
SP2-1

CAP6938-02
Plan, Activity, and Intent Recognition

Lecture 10:
Sequential Decision-Making Under

Uncertainty (part 1)
MDPs and POMDPs

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu

SP2-2

Reminder
• Turn-in questionnaire
• Homework (due Thurs):

– 1 page describing the improvements that you
plan to make to your project in the next half of
the semester

SP2-3

Model: POMDP

• Applications?
• Strengths?
• Weaknesses?
• How does a POMDP differ from an HMM?

SP2-4

Model: POMDP
• Applications?

– Human-robot interaction
– Dialog management
– Assistive technology
– Agent interaction

• Strengths?
– Integrates action selection directly with state estimation

• Weaknesses?
– Intractable for real-world domains

• How does a POMDP differ from an HMM?
– MDP and POMDP are for calculating optimal decisions from sequences

of observations;
– HMMs are for recognizing hidden state.from sequences of observations.
– MDP and POMDP: actions and rewards

SP2-5

Markov Decision Processes

• Classical planning models:
– logical representation of transition systems
– goal-based objectives
– plans as sequences

• Markov decision processes generalize this view
– controllable, stochastic transition system
– general objective functions (rewards) that allow

tradeoffs with transition probabilities to be made
– more general solution concepts (policies)

SP2-6

Markov Decision Processes
• An MDP has four components, S, A, R, Pr:

– (finite) state set S (|S| = n)
– (finite) action set A (|A| = m)
– transition function Pr(s,a,t)

• each Pr(s,a,-) is a distribution over S
• represented by set of n x n stochastic matrices

– bounded, real-valued reward function R(s)
• represented by an n-vector
• can be generalized to include action costs: R(s,a)
• can be stochastic (but replacable by expectation)

• Model easily generalizable to countable or
continuous state and action spaces

SP2-7

System Dynamics

Finite State Space S
State s1013:

Loc = 236
Joe needs printout
Craig needs coffee
...

SP2-8

System Dynamics

Finite Action Space A
Pick up Printouts?
Go to Coffee Room?
Go to charger?

SP2-9

System Dynamics

Transition Probabilities: Pr(si, a, sj)

Prob. = 0.95

SP2-10

System Dynamics

Transition Probabilities: Pr(si, a, sk)

Prob. = 0.05

s1 s2 ... sn
s1 0.9 0.05 ... 0.0
s2 0.0 0.20 ... 0.1

sn 0.1 0.0 ... 0.0

...

SP2-11

Reward Process

Reward Function: R(si)
- action costs possible

Reward = -10

R
s1 12
s2 0.5

sn 10

...
...

SP2-12

Assumptions

• Markovian dynamics (history independence)
– Pr(St+1|At,St,At-1,St-1,..., S0) = Pr(St+1|At,St)

• Markovian reward process
– Pr(Rt|At,St,At-1,St-1,..., S0) = Pr(Rt|At,St)

• Stationary dynamics and reward
– Pr(St+1|At,St) = Pr(St’+1|At’,St’) for all t, t’

• Full observability
– though we can’t predict what state we will reach when

we execute an action, once it is realized, we know
what it is

SP2-13

Policies
• Nonstationary policy

– π:S x T → A
– π(s,t) is action to do at state s with t-stages-to-go

• Stationary policy
– π:S → A
– π(s) is action to do at state s (regardless of time)
– analogous to reactive or universal plan

• These assume or have these properties:
– full observability
– history-independence
– deterministic action choices

• MDP and POMDPs are methods for calculating
the optimal lookup tables (policies).

SP2-14

Value of a Policy
• How good is a policy π? How do we measure

“accumulated” reward?
• Value function V: S →ℝ associates value

with each state (sometimes S x T)
• Vπ(s) denotes value of policy at state s

– how good is it to be at state s? depends on
immediate reward, but also what you achieve
subsequently

– expected accumulated reward over horizon of
interest

– note Vπ(s) ≠ R(s); it measures utility

SP2-15

Value of a Policy (con’t)
• Common formulations of value:

– Finite horizon n: total expected reward given
π

– Infinite horizon discounted: discounting keeps
total bounded

SP2-16

Value Iteration (Bellman 1957)
• Markov property allows exploitation of DP

principle for optimal policy construction
– no need to enumerate |A|Tn possible policies

• Value Iteration

)'(')',,Pr(max)()(1 ss VsassRsV kk

a
∑ −⋅+=

ssRsV ∀=),()(0

)'(')',,Pr(maxarg),(* 1 ss Vsasks k

a
∑ −⋅=π

Vk is optimal k-stage-to-go value function

Bellman backup

SP2-17

Value Iteration

0.3

0.7
0.4

0.6

s4

s1

s3

s2

Vt+1Vt

0.4

0.3

0.7

0.6
0.3

0.7
0.4

0.6

Vt-1Vt-2

0.7 Vt+1 (s1) + 0.3 Vt+1 (s4)
0.4 Vt+1 (s2) + 0.6 Vt+1 (s3)

Vt(s4) = R(s4)+max {
}

SP2-18

Value Iteration

s4

s1

s3

s2

0.3

0.7
0.4

0.6
0.3

0.7
0.4

0.6
0.3

0.7
0.4

0.6

Vt+1VtVt-1Vt-2

Πt(s4) = max { }

SP2-19

Value Iteration

SP2-20

Complexity

• T iterations
• At each iteration |A| computations of n x n

matrix times n-vector: O(|A|n3)
• Total O(T|A|n3)
• Can exploit sparsity of matrix: O(T|A|n2)

SP2-21

MDP Application: Electric Elves

– Calculating optimal transfer of control policy in an adjustable autonomy
application

– Dynamically adjusts users’ meetings
– State of world is known; future actions of users are unknown

SP2-22

Recognizing User Intent

MDP POMDP

SP2-23

POMDPs
• Partially observable Markov Decision Process (POMDP):

– a stochastic system Σ = (S, A, P) as before
– A finite set O of observations

• Pa(o|s) = probability of observation o in state s after executing action a
– Require that for each a and s, ∑o in O Pa(o|s) = 1

• O models partial observability
– The controller can’t observe s directly; it can only observe o
– The same observation o can occur in more than one state

• Why do the observations depend on the action a? Why do we have
Pa(o|s) rather than P(o|s)?
– This is a way to model sensing actions, which do not change the state

but return information make some observation available (e.g., from a
sensor)

SP2-24

Example of a Sensing Action
• Suppose there are a state s1 action a1, and observation

o1 with the following properties:
– For every state s, Pa1(s|s) = 1

• a1 does not change the state
– Pa1(o1|s1) = 1, and

Pa1(o1|s) = 0 for every state s ≠ s1
• After performing a1, o1 occurs if and only if we’re in state s1

• Then to tell if you’re in state s1, just perform action a1
and see whether you observe o1

• Two states s and s’ are indistinguishable if for every o
and a, Pa(o|s) = Pa(o|s’)

SP2-25

Belief States
• At each point we will have a probability distribution b(s)

over the states in S
– b(s) is called a belief state (our belief about what state we’re in)

• Basic properties:
– 0 ≤ b(s) ≤ 1 for every s in S
– ∑s in S b(s) = 1

• Definitions:
– ba = the belief state after doing action a in belief state b

• Thus ba(s) = P(in s after doing a in b) = ∑s' in S Pa(s|s') b(s')
– ba(o) = P(observe o after doing a in b)

= ∑s in S Pa(o|s) b(s)
– ba

o(s) = P(in s after doing a in b and observing o)

Marginalize over states

Belief states are n-dimensional vectors representing the probability of being in
every state..

SP2-26

Belief States (Continued)
• Recall that in general, P(x|y,z) P(y|z) = P(x,y|z)
• Thus

Pa(o|s) ba(s)
= P(observe o after doing a in s) P(in s after doing a in b)
= P(in s and observe o after doing a in b)

• Similarly,
ba

o(s) ba(o)
= P(in s after doing a in b and observing o)

* P(observe o after doing a in b)
= P(in s and observe o after doing a in b)

• Thus ba
o(s) = Pa(o|s) ba(s) / ba(o)

• Can use this to distinguish states that would otherwise be
indistinguishable

Formula for updating belief state

SP2-27

Example
• Robot r1 can move

between l1 and l2
– move(r1,l1,l2)
– move(r1,l2,l1)

• There may be a container c1
in location l2
– in(c1,l2)

• O = {full, empty}
– full: c1 is present
– empty: c1 is absent
– abbreviate full as f, and

empty as e

a = move(r1,l1,l2)

state ba

ba

ba

ba

ba

b

b

b

b

state b

SP2-28

• Neither “move” action
returns useful observations

• For every state s and for
a = either “move” action,
– Pa(f|s) = Pa(e|s) =

Pa(f|s) = Pa(e|s) = 0.5

• Thus if there are no other
actions, then
– s1 and s2 are

indistinguishable
– s3 and s4 are

indistinguishable

a = move(r1,l1,l2)

state ba

ba

ba

ba

ba

b

b

b

b

state b
Example

(Continued)

SP2-29

• Suppose there’s a sensing
action see that works
perfectly in location l2
Psee(f|s4) = Psee(e|s3) = 1
Psee(f|s3) = Psee(e|s4) = 0

• see does not work
elsewhere
Psee(f|s1) = Psee(e|s1)

= Psee(f|s2) = Psee(e|s2) = 0.5

• Then
– s1 and s2 are still

indistinguishable
– s3 and s4 are now

distinguishable

Example
(Continued)

a = move(r1,l1,l2)

state ba

ba

ba

ba

ba

b

b

b

b

state b

SP2-30

• By itself, see doesn’t tell
us the state with certainty
– bsee

e(s3)
= Psee(e|s3)

* bsee(s3) / bsee(e)
= 1 * 0.25 / 0.5 = 0.5

• If we first do a=move(l1,l2) then do see,
this will tell the state with certainty
– Let b' = ba

– b'see
e(s3)

= Psee(e|s3)
* b'see(s3) / b'see(e)

= 1 * 0.5 / 0.5 = 1

Example (Continued)

a = move(r1,l1,l2)

state b' = ba

ba

ba

ba

ba

b

b

b

b

state b

SP2-31

a = move(r1,l1,l2)

state b' = ba

ba

ba

ba

ba

b

b

b

b

state b

Modified
Example

• Suppose we know the
initial belief state is b

• Policy to tell if there’s a
container in l2:
– π = {(b, move(r1,l1,l2)),

(b', see)}

SP2-32

Solving POMDPs

• Information-state MDPs
– Belief states of POMDP are states in new

MDP
– Continuous state space
– Discretise

• Policy-tree algorithms

SP2-33

Policy Trees

• Policy tree: an agent’s non-stationary t-step policy
• Tree(a,T) – create a new policy tree with action a at root and observation z=T(z)
• Vp – vector for value function for policy tree p with one component per state
• Act(p) – action at root of tree p
• Subtree(p,z) – subtree of p after obs z
• Stval(a,z,p) – vector for probability-weighted value of tree p after a,z

SP2-34

Application: Nursebot

• Robot assists elderly patients
• Model uncertainty about the user’s dialog and position
• Exploit hierarchical structure to handle large state space

SP2-35

Value Functions

2-state 3-state

SP2-36

References
• Most slides were taken from Eyal Amir’s course, CS 598,

Decision Making under Uncertainty (lectures 12 and 13)
• L. Kaebling, M. Littman, and A. Cassandra, Planning and

Acting in Partially Observable Stochastic Domains,
Artificial Intelligence, Volume 101, pp. 99-134, 1998

