-~

_

CAP6938-02

Lecture 10:

Sequential Decision-Making Under
Uncertainty (part 1)

MDPs and POMDPs

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu

~

Plan, Activity, and Intent Recognition

/

SP2-1

Reminder

* Turn-in questionnaire

« Homework (due Thurs):

— 1 page describing the improvements that you
plan to make to your project in the next half of
the semester

SP2-2

Model: POMDP

Applications?

Strengths?

Weaknesses?

How does a POMDP differ from an HMM?

SP2-3

Model: POMDP

Applications?

— Human-robot interaction

— Dialog management

— Assistive technology

— Agent interaction

Strengths?

— Integrates action selection directly with state estimation

Weaknesses?
— Intractable for real-world domains

How does a POMDP differ from an HMM?

— MDP and POMDP are for calculating optimal decisions from sequences
of observations;

— HMNWMs are for recognizing hidden state.from sequences of observations.
— MDP and POMDP: actions and rewards

SP2-4

Markov Decision Processes

« Classical planning models:
— logical representation of transition systems
— goal-based objectives
— plans as sequences

« Markov decision processes generalize this view
— controllable, stochastic transition system

— general objective functions (rewards) that allow
tradeoffs with transition probabilities to be made

— more general solution concepts (policies)

SP2-5

Markov Decision Processes

 An MDP has four components, S, A, R, Pr:
— (finite) state set S (|S]| = n)
— (finite) action set A (JA| = m)
— transition function Pr(s,a,t)

« each Pr(s,a,-) is a distribution over S
 represented by set of n x n stochastic matrices

— bounded, real-valued reward function R(s)
« represented by an n-vector
 can be generalized to include action costs: R(s,a)
 can be stochastic (but replacable by expectation)
* Model easily generalizable to countable or
continuous state and action spaces

SP2-6

System Dynamics

Finite State Space

%afe $1013:)

Loc = 236
Joe needs printout
Craig needs coffee

_/

’

eIy

System Dynamics

Finite Action Space A
Pick up Printouts?
Go to Coffee Room:

SP2-8

System Dynamics

Transition Probabilities: Pr(si, a, sj)

Prob. = 0.95

ey

I
s: /
o=

Cﬁf

SP2-9

System Dynamics

Transition Probabillities: Pr(sj, a, sk)

S1S2 ... Sn
09005 00
0.00.20 0.1
0100 00
Calky
@/j

SP2-10

Reward Process

Reward Function: R(s;)

- action costs possible R
s1]12

Reward = -10 s210.5
z Sn| 10

AN
\/\ S

S\ 41

= B
‘ = G
\‘g& %A}ﬁ\

SP2-11

Ealky

Assumptions

Markovian dynamics (history independence)
— Pr(Stt1|At, St At-1,St1 S0) = Pr(St+1]At,St)
Markovian reward process

— Pr(RY|AL, St At1, St S0) = Pr(RYAL,St)
Stationary dynamics and reward

— Pr(St*1]At,St) = Pr(St+1|At,St) for all t, t’

Full observability

— though we can't predict what state we will reach when
we execute an action, once it is realized, we know
what it is

SP2-12

Policies

Nonstationary policy
-TSXT - A
- T1(S,1) is action to do at state s with t-stages-to-go

Stationary policy

- TS - A

- T1(S) is action to do at state s (regardless of time)
— analogous to reactive or universal plan

These assume or have these properties:
— full observability

— history-independence

— deterministic action choices

MDP and POMDPs are methods for calculating
the optimal lookup tables (policies).

SP2-13

Value of a Policy

 How good is a policy 117 How do we measure

“accumulated” reward?
 Value function V: S —R associates value
with each state (sometimes S x T)

* Vn(s) denotes value of policy at state s

— how good is it to be at state s? depends on
Immediate reward, but also what you achieve

subsequently
— expected accumulated reward over horizon of
iInterest

— note Vx(s) = R(s); it measures utility
SP2-14

Value of a Policy (con't)

« Common formulations of value:

— Finite horizon n: total expected reward given
T

— Infinite horizon discounted: discounting keeps
total bounded

SP2-15

Value Iteration (Bellman 1957)

« Markov property allows exploitation of DP
principle for optimal policy construction

— no need to enumerate |A|Tn possible policies
* Value lteration

VOo(s)=R(s), Vs

V¥ (s) = R(s) + max ZS.(Pr(s, a,s')-V* (s
7*(s,k) =argmax) .Pr(s,a,s') -V (5"

d
Vk is optimal k-stage-to-go value function

Bellman backup

SP2-16

Value lteration

Vi-2 Vi-1 Vi Vil
O >0 >0 > sl

NN
dz o

03 O 03 >O s

vi(s4) = R(s4)+max { 0.7 V*1 (s1) + 0.3 vI*1 (s4) W@
0.4 vi*l (s2) + 0.6 VI*1 (s3) } I

SP2-17

Value lteration

V-2 Vi-1 ;
@), @)

> > >

O 0.3 >0 0.3 O 0.3 >Q sé

I17(s4) = max (@ W}

SP2-18

Value lteration

Vi(s) := 0 for all s
t:=1
loop
ti=t+1
loop for all s € & and for all « € A
Q7 (s) := R(s,a) +v 2 pes T(s,a,8)Vi_1(s)
Vi(s) := max, Q7(s)
end loop
until [Vi(s) — Vioi(s)| <eforall se 8§

SP2-19

Complexity

T iterations

At each iteration |A| computations of n x n
matrix times n-vector: O(|A|n3)

Total O(T|A|n3)
Can exploit sparsity of matrix: O(T|A|n?2)

SP2-20

MDP Application: Electric Elves

— Calculating optimal transfer of control policy in an adjustable autonomy
application

— Dynamically adjusts users’ meetings
— State of world is known; future actions of users are unknown

SP2-21

Recognizing User Intent

AGENT [SE n

'K WORLD | @ Action
I,f — Observation
) — \
|

AGENT

MDP POMDP

SP2-22

POMDPs

« Partially observable Markov Decision Process (POMDP):
— a stochastic system X = (S, A, P) as before

— A finite set O of observations
» P_,(o|s) = probability of observation o in state s after executing action a

— Require that foreach aand s, ., oP,(0|s) =1

* O models partial observability
— The controller can’t observe s directly; it can only observe o
— The same observation o can occur in more than one state

« Why do the observations depend on the action a? Why do we have
P_(o|s) rather than P(o|s)?
— This is a way to model sensing actions, which do not change the state

but return information make some observation available (e.g., from a
sensor)

SP2-23

Example of a Sensing Action

Suppose there are a state s, action a,, and observation
0, with the following properties:
— For every state s, Pa,(s|s) = 1
+ a, does not change the state
— Pa,(04/s4) =1, and
Pa,(04|s) = O for every state s # s,
- After performing a,, o, occurs if and only if we're in state s,

Then to tell if you're in state s,, just perform action a,
and see whether you observe 0,

Two states s and s’ are indistinguishable if for every o
and a, P,(o|s) = P,(o|s’)

SP2-24

Belief States

« At each point we will have a probability distribution b(s)

over the states in S

— b(s) is called a belief state (our belief about what state we're in)
« Basic properties:

— 0<Db(s)s1foreverysin$S

— 2sins B(S) =1
* Definitions:

— b, = the belief state after doing action a in belief state b

» Thus b (s) = P(in s after doing ain b) = > .. s P,(s|s') b(s')
— b,(0) = P(observe o after doingain b) Marginalize over states

_ZSIHS a(OlS) ()

— b_°(s) = P(in s after doing a in b and observing 0)

Belief states are n-dimensional vectors representing the probability of being in
every state.. SP2-25

Belief States (Continued)

Recall that in general, P(x|y,z) P(y|z) = P(x,y|z)

Thus

P,(0]s) b.(s)
= P(observe 0 after doing a in s) P(in s after doing a in b)
= P(in s and observe o0 after doing a in b)

Similarly,
b,2(s) b,(0)
= P(in s after doing a in b and observing 0)
* P(observe o after doing a in b)
= P(in s and observe o0 after doing a in b)
Thus b,°(s) = P,(o|s) b,(s)/ b,(0) Formula for updating belief state

Can use this to distinguish states that would otherwise be
indistinguishable

SP2-26

belief state b

at(r1,11) - at(r1,12)

Exam ple b(s2)=0.5 %9':::;: T~ 3) b(s3)=0

——_'_'_

Robot r1 can move bf_ST]:D.E_@/“"’_ ““—ﬂ-._) b(s4)=
between 11 and 12 —
E!.H:ﬂ ..H} Elt r1, |E

— move(r1,11,12) in(c1.12) |n(c1 |2}
— move(r1,12,11)
There may be a container c
in location 12
— in(c1,12) :
belief state b,

a = move(r1,I1,12)

O = {tull, empty} at(r1,11) - at(r1.12)

— full: c1is p.resent b, (s2)=0(52 — @b (s3)=0.5
— empty: c1 is absent T —
— abbreviate full as f, and

empty as e b, (s1)= DO_/f t\)b _(s4)=0.5

at(r1,11) at(r1, |E
in(c1,12) in{c1 |2}

Example
(Continued)

Neither “move” action
returns useful observations

For every state s and for
a = either “move” action,
— P.(fls) = P(els) =
P.(fls) =P, (e|s) = 0.5

Thus if there are no other
actions, then

— s1and s2 are
indistinguishable

— s3 and s4 are
indistinguishable

belief state b

at(r1.11) at(r1.12)

b(s2)=0. EWD"’ i (23 b(s3)=0
b(s1)= DEQ/ m\)bm =0
at(r1,11) o at(r1,12)
in(c1,12) |n(c1 IE}
a = move(r1,i1,12)
\
belief state b,
at(r1,11) e at(r1.,12)
b.(s2)=0e2 T @b (s3)=0.5
§ NS TT— —_
b,(s1)= /D/f f’” b,(s4)=0.5
at(r1,11) at(r1 .|E;'l
in(c1,12) in{c1,12)

belief state b
Exam ple at{ﬂ 1 } - at(r1,12)

J— ey

(Continued) b(s2)= DE“\E R b(s3)=0
« Suppose there’s a sensmg _
| =0.5, — . b 4)=0
action see that works . "@%H____ \) h
perfectly in Iocatlon 12 at(r1,l1) at(r1,12)
P (f|S4) _ (e|33) _ 1 in(c1,12) m(m IE}
Psee(flss) see(e|S4)
« see does not work a = move(r1,I1,12)
elsewhere \
See(f|31) P...(e]s1) belief state b,
see(flsz) see(elsz) =0.5 at(r1,11) - at(r1,12)
« Then b.(s2)=0(s2 @b (s3)=0.5
N T —\
— s1 and s2 are still
indistinguishable e I b (64120 5
"’:1 — T a|:5 :|= _
— s3 and s4 are now) - D

diStingUiShable Ell r1, |'| E!_T_l[ﬂ .|E'}
in(c1,12) in{c1,12)

belief state b

Example (Continued) artly)y atrR)
blth 0.9 SEHHTFJ - g3 b[53}=[}

‘—\— —
——— ™

« By itself, see doesn't tell
us the state with certainty

~ bo(s3) s Q ()P

= Psee(€[S3) at(r1.l1) at(r1,12)
*D0o(53) / Do €) n(c1.12 et
=1*0.25/05=0.5
* Itwe first do a=move(l1,I2) then do see, a = move(r1 11,12)
this will tell the state with certainty '
- Letb' =D, belief state b' = b,
¢(s3
_Sgesei(el)33) at(r1l) at(r1,12)
: b'see(ss)/b'see(e) bal:SE:l:ﬂ:\E? — "’F@b S0
=1*05/05=1
b,(s1) Df’)f - r” b,(s4)=0.5
at(r1,11) _P at(r1 .|E;'l

in(c1,12) in{c1,12)

belief state b

Modified atm o at(r1,12)
b(s2)= 0.5/ E 3 1b(s3)=0
Example O C
b(s1)=0. EO/ - “*——ﬂ..\)bls-i
_Sl_Jppose_ we knovy the Ay e
Initial belief state is b in(c1.12) In(m IE}
* Policy to tell if there’s a
container in 12: a = move(r1,11,12)
— 11 = {(b, move(r1,I1,12)), \
(b', see)} belief state b' = b,
at(r1,11) - at(r1,12)
ba{sz;ca-\fg ‘::%_ f@b (s3)=0.5
b,(s1)= /fo r’ b, (s4)=0.5

at(r1,11) at(r1 .|E;'l
in(c1,12) in{c1,12)

Solving POMDPs

* |Information-state MDPs

— Belief states of POMDP are states in new
MDP

— Continuous state space
— Discretise

* Policy-tree algorithms

SP2-32

Policy Trees

t steps to go

t-1 steps to go

L] L L]
e 2 steps to go
01 O]i = P B
- » n
e e e 1 steps to go

Policy tree: an agent’s non-stationary t-step policy

Tree(a,T) — create a new policy tree with action a at root and observation z=T(z)
Vp — vector for value function for policy tree p with one component per state
Act(p) — action at root of tree p

Subtree(p,z) — subtree of p after obs z

Stval(a,z,p) — vector for probability-weighted value of tree p after a,z

SP2-33

Application: Nursebot

Updates Plan
Manager

Client Senzor

Modeler \\Dm
Inferred Activity /

Chient".
Model
b

Personal
Cognitive
Orthodic

« Robot assists elderly patients
« Model uncertainty about the user’s dialog and position
« Exploit hierarchical structure to handle large state space

SP2-34

Value Functions

2-State

SP2-35

3-Sstate

References

* Most slides were taken from Eyal Amir’s course, CS 598,
Decision Making under Uncertainty (lectures 12 and 13)

+ L. Kaebling, M. Littman, and A. Cassandra, Planning and
Acting in Partially Observable Stochastic Domains,
Artificial Intelligence, Volume 101, pp. 99-134, 1998

SP2-36

