:1) is a typical HMM with the output se-
quenceO1,n. As we go up the CHMM, the hidden level
becomes the output level for the level above it, and so forth.

We will now describe the differences between CHMMs
and other hierarchical HMMs. We then discuss how infer-
ence is done with CHMMs — in particular, how the forward
probability is calculated, as this is a key part of our recogni-
tion algorithm.

X0:1 X0:2 X0:3 · · · X0:n

X1:1 X1:2 X1:3 · · · X1:n

...
...

...
...

Xd:1 Xd:2 Xd:3 · · · Xd:n

O1 O2 O3 · · · On

Figure 3: A Cascading Hidden Markov Model (CHMM)

Comparison to Hierarchical HMMs
Hierarchical HMMs (HHMMs) (Murphy & Paskin 2001)
and the closely related Abstract HMMs (AHMMs) (Bui,
Venkatesh, & West 2002) also represent hierarchical infor-
mation using a limited-depth stack of HMMs. In these mod-
els, an hidden state can output either a single observation,or
a string of observations. Each observation can also be asso-
ciated with a hidden state at the next level down, which can
also output observations, and so forth. In HHMMs, when
a hidden state outputs an observation, control is transferred
to that observation, which can also output and pass control.
Control is only returned to the upper-level (and the upper-
level moves to its next state) when the output observation
has finished its output, which can take multiple timesteps.

In contrast, CHMMs are much simpler. Each hidden
state can only output a single observation, thus keeping
the HMMs at each level in lock-step. In other words, in
CHMMs, each level transitions at each timestep, whereas
only a subset transition in HHMMs.

Below, we use CHMMs to represent an agent’s execution
of a hierarchical plan. As we will discuss there, mapping
a hierarchical plan onto a CHMM results in a loss of in-
formation which could be retained by using an HHMM (cf.
(Bui, Venkatesh, & West 2002)). This, however, is exactly
what allows us to do tractable online inference, as we will
show below. Exact reasoning in HHMMs has been shown to
be exponential in the number of possible states (Murphy &
Paskin 2001).

Computing the Forward Probability in CHMMs
An analysis of the various kinds of inference possible with
CHMMs is beyond the scope of this paper. Here we only
focus on the forward algorithm, which is used in our recog-
nition algorithm below.1

1The Reader may wonder why we do not use the forward-
backward algorithm. The forward-backward algorithm is essen-
tially for post hoc analysis. For goal recognition, we are interested
in making “online” predictions, i.e., predictions after each obser-

Typical HMMs In a typical HMM, the forward probabil-
ity (αi(t) = P (o1,t,Xt = i|Π, A,B)) describes the prob-
ability of the sequence of outputs observed up until timet
(o1,t) and that the current stateXt is i, given an HMM model
(Π, A,B).

The set of forward probabilities for a given timestepT ,
(α(T) = {αi(T), i ∈ σ}) can be efficiently computed using
the well-known forward algorithm, which uses a state lattice
(over time) to efficiently compute the forward probability of
all intermediate states. This allows it to efficiently compute
forward probabilities for the next timestep by simply using
those from the previous timestep, using dynamic program-
ming. Although the forward algorithm is likely familiar to
most readers, we describe it here to allow us to more easily
show how it is augmented for CHMMs below.

First, α(0) is initialized with the initial state probabili-
ties (Π). Then, for each subsequent timestept, individual
forward probabilities are computed using the following for-
mula:

αj(t) =

[

∑

i∈σ

αi(t − 1)aij

]

bjot
(1)

The complexity of computing the forward probabilities for
a sequence ofT observations is O(|σ|2T) (whereσ is the
set of possible hidden states). However, as we will use the
forward probability in making online predictions in the next
section, we are more interested in the complexity forextend-
ing the forward probabilities to a new timestep (i.e., calcu-
latingα(t+1) givenα(t)). For extending to a new timestep,
the runtime complexity is O(|σ|2), or quadratic in the num-
ber of possible hidden states.

Algorithm Overview In a CHMM, we want to calcu-
late the forward probabilities for each depth within a given
timestep:α(t) = {αd(t)}, d ∈ 0,D − 1, whereαd(t) =
{αd:i(t)}, i ∈ σd. This can be done one timestep at a time,
cascading results up from the lowest level (D − 1).

Initialization of each level occurs as normal — as if it
were a normal HMM — using the start state probabilities in
Πd. For each new observationot, the new forward proba-
bilities for the chain are computed in a bottom-up fashion,
starting withαD−1(t). At this bottom level, the new for-
ward probabilities are computed as for a normal HMM using
Equation 1.

We then move up the chain, computing one forward prob-
ability set at a time, using the results of the level below as
observed output. However, we cannot use Equation 1 to cal-
culate these forward probability sets (αd(t)), as the forward
algorithm assumes that output is observed with certainty.
While this was the case for levelD − 1 (where the output
variable isot), for all other levels, the output state is actually
also a hidden state (Xd+1:t), and thus uncertain.

We overcome this by first observing that, although we
do not know the value ofXd+1:t with certainty, if we have
the forward probability distribution for that node (αd+1(t)),

vation, which the forward-backward algorithm does not lend itself
to.

we can use it as a probability distribution over possible val-
ues for the state. As discussed above, we can compute the
forward probability set at the bottom levelαD−1(t), which
gives us a probability distribution over possible values of
XD−1:t. In order to calculate the forward probability at the
next level upαD−2(t) (as well as higher levels), we need
to augment the forward algorithm to work for HMMs with
uncertain output.

Changing the forward algorithm to handle uncertain out-
put is straightforward, and needs only to include a weighted
sum over output probabilities as shown here:

αd:j(t) =

[

∑

i∈σd

αd:i(t − 1)aij

]





∑

k∈σd+1

αd+1:k(t)bjk





(2)
Adding this additional summation does not change the com-
plexity of the forward algorithm. For updating each level, it
remains quadratic in the number of hidden statesO(|σd|

2).

Recognition Algorithm
From the previous discussion, it may be quite apparent
where we are going with this. A quick comparison of the
goal chains in Figure 2 and the CHMM in Figure 3 shows
a remarkable resemblance. Our hierarchical goal schema
recognizer models an agent’s plan execution with a CHMM,
with one level for each subgoal level in the hierarchical plan.
The use of CHMMs requires us to have a plan tree of con-
stant depth, which is not usually not a valid assumption, in-
cluding for the corpus we use below. Given a variable depth
corpus, we use a padding scheme to extend all leaves to the
deepest level. Space constraints preclude us from a discus-
sion of the details of this scheme and how it is reflected in
the prediction algorithm. The interested reader is referred to
(Blaylock 2005) for details.

After each observed action, predictions are made at each
subgoal level using what we will callaugmented forward
probabilities. Early experiments2 based purely on the
CHMM forward probabilities gave only mediocre results. In
order to improve performance, we added observation-level
information to the calculations at each level by making both
transition and output probabilities context dependent on the
current and last observed action (bigram). The idea was
that this would tie upper-level predictions to possible sig-
nals present only in the actual actions executed (as opposed
to just some higher-level, generic subgoal). This is simi-
lar to what is done in probabilistic parsing (Charniak 1997),
where lexical items are included in production probabilities
to provide better context.

The only change we made was to the transition probabil-
ities (Ad) and output probabilities (Bd) at each level. Thus,
instead of the transition probabilityad:ij beingP (Xd:t =
j|Xd:t−1 = i), we expand it to be conditioned on the ob-
served actions as well:

ad:ij = P (Xd:t = j|Xd:t−1 = i, Ot, Ot−1)

2Space precludes us from reporting these here. See (Blaylock
2005) for details.

Total Sessions 5000
Goal Schemas 10
Action Schemas 30
Ave Actions/Session 9.5
Subgoal Schemas 28
Ave Subgoal Depth 3.8
Max Subgoal Depth 9

Table 1: The Monroe Corpus

Similarly, we added bigram information to the output prob-
abilities (bd:ik):

bd:ik = P (Xd:t = i|Xd+1:t = k,Ot, Ot−1)

We will now describe how the CHMM is trained, and
then how predictions are made. We then analyze the run-
time complexity of the recognition algorithm.

Training the CHMM

As a CHMM is really just a stack of HMMs, we need only
to estimate the transition probabilities (Ad), output proba-
bilities (Bd) and start state probabilities (Πd) for each depth
d. To estimate these, we used the Monroe corpus, which is
an artificially-generated HTN plan corpus in an emergency
management domain. It was generated by randomizing the
SHOP2 planner (Nauet al. 2003) and using it to produce
plans given stochastically-generated goals and start states
(Blaylock & Allen 2005a). Its vital statistics can be found
in Table 1. We converted the corpus into sets of goal chains,
which we used the to estimate the different probability dis-
tributions.

Predictions

At the start of a recognition session, a CHMM for the do-
main is initialized with start state probabilities from the
model. Upon observing a new action, we calculate the new
forward probabilities for each depth using the CHMM for-
ward algorithm described above.

Using the forward probabilities, n-best predictions are
made separately for each level. Then most likely schemas
are chosen, and their combined probability is compared
against a confidence thresholdτ .3 If the n-best probabil-
ity is greater thanτ , a prediction is made. Otherwise, the
recognizer does not predict at that level for that timestep.

It is important to note that using this prediction algorithm
means that it is possible that, for a given timestep, subgoal
schemas may not be predicted at all depths. It is even possi-
ble (and actually occurs in our experiments described below)
that the depths at which predictions occur can be discontin-
uous, e.g., a prediction could occur at levels 4, 3, and 1, but
not 2 or 0. We believe this to be a valuable feature as sub-
goals at different levels may be more certain than others.

3Although it would be possible to set a separate threshold for
each depth, our results below are based on using a single threshold
for all levels.

Complexity

The runtime complexity of the recognizer for each new ob-
served timestep is the same as that of forward probability
extension in the CHMM:O(D|S|2), whereD is depth of
the deepest possible goal chain in the domain (not including
the observed action), andS is the set of possible subgoals (at
any level). Thus the algorithm is linear in the depth of the
domain and quadratic in the number of possible subgoals in
the domain.

Experiments
We now report on our experiments using the hierarchical
goal schema recognizer. For the experiments, we used 4500
plan sessions from the Monroe corpus for training and the
remaining 500 for testing. This is the same data used in
our experiments on top-goal schema recognition (Blaylock
& Allen 2005b) and allows us to make comparisons below.

Before we describe the experiments and their results,
however, we briefly describe the metrics we use to report
results.

Metrics

We report results for individual subgoal depths, as well as
totals.4 For each depth, we use the same metrics introduced
in our previous work (Blaylock & Allen 2005b) to measure
results. These were introduced to try to measure the general
requirements of goal recognizers described above.Precision
andrecall report the number of correct predictions divided
by total predictions and total prediction opportunities, re-
spectively. Convergenceandconvergence pointstem from
the fact that, oftentimes, the recognizer will be unsure very
early on in a session, but may at some point ’converge’ on
the correct answer, predicting it from that point on until the
end of the plan session.Convergencemeasures the percent-
age of plan sessions where the correct answer was converged
upon.5 For those plan sessions which converge,convergence
point reports the average action observation after which it
converged, divided by the average number of actions for the
converged sessions. This is an attempt to measure howearly
in the plan session the recognizer was able to zero in on the
correct answer. In hierarchical recognition, some subgoals
only span one timestep (e.g., they only result in one executed
atomic action), in which case, it does not make sense to re-
port convergence or a convergence point. For all levels, we
only report convergence and convergence point for subgoals
which correspond to at least two timesteps.

Results

The results of the experiment are shown in Table 2. Over-
all, the results are very encouraging with 81.9% precision
and 52.3% recall for 1-best prediction which jumps to 94.9%

4Predictions on “filler” subgoals inserted to make the plan trees
of constant depth were not counted here. See (Blaylock 2005) for
details.

5This essentially measures how manylastpredictions were cor-
rect, i.e., whether weendedpredicting the right answer.

1-best (τ = 0.7) 2-best (τ = 0.95)

level prec. recall conv. conv. pt prec. recall conv. conv. pt
0 85.6% 58.6% 100% 5.2/10.2 90.7% 62.0% 100% 4.9/10.2
1 84.3% 54.8% 71.8% 2.9/6.1 96.1% 77.3% 99.0% 2.3/5.6
2 89.3% 46.3% 45.8% 3.4/4.7 93.0% 64.3% 84.4% 3.5/4.8
3 74.8% 42.8% 41.2% 2.7/3.5 97.6% 80.1% 99.0% 3.5/4.5
4 78.7% 53.5% 61.8% 3.3/3.7 97.0% 73.2% 100% 3.2/3.8
5 59.3% 46.1% 6.2% 3.8/4.2 99.1% 77.1% 100% 2.0/3.9
6 69.3% 69.3% 0.0% N/A 100% 100% 100% 1.0/4.0
7 95.2% 95.2% N/A N/A 100% 100% N/A N/A
8 100% 100% N/A N/A 100% 100% N/A N/A

Total 81.9% 52.3% 65.0% 3.8/6.8 94.9% 71.4% 95.7% 3.3/6.1

Table 2: Results of the Hierarchical Schema Recognition Experiment

1-best (τ = 0.7) 2-best (τ = 0.95)

level prec. recall conv. conv. pt prec. recall conv. conv. pt
top 95.6% 55.2% 96.4% 5.4/10.2 99.4% 58.7% 99.8% 5.4/10.3

Table 3: (For Comparison) Results of Top-level Goal Schema Recognition (Blaylock & Allen 2005b)

precision and 71.4% recall for 2-best prediction.6 In the 2-
best case, 95.7% of sessions converged on the right answer.
On average, this was after a little more than half of the ac-
tions had been observed.

We will now discuss the various levels in detail, first look-
ing at the results for predicting top-level goal schemas (level
0) and then the other levels.

Top-level Results Results at the top level are also encour-
aging with 85.6% precision and 58.6% recall for 1-best pre-
diction and 90.7% precision and 62.0% recall for 2-best. For
comparison, we reprint the results of our top-level recog-
nizer on the same data set in Table 3.

For recall, convergence, and convergence point, the two
recognizers perform fairly equivalently, both in 1-best and
2-best prediction. Precision, however, is markedly lower in
the hierarchical recognizer, for both the 1-best and 2-best
cases. Whereas precision is 95.6 percent for 1-best in the
flat recognizer, it drops to 85.7 percent for the hierarchical
recognizer. A similar drop in precision from 99.4 percent to
91.5 percent is shown in the 2-best case.

Although there seem to be several factors involved in this
drop, it is perhaps most important to mention two. First is
the loss of true bigram information within the hierarchical
recognizer. In the hierarchical recognizer, the top-levelgoal
is predicted based on predictions at the next immediate sub-
goal level (level 1) as opposed to directly from the action
observation level as is the top-level goal recognizer. Con-
verting a plan tree into a sequence of goal chains looses ex-
plicit information about the actual previous subgoal.

6Due to the lack of common test sets and reporting metrics in
the field, it is difficult to gauge these results wrt. related work. We
hope our recent work on creating plan corpora (Blaylock & Allen
2005a) and reporting metrics (Blaylock & Allen 2005b) will help
alleviate this problem.

Secondly, and most importantly, a direct comparison of
algorithm performance is difficult because the hierarchical
recognizer is doing much more than simple top-level goal
classification as was done in the top-level goal recognizer.
Arguably, we could improve performance by using the hi-
erarchical recognizer for the subgoal levels and then the
flat recognizer for top-level recognition, although this then
looses the generalization that the hierarchical recognizer can
also handle cases where several top-level goals are pursued
serially.

Other Levels Results at lower levels for 1-best prediction
are on average not as good as those at the top level. The
foremost reason is that there is actually more competition
at lower levels. At lower levels, more subgoals are pos-
sible, whereas only the 10 top-level schemas are possible
at level 0. Also, there are several lower-level subgoals per
level throughout a goal session. Only one top-level goal
makes the transition probabilities much simpler at the top
level as well (basically transition probabilities are 1 between
the same schemas and 0 between any others). This seems
to especially account for the very low convergence numbers
for levels 5 and 6 (6.2% and 0.0%, respectively), where there
were only a few data points and these were recognized well
at the start of their interval, but not at the end. (In 2-best
prediction both of these move to 100% convergence.)

That said, in the 1-best case, recognition results are fairly
good for levels 1, 2, 7, and 8, although there is a trough
between them. A partial explanation is that, at higher levels,
there are less competitors. Thus, as we move to lower levels,
things become harder to predict. At the same time, the lower
we go, the closer to the observed output, and thus closer to
certain information. Thus, the last two levels have very good
precision and recall because they are so closely related to
the observed action. (Levels 7 and 8 contained no subgoals

which span more than one timestep, hence convergence and
convergence point are not reported.)

It appears that in the middle (e.g., levels 3-6), the recog-
nizer tends to not to distinguish well among close competi-
tors. That this is the case can be shown by looking at the
2-best case, where all levels move to the 90’s or 100 percent
for precision and also improve dramatically in recall.

Related Work
Relatively little work has been done on hierarchical goal
schema recognition. Pynadath (Pynadath & Wellman 2000)
casts hierarchical schema recognition as parsing using prob-
abilistic state-dependent grammars. Online recognition is
performed by converting the grammar into a dynamic belief
network (DBN) with a special update algorithm. For par-
tially observable states, however, the runtime complexityis
quadratic in the number of states consistent with observa-
tion, which grows exponentially with the number of unob-
servable state nodes.

Bui et al. (Bui, Venkatesh, & West 2002) use Abstract
Hidden Markov Models (AHMMs) (described above) to
model plan execution for recognition. Recognition is done
using a DBN, but because this is intractable, Bui uses a
method called Rao-Blackwellization (RB) to estimate one
group of variables and do exact inference on the others.
Given knowledge about the state of the world as well as the
ending time of upper-level subgoals, this method can make
inference with AHMMs tractable.

The recognizer was used in a system which tracked hu-
man behavior in an office building at three abstract levels,
representing individual offices at the bottom level, then of-
fice groups, then finally the entire building. Policies at each
level were defined specific to each region (for example the
policy (behavior) of using the printer in the printer room).
In this model, only certain policies are valid in a given state
(location), which helps reduce the ambiguity. The domain
was modeled such that lower-level policies become impos-
sible as the agent moves to another room, which makes it
fairly clear when they then terminate.

Although the algorithm was successful for this tracking
task, it is unclear how effective estimation of policy termina-
tion would be in general (e.g., when most policies are valid
in most states).

Our recognizer, on the other hand, explicitly simplifies
away from the issue of subgoal ending times by forcing each
level of the CHMM to transition at every time step. In doing
so, we lose certain information about tree structure, whichis
retained in the approach of Bui et al. — specifically, knowl-
edge about the previous subgoal. Consider again the plan
tree in Figure 1 along with its corresponding CHMM (in
Figure 2). At depth 1 (i.e., the first level below the top-level
goal), two subgoals are executed:S1:1 andS1:2. This transi-
tion occurs after timestep 3, and at this point the information
that the preceding subgoal wasS1:1 can be used in making
predictions at timestep 4. In subsequent timesteps, however,
we lose this information because of the Markovian assump-
tion. Thus, at timestep 5, the HMM at level 1 thinks that the
previous subgoal wasS1:2, although the lastactualsubgoal
wasS1:1. This gives us a win in runtime, however, and, with

the use of bigram information from observed actions, does
not seem to affect recognition much in the Monroe domain.

Conclusions and Future Work
The recognizer we have described here has two nice features
(which correspond to the two desired traits of goal recogniz-
ers described above). First, recognition is fast and scalable,
running in time quadratic to the number of possible goal
schemas. Second, the recognizer supports partial goal recog-
nition, allowing it to make predictions earlier in the agent’s
task execution. It supports n-best prediction at each subgoal
level as well as non-prediction at subgoal levels about which
it is not yet confident.

We have recently incorporated a variant of our top-level
goal parameter recognizer (Blaylock & Allen 2005b) into
the schema recognizer to create aninstantiatedhierarchical
goal recognizer which we plan to report soon.

Acknowledgments
We would like to thank the reviewers for their helpful com-
ments. This material is based upon work supported by
a grant from DARPA under grant number F30602-98-2-
0133; two grants from the National Science Foundation
under grant number IIS-0328811 and grant number E1A-
0080124; ONR contract N00014-06-C-0032; and the EU-
funded TALK project (IST-507802). Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the above-mentioned organizations.

References
Blaylock, N., and Allen, J. 2005a. Generating artificial
corpora for plan recognition. InUser Modeling 2005.
Blaylock, N., and Allen, J. 2005b. Recognizing instanti-
ated goals using statistical methods. In Kaminka, G., ed.,
Workshop on Modeling Others from Observations.
Blaylock, N. J. 2005. Towards tractable agent-based dia-
logue. Technical Report 880, University of Rochester, De-
partment of Computer Science. PhD thesis.
Bui, H. H.; Venkatesh, S.; and West, G. 2002. Policy
recognition in the Abstract Hidden Markov Model.Journal
of Artificial Intelligence Research17.
Charniak, E. 1997. Statistical techniques for natural lan-
guage parsing.AI Magazine18(4).
Kautz, H. A. 1987. A formal theory of plan recogni-
tion. Technical Report 215, University of Rochester, De-
partment of Computer Science. PhD thesis.
Murphy, K. P., and Paskin, M. A. 2001. Linear time infer-
ence in hierarchical HMMs. InNIPS-01.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system.Journal of Artificial Intelligence Research20:379–
404.
Pynadath, D. V., and Wellman, M. P. 2000. Probabilistic
state-dependent grammars for plan recognition. InUAI-
2000.

