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In a dynamic, multi-agent environment, an automated intelligent agent is often faced with the
possibility that other agents may instigate events that hinder or help the achievement of its own
goals. To act intelligently in such an environment, an automated agent needs an event tracking
capability to continually monitor the occurrence of such events and the temporal relationships
among them. This capability enables an agent to infer the occurrence of important unobserved
events as well as to obtain a better understanding of the interaction among events. This paper
focuses on event tracking in one complex and dynamic multi-agent environment: the air-combat
simulation environment. It analyzes the challenges that an automated pilot agent must face when
tracking events in this environment. This analysis reveals three new issues that have not been
addressed in previous work in this area: (i) tracking events generated by agents’ flexible and reactive
behaviors, (ii) tracking events in the context of continuous agent interactions, and (iii) tracking
events in real-time. The paper proposes one solution to address these issues. One key idea in
this solution is that the (architectural) mechanisms that an agent employs in generating its own
flexible and reactive behaviors can be used to track other agents’ flexible and reactive behaviors
in real-time. A second key idea is the use of a world-centered representation for modeling agent
interactions. The solution is demonstrated using an implementation of an automated pilot agent.

Key words: Event tracking, plan recognition, multi-agent systems, real-time performance,
real-world applications

1. INTRODUCTION

An automated intelligent agent pursuing its goals in a dynamic, multi-agent en-
vironment often encounters a large number of events that significantly impact the
actions it needs to take to achieve its goals. Some of these events may be instigated
by the agent itself. Others may be instigated by other agents as they pursue their
own goals, which may conflict or coincide with the goals of this agent. As time
marches on, these events rapidly continue to unfold.

To achieve its goals in such an environment, the automated agent needs to mon-
itor both the occurrence of events in its world and the temporal relationships among
them (e.g., the particular sequence in which they occur). This information is essen-
tial for reacting intelligently to the on-going events, particularly since it enables an
agent to infer the occurrence of important unobserved events. Consider the following
example from the domain of simulated tactical air-combat(Tambe et al. 1995). This
domain is based on a real-world simulator that has been commercially developed for
the military(Calder et al. 1993). The automated agents are to act as automated pi-
lots for the simulated aircraft in this domain. These automated pilots will take part
in exercises with human fighter pilots, where they will aid in tactics development
and training. For effective performance in this domain, these automated pilots must,
among other things, continually monitor events in their environment. For instance,
one crucial event is an opponent’s firing a missile at an automated pilot’s aircraft,
threatening its very survival. Yet, the automated pilot cannot directly see the mis-
sile until it is too late to evade it. Fortunately, the automated pilot can monitor the
opponent’s sequence of maneuvers, and infer the possibility of a missile firing based
on them, as shown in Figure 1. The automated pilot is in the dark-shaded aircraft
and its opponent in the light-shaded one.

© 1995 Blackwell Publishers, 238 Main Street, Cambridge, MA 02142, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.



2 COMPUTATIONAL INTELLIGENCE

Yot s g - gl

@ (b) (© (d) (e)

FiGure 1. A portion of an air-combat simulation scenario: the automated pilot is in the
dark-shaded aircraft and its opponent in the light-shaded one.

Suppose, initially, the two aircraft are positioned as shown in Figure 1-a. The
range (distance) between the two aircraft is more than 10-15 miles, so they can
only see each other on radar. The two are headed on a collision course, i.e., if they
continue to fly straight, they will collide at the point shown by x. In the figure, a
dashed line across an aircraft’s nose indicates its direction of turn. Thus, in Figure
1-a, the opponent has just turned her aircraft to be on the collision course. Suppose
the automated pilot observes this turn on its radar. Given that the collision course
maneuver is often used as the quickest way to get to one’s missile firing range, the
automated pilot can infer that the opponent is possibly attempting to reach her
missile firing range to fire a missile at it. In Figure 1-b, the automated pilot turns its
aircraft, fifteen degrees to its right. The opponent responds in kind by turning her
aircraft fifteen degrees to her left, so as to remain on collision course. In Figure 1-c,
the opponent reaches her missile range. Here, she turns her aircraft to point straight
at the automated pilot’s aircraft and then fires a radar-guided missile, shown by —.

While the automated pilot can not observe this missile, based on its observation
of the opponent’s turn, it can infer that the opponent may be pointing at it as part
of her missile firing behavior. Unfortunately, at this point, it cannot be certain about
the opponent’s missile firing, at least not to an extent where trained fighter pilots
would infer a missile firing. However, if the opponent subsequently executes an Fpole
maneuver then that considerably increases the likelihood of a missile firing. This
maneuver involves a 25-50 degree turn away from the automated pilot’s aircraft, as
shown in Figure 1-d (this maneuver is executed after firing a missile to provide radar
guidance to the missile, while slowing the closure between the two aircraft). While at
this point the opponent’s missile firing is still not an absolute certainty, its likelihood
is high enough, so that trained fighter pilots react as though a missile has actually
been fired. The automated pilot reacts in a similar manner, by engaging in a missile-
evasion maneuver. This involves turning the aircraft roughly perpendicular to the
missile-flight (Figure 1-e), which causes the aircraft to “drop-off” (become invisible
to) the opponent’s radar. Deprived of radar guidance, the opponent’s missile is
rendered harmless.

The above example illustrates that an automated pilot needs to continually mon-
itor events in its world, such as the opponent’s turns and her (inferred) missile firing
behavior, so as to react to them appropriately. In addition, it is important for the
automated pilot to record the temporal relationship among these events — these
relationships are key in inferring the occurrence of unobserved events such as the
missile firing behavior. In the above example, if the opponent had first performed
an Fpole maneuver, and later turned to collision course to get to her missile firing
position, inferring her missile firing behavior would have been inappropriate.
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We refer to this capability of monitoring events and their temporal relationships
as event tracking. An event here may be considered as any coherent activity over
an interval of time. This event may be a low-level action, such as an agent’s Fpole
turn, or it may be a high-level behavior, such as its missile-firing behavior, possibly
inferred from a sequence of such turns. The event may be internal to an agent, such
as maintaining a goal or executing a plan, or external to it, such as executing an
action. The event may be observed by an agent, or simply inferred. The event may
be instigated by any of the agents in the environment, including the agent tracking
the events, or by none of them (e.g., a lightning bolt). Tracking any one of these
events refers to recording that event in memory, recording the temporal relationship
of that event with other events, and monitoring the progress of that event.

To understand the above in more detail, it is useful to view events and event
tracking from another perspective. In particular, an event £ may be defined as
consisting of a set of sub-events Eq, Ey,...Ey and a set R = {(E; 11 E;), (E; ra Eg)...}
of temporal relationships among the sub-events. The event £ and its sub-events Eq,
Eg, etc. may be any of the variety of event types mentioned earlier (higher/lower-
level, observed /unobserved, etc.), while the temporal relationships in R may be any of
the temporal relationships from Allen’s interval algebra (“before”, “after”, “during”,
etc.)(Allen 1983). For instance, suppose the event £ is the opponent’s missile firing
behavior. In this case, the relevant subevents and their temporal relationships may
be that the opponent first maneuvered to achieve her missile firing position, then
turned to point her aircraft at the automated pilot, and followed that with an Fpole
maneuver, as shown in Figure 1. Tracking £ then refers to tracking the occurrence
of its sub-events and checking if the relationships R hold among these sub-events.

Note that, in general, an event £ or its sub-events need not all be instigated
by a single agent. For example, consider a situation where there are two opponents
attacking the automated pilot’s aircraft, as shown in Figure 2-a. Again, the auto-
mated pilot is in the dark-shaded aircraft, and the opponents are in the light-shaded
aircraft. These opponents are closely coordinating their attack. One method of such
close coordination is shown in Figure 2-b. Here, the opponent closer to the auto-
mated pilot’s aircraft (the lead) leads this attack, while the second opponent, marked
with x (the wingman) just stays close to the lead, and follows her commands. Thus,
as the lead turns to gain positional advantage, the wingman turns in that direction
as well, so as to stay close to the lead. A second method of close coordination is
shown in Figure 2-c. Here, the opponents execute a coordinated pincer maneuver —
as the lead turns in one direction, the wingman turns in the opposite direction, so
as to confuse the automated pilot and attack it from two sides. Other maneuvers
involving close coordination between the two opponents are also possible. Essentially,
these coordinated maneuvers are events where the sub-events are not instigated by
a single agent, e.g., a pincer event consists of two opponents simultaneously turning
in opposite directions around the automated pilot’s aircraft.

Finally, an event may also involve sub-events instigated by the automated pilot
itself. For instance, it is crucial for an automated pilot to check if it fired its missile
at the opponent before the opponent fired a missile at it, or if the two were fired
simultaneously, or if the opponent managed to fire her missile first. Here, the indi-
vidual missile firings are sub-events of a higher-level event that tracks the temporal
relationships among them. Tracking such events enables an agent to obtain a better
understanding of its interactions with other agents, so as to react to them appropri-
ately. In this case, tracking the order of missile firings enables an automated pilot
to determine if it should engage in a missile-evasion maneuver (it may not engage in
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FIiGure 2. Events involving multiple agents: (a) two opponents attacking the automated
pilot’s aircraft; (b) opponents stay close; (c¢) opponents stage a coordinated “pincer”.

this maneuver if it fired its missile first).

Event tracking is closely related to the problem of plan or situation recogni-
tion(Kautz & Allen 1986; Song & Cohen 1991; Dousson, Gaborit, & Ghallab 1993),
the process of inferring an agent’s plan (or a situation) based on observations of
the agent’s actions and the temporal relationships among those actions. The term
event tracking is preferred in this investigation, since it also involves events other than
plans, and since it is a continuous on-going activity, rather than one-shot recognition.
However, more important than the terminology, of course, is gaining a better under-
standing of the nature of this capability. In particular, does the realistic multi-agent
setting of air-combat simulation reveal anything new about event tracking? Given
the complexity of this domain, answering this question in its entirety is beyond the
scope of this single investigation. However, this paper takes a first step by focusing
on the actions and behaviors of one or two opponents as they confront the automated
pilot agent (henceforth referred to as AP). Section 2 illustrates that even within this
restricted context, the air-combat domain brings forth three novel issues in event
tracking: (i) tracking agents’ flexible and reactive behaviors; (ii) tracking events in
the context of continuous agent interactions; (iii) tracking events in real-time.

Section 3 presents the basics of an approach that attempts to address these issues.
The key idea here is that the mechanisms that an agent employs in generating its own
flexible and reactive behaviors can be used to track other agents’ flexible and reactive
behaviors. Section 4 presents important refinements to this basic idea that address
agent interactions, and enable real-time event tracking. The resulting approach is
demonstrated using an implementation of an automated pilot agent for air-combat
simulation. This automated pilot is based on a system called TacAir-Soar(Tambe
et al. 1995), which has been developed within Soar, an integrated problem-solving
and learning architecture(Laird & Rosenbloom 1990; Rosenbloom et al. 1991). This
implementation and its results are discussed in Section 5. Finally, Section 6 presents
a summary and issues for future work.

2. EVENT TRACKING IN AIR-COMBAT SIMULATION

In air-combat simulation, the key issue in event tracking arises from the fact that
this is a dynamic environment involving continuous agent interactions. Agents in this
environment cannot rigidly commit to fixed sequences of actions. Instead, they need
high behavioral flexibility and reactivity in order to achieve their goals. For instance,
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in Figure 1-b, the opponent has to re-orient herself to a new collision course heading
in response to AP’s turn. If AP had turned in the opposite direction, so would have
the opponent. A more complex interaction occurs in Figure 1-e, where AP’s missile
evasion maneuver is a response to the opponent’s overall maneuvers in Figures 1-
a through 1-d, which are identified as part of her missile firing behavior. If AP
had executed this missile evasion maneuver in Figure 1-c, the opponent would have
had to abandon her missile firing maneuvers. This agent interaction also extends to
situations involving more than two aircraft. For instance, in the situation shown in
Figure 2, all three agents — AP, the lead and the wingman — continually influence
each other’s actions and behaviors. If a fourth aircraft joins this combat situation,
then it will also interact with the other aircraft involved in the combat.

This dynamic interaction among the agents leads to the primary issue in event
tracking in this domain: an agent must be able to track highly flexible and reac-
tive behaviors of its opponent(s). A second closely related issue here is that while
tracking its opponents’ behaviors, an agent must also keep track of the appropriate
agent interactions. These agents are not acting in a vacuum, but rather, they are
continuously influencing each other. Without an understanding of these interactions,
an opponent’s actions may lead to unuseful or even misleading interpretations. For
instance, the opponent’s turn in Figure 1-b needs to be tracked as a response to
AP’s own turn. Otherwise, the opponent’s turn may appear meaningless. In other
situations, if the opponent engages in the missile-evasion maneuver, it is important
to track that as a response to AP’s missile firing behavior. Similarly, in Figure 2,
it is important to understand the interaction between the lead and the wingman, to
track the wingman’s actions.

A third related issue here is that event tracking must occur in real-time, and
must not hinder an agent from acting in real-time. For instance, in Figure 1, if AP
does not track the missile firing in real-time or does not react to it in real-time, the
results could be fatal.

A fourth issue relates to tracking events in the presence of ambiguity in an op-
ponent’s behaviors. For instance, consider the opponent’s turn in Figure 1-c. From
AP’s perspective, there is considerable ambiguity about the opponent’s exact ma-
neuver. Clearly, the opponent could be turning to fire a missile. However, it is also
possible that she has decided to run away, and as part of that, she is making a big
180-degree turn, and AP is simply observing the initial portion of that turn. Finally,
it is also possible that due to a glitch in her radar apparatus, she has lost radar
contact with AP, and she is maneuvering to try to regain radar contact. AP must
be able to deal with at least three aspects of such ambiguous situations. First, AP
must be able to represent relevant aspects of such a situation, so that it can continue
to track events as the situation changes. For instance, as the opponent continues her
maneuvers, turning as shown in Figure 1-d, AP should be able to continue to track
her maneuvers. Second, AP should be able to react appropriately when faced with
an ambiguous situation. For instance, the ambiguity in the opponent’s maneuvers in
Figure 1-c makes it problematic for AP to choose an appropriate reaction: should it
chase the opponent, or should it prepare for a missile evasion maneuver? AP should
be able react appropriately in such problematic situations. Third, AP should not
incur large overheads or delays in dealing with such ambiguous situations (e.g., in
processing their representations), so as to hinder its own real-time performance. This
last aspect of dealing with ambiguity illustrates its strong interaction with the issue
of real-time event tracking.

Thus, this domain raises a challenging combination of issues for event tracking.
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Except for the issue of ambiguity, all of the issues presented are novel ones. In
particular, in previous investigations in the related areas of plan/situation recogni-
tion(Kautz & Allen 1986; Song & Cohen 1991; Dousson, Gaborit, & Ghallab 1993;
Van Beek & Cohen 1991; Carberry 1990a) — including one investigation focused on
plan recognition in airborne tactical decision making(Azarewicz et al. 1986) — these
issues have not been addressed. With regard to the first two issues, plan recognition
models have not been applied in such dynamic, interactive multi-agent situations,
and hence do not address strong interactions among agents or the resulting flexibil-
ity and reactivity in agent behaviors. In particular, these models assume that a single
planning agent (or multiple independent planning agents) has some plans, and a rec-
ognizing agent recognizes these plans. The planning agent may be either actively
cooperative (it intends for its plans to be recognized by the recognizing agent) or
passive (it is unconcerned about its plans being recognized)(Carberry 1990b). The
recognizing agent’s job is to recognize these plans and possibly provide a helpful
response. However, neither the recognizing agent, nor any other agents in the envi-
ronment are assumed to have any influence on these plans. Consequently, these plan
recognition models can rely on pre-compiled plan libraries, where each plan lists the
sequence of events and the temporal relationships among the events(Song & Cohen
1991). The representation of a plan in such a library is similar to the explicit repre-
sentation of an event in terms of an enumeration of its subevents and their temporal
relationships. A plan library represents the entire class of events of interest in this
fashion. However, as indicated by the previous discussion in this section, it is difficult
to employ such libraries in tracking agent behaviors in the air-combat simulation en-
vironment. In particular, given the agents’ high behavioral flexibility and reactivity,
all possible variations on agent behaviors would need to be included in such libraries,
leading to a combinatorial explosion in the number of plans/events. In other words,
while a specific event instance can be represented by enumerating its subevents and
their temporal relationships, such a scheme is not sufficiently expressive to provide
a compact representation for the entire class of events of interest. The approach
presented in this article avoids such an enumeration.

With regard to the issue of tracking events in real-time, this has not been the
focus of previous work in plan/situation recognition. There is some work that is
beginning to address this issue(Dousson, Gaborit, & Ghallab 1993), although it does
not as yet deal with complex agent behaviors.

Thus, researchers working on plan-recognition have not dealt with such interac-
tive, real-time, multi-agent situations. There are, however, two other sub-areas of Al
that have dealt with such situations. The first such sub-area is Distributed AI (DAI).
There is some work in DAI on understanding other agents’ plans (e.g., see (Durfee
& Lesser 1988)). However, it focuses on agents exchanging their plan data struc-
tures for active cooperation, rather than on plan recognition. The second sub-area
is game playing. Game trees clearly deal with interactive situations, and they also
model an opponent’s actions in such situations. Indeed, mini-max game tree search
has been used to implement automated pilots for air-combat simulation(Katz 1993;
Schaper, Pandari, & Singh 1994). However, there are several idealizations in these
game-tree implementations. For instance, pilots are modeled as engaging in dis-
crete turn by turn actions, as opposed to overlapping and continuous actions. Pilots
are also assumed to have perfect information regarding the state of the “game”, as
opposed to the incomplete information resulting from their imperfect sensors. An
aircraft’s complex aero-dynamic movements, which constitute individual moves in
the game tree, are modeled in a simplified manner to avoid significant computa-



EVENT TRACKING IN A DYNAMIC MULTI-AGENT ENVIRONMENT 7

tional overheads during look-ahead search. To avoid similar problems with modeling
complex missile aero-dynamics, only a simple gun is modeled. This simple gun con-
siderably simplifies the evaluation function. (A detailed list of idealizations appears
in (Katz 1993).) Given these idealizations, game-tree techniques appear impractical,
at least at present, for event tracking in air-combat simulations.

3. A SOLUTION FOR EVENT TRACKING

The proposed solution for event tracking is based on a core idea that addresses
the issue of tracking flexible and reactive behaviors. This idea is explained in this
section. Important refinements, that address the other issues in event tracking, will
be discussed in the next section.

The core idea is based on the following observation. All of the agents in this
environment possess similar flexibility and reactivity in their behaviors. In particular,
AP shares this similarity with its opponent. Thus, the mechanisms that AP employs
in generating flexible and reactive behaviors may be used in service of tracking flexible
and reactive behaviors of other agents. To understand this idea in detail, it is first
useful to understand the mechanisms that AP employs to generate its own flexible
and reactive behaviors. Section 3.1 explains this using a concrete implementation of
AP in TacAir-Soar. As mentioned earlier, the Soar architecture forms the basis of
TacAir-Soar. For the purposes of the following description, we need to focus only on
one important aspect of the Soar architecture — its problem space model of problem
solving. Very briefly, a problem space consist of states and operators. An agent
solves problems in a problem space by taking steps through it to reach a goal. A
step in a problem space usually involves applying an operator in the problem space
to a state. This operator application changes the state. If the state changes caused
by the application of the operator, or by new inputs received via the agent’s sensors,
satisfy the operator’s termination conditions, then that operator is terminated, and
a new operator is applied. If the termination conditions remain unsatisfied, then
a subgoal is created, where a new problem space is installed to attempt to make
progress in problem solving. By subgoaling from one problem space into another, a
whole goal/problem-space hierarchy may be generated.

Following this illustration of AP’s flexible and reactive behaviors, Section 3.2
explains how it may be exploited for tracking other agent’s behaviors.

3.1. An Agent’s Own Behavior

Figure 3 illustrates the problem spaces and operators that AP employs while
it is trying to get into position to fire a missile. In the figure, problem spaces are
indicated by boxes, with problem-space names indicated by bold letters outside the
boxes. Operators in problem spaces are indicated by the text inside the boxes. The
operators that are currently being applied are shown in italics. For example, IN-
TERCEPT, an operator for engaging in combat with enemy aircraft, is currently
being applied in the EXECUTE-MISSION problem space. The other operators
in a problem space are alternatives to the operator currently being applied (these are
un-italicized). These alternatives are not being used since either they are inapplica-
ble in the current situation, or they are less preferable than the operator currently
being applied. For example, consider the FLY-RACETRACK operator in the
EXECUTE-MISSION problem space. This involves flying in a racetrack pattern
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FiGURE 3. AP’s problem space/operator hierarchy.

searching for enemy aircraft when there are no enemy aircraft present. However,
FLY-RACETRACK is currently inapplicable, since an enemy aircraft is present.
The operator hierarchy in Figure 3 is generated as follows. In the top-most
problem space, TOP-PS, AP is attempting to execute its mission by applying the
EXECUTE-MISSION operator. This is the only operator it has in this problem
space. The termination condition of this operator is the completion of AP’s mis-
sion, which may be, for example, to protect its home-base for a specific time period.
Since this is not yet achieved, a subgoal is generated. This subgoal involves the
EXECUTE-MISSION problem space. Here, AP employs the INTERCEPT op-
erator. However, the termination condition of this operator — the opponents are
either destroyed or chased away — is not yet achieved. This leads to a subgoal into
the INTERCEPT problem space, where AP applies the EMPLOY-MISSILFE oper-
ator. However, the missile firing range and position is not yet reached. Therefore,
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AP applies the GET-MISSILE-LAR operator in a subgoal. (LAR stands for launch-
acceptability-region, the region from where AP may fire a missile at its opponent).
This subgoaling continues until the application of the START-AND-MAINTAIN-
TURN operator in the DESIRED-MANEUVER problem space, which causes
AP to turn. Later, the STOP-TURN operator is applied to stop the aircraft’s turn
when it reaches its required heading.

This operator organization supports AP’s flexible and reactive behaviors, given
Soar’s architectural mechanisms for operator selection and termination(Laird & Rosen-
bloom 1990). For instance, there is a global state shared by all of the problem spaces.
If this state changes so that the termination conditions of any of the operators in the
operator hierarchy are achieved, then that operator can be terminated. All of the
subgoals generated due to that operator are then automatically deleted. Thus, if the
opponent simply begins to run away as AP is attempting to apply the FMPLOY-
MISSILE operator, then this operator may be terminated, and its subgoals will be
automatically deleted. The CHASFE-OPPONENT operator may be selected instead.
There are other mechanisms adding to AP’s reactivity as well(Laird & Rosenbloom
1990).

S)ince all of the above operators are used in the generation of AP’s own actions,
they will be henceforth denoted using the subscript own. For instance, FMPLOY-
MISSILE,,,, will denote the operator AP uses in employing a missile. Operator,,y,
will be used to denote a generic operator that AP uses to generate its own actions.
The global state in these problem spaces will be denoted by state,,,,. Problem-spaces
that consist of state,,, and operator,,, will be referred to as self-centered problem
spaces. The motivation for using this method for denoting states, operators and
problem spaces will become clearer below.

3.2. Tracking Other Agent’s Behaviors

Given the similarity of AP and its opponent’s flexible and reactive behavior, the
key idea is to use the mechanism that AP uses for its own behavior to track its
opponent’s behaviors. We will first illustrate this idea in some detail using some
simplifying assumptions. The assumptions will be addressed in more detail in the
next section.

We begin with the simplifying assumption that AP is engaged in a combat with
only a single opponent. Additionally, we assume that AP and its opponent are
exactly identical in terms of the problem spaces and operators they employ to engage
in simulated air-combat. Thus, AP can essentially use a copy of its self-centered
problem spaces to track the opponent’s actions and behaviors. We will refer to
these copies as opponent-centered problem spaces. Operators in these problem spaces
represent AP’s model of its opponent’s operators. These operators are denoted using
the subscript opponent. Thus, the EXECUTE-MISSION,pponens operator is used
in modeling an opponent’s execution of her mission. Similarly, operator,pponens is
used to model a generic operator used by the opponent. The global state in these
problem spaces represents AP’s model of the state of its opponent, and is denoted by
stategpponent. Clearly, it is not straightforward for AP to create a stateypponens that
accurately models the opponent’s state. Essentially, it requires mirroring all of the
information on AP’s statey,,. For instance, state,pponens requires information that
the opponent is likely to obtain from her radar regarding AP’s aircraft, such as the
heading and altitude of AP’s aircraft, the range (distance) between AP’s aircraft and
her aircraft, the target aspect from her perspective (the angle between AP’s straight
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line flight path and the opponent’s position), the angle off from her perspective
(the angle between the opponent’s flight path and AP’s position) and so on. All
of these are important quantities, since many of the opponent’s actions depend on
them. Yet their calculations can be expensive. Furthermore, these quantities have
to be continuously re-calculated, since they are dependent on the aircraft positions,
which are continuously changing. There are other aspects of state,,ponens, such as
information regarding the opponent’s mission, that are also difficult to generate. So
another simplifying assumption that we make here is that AP has already generated
an accurate state,pponent-

With the opponent-centered problem spaces, state,,ponens and operator pponent,
AP can pretend to be in the opponent’s position. AP then tracks the opponent’s
actions and behaviors by pretending to engage in the same actions and behaviors
as the opponent. For instance, to track the opponent’s turn towards a particular
direction, AP applies START-AND-MAINTAIN-TURN pponent 10 state,pponens. This
operator application does not directly change state,pponens — it is not an actual
implementation of the turn, but rather, it is AP’s model of the opponent’s turning
action, essentially used for recognizing that action. Thus, if the opponent actually
starts turning in the direction indicated by START-AND-MAINTAIN-TURN ,pponent
then AP considers its model of the opponent’s action corroborated. The change in
the opponent’s heading due to its turn is then noted in state pponent.

This technique of event tracking, where an agent models another by pretend-
ing to be in that agent’s position, has been previously used in automated tutoring
systems(Anderson et al. 1990; Ward 1991). These tutoring systems need the abil-
ity to model the actions of the students being tutored. For this, these systems use
student-centered problem spaces in which states and operators model the students
under scrutiny. This student modeling technique is referred to as model lracing. The
approach proposed here for event tracking is thus based on this model tracing work.
However, there are some significant differences. For example, previous work has pri-
marily focused on static, single-agent environments, where the agent being modeled
is the only one causing changes in the environment(Hill & Johnson 1993). However,
before exploring these differences further, it is first useful to understand AP’s event
tracking in more detail. This is explained below, using the illustration of the mul-
tiple problem space hierarchies in Figure 4. Note that while this explanation does
not directly describe the operation of an actual implementation, it is based on an
actual implementation that will be described in Section 5. Basically, the description
presented here illustrates the core idea, and further modifications described in later
sections lead up to the implementation described in Section 5.

Figure 4 shows two problem space hierarchies. AP executes these hierarchies in
parallel in order to engage in air-combat simulation. The first hierarchy, shown in Fig-
ure 4-a, contains self-centered problem spaces, and allows AP to generate its own be-
havior. The second hierarchy, shown in Figure 4-b, contains opponent-centered prob-
lem spaces. AP is using this hierarchy to track the opponent’s behaviors in the situa-
tion illustrated in Figure 1-c. Here, the EXECUTE-MISSION pponens operator mod-
els the opponent’s execution of her mission. Since the opponent’s mission is not com-
pleted, a subgoal is generated, within which the operator INTERCEPT pp0nent is ap-
plied. This operator subgoals into the EMPLOY-MISSILE,,one,¢ problem space.
Here, the FINAL-MISSILE-MANEUVER ., ponent operator models the the opponent’s
final missile launching behavior. Again, this operator subgoals, and the opera-
tor POINTING-MANEUVER pponent is applied. This operator finally subgoals into
DESIRED-MANEUVER problem space, where the START-AND-MAINTAIN-
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FIGURE 4.  (a) AP’s self-centered operator hierarchy, (b) AP’s model of opponent’s operator
hierarchy.

TURN pponent operator is applied. If the opponent actually starts turning towards
AP’s aircraft, then the operator START-AND-MAINTAIN-TURN,pponent is corrob-
orated. AP relies on this corroboration to corroborate the other current operators —
such as FINAL-MISSILE-MANEUVER pponent and POINTING-MANEUVER pponent
— in its opponent-centered problem space hierarchy. Essentially, AP’s model of its
opponent is that the opponent is engaging in final missile maneuvers, and as part of
that, she is turning to point at AP’s aircraft. As discussed in the previous section, in
reality, there is some ambiguity about the opponent’s exact maneuver. If the oppo-
nent is actually running away, then AP’s model of its opponent’s operator hierarchy
is inaccurate. This issue will be addressed in the next section.

Continuing with the example in Figure 4-b, when the opponent’s aircraft turns
sufficiently to point straight at AP’s aircraft as shown in Figure 1-c, the termination
condition of the POINTING-MANEUVER ,pponent operator is satisfied, and this oper-
ator is terminated. A new operator from the FINAL-MISSILE-MANEUVERS,,,0ncnt
problem space — PUSH-FIRE-BUTTON pponent — is now applied. This operator
predicts a missile firing, but it is known that that cannot be observed. Hence, PUSH-
FIRE-BUTTON ,pponent is terminated even though there is no direct observation
to support that termination. This also corroborates and terminates the FINAL-
MISSILE-MANEUVERS,pponent operator. However, the resulting missile firing is
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marked as not being highly likely. Following that, an FPOLFE,,,onent Operator in
the EMPLOY-MISSILE,,,,ncn: problem space predicts an Fpole turn. When the
opponent executes her Fpole turn in Figure 1-d, the FPOLE,,ponent operator is cor-
roborated and terminated. With this Fpole turn, the missile firing is now considered
as being highly likely. AP may now attempt to evade the missile.

Thus, AP uses a uniform mechanism for generating flexible and reactive behaviors
as well as for tracking them. This uniformity is the core idea that enables AP to
track flexible/reactive behaviors. In particular, operator,yponens can be activated
and terminated in the same flexible manner as operator,,,. Other mechanisms of
reactivity available to AP in generating its own behavior are also available to it in
modeling the opponent’s reactive behavior. Viewing this from another perspective,
AP does not track events by explicitly pre-enumerating all possible chains of sub-
events. Instead, it relies on dynamic generation of the sub-events. Essentially, each
operator,pponens Tepresents an event £. The sub-operators of operator,pponent — those
applied in a subgoal of operator,,ponens — correspond to the sub-events of £, i.e., the
set Eq, E5..Exn. The sequence of sub-operator execution corresponds to the temporal
relationships R among the sub-events. Thus, the application of operator,pponent
corresponds to tracking an event £ by dynamically generating its sub-events.?

While the above approach addresses the issue of tracking flexible and reactive
behaviors, it does not address the other important issues — real-time, agent interac-
tions, and ambiguity — raised in Section 2. In addition, the approach concentrates
only on events instigated by a single opponent, and does not enable AP to track
events instigated by multiple agents, such as a pincer. This concern is related to
the first simplifying assumptions made earlier in this section, that there is only a
single opponent in the world. Two other assumptions were also made: (i) AP and
the opponent are identical in terms of the problem-spaces and operators; and (ii)
AP can accurately generate state,pponens. All of these issues and assumptions will be
discussed further in the next section.

4. ADDRESSING ISSUES IN EVENT TRACKING

This section presents some important refinements to our event tracking approach
that enable it to address the issues and assumptions mentioned in the previous sec-
tion. Subsection 4.1 presents some refinements that address the issue of ambiguity in
event tracking. Subsection 4.2 addresses the issue of real-time event tracking. Sub-
section 4.3 addresses the issue of agent interactions. Finally, Subsection 4.4 addresses
the three assumptions mentioned at the end of the previous section. The result is
a robust approach for event tracking, and it is presented in an algorithmic form in
Section 4.5.

4.1. Ambiguity in Event Tracking

As mentioned in Section 2, there are three aspects to dealing with ambiguous sit-
uations in event tracking: (i) representation of ambiguous situations; (ii) facilitation

!deally, this approach models all events, including exogenous events, as operators. In more recent
work(Tambe & Rosenbloom 1995; Tambe 1995) — completed after this article was submitted for pub-
lication — it was found easier to track only the opponent’s high- and low-level behaviors/actions with
operatoropponent. Other events are recorded on the stateopponent but not modeled as operators.
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of an appropriate reaction; and (iii) avoidance of overheads that can hinder real-time
tracking. Suggested solutions for addressing ambiguity typically address the repre-
sentational aspect of this issue, but not the other two. In particular, one method
of addressing the ambiguity is to maintain multiple operator hierarchies, so as to
track each possibility independently(Ward 1991). Thus, if there is some ambiguity
about whether the opponent is actually executing RUN-AWAY ;. onent or EMPLOY-
MISSILE,pponent, then there are two separate operator hierarchies maintained for the
two possibilities. If there is further ambiguity in the EMPLOY-MISSILEpponent POS-
sibility between GET-MISSILE-LAR,pponent and POINTING-MANEUVER pponent
operators, then there are two additional operator hierarchies maintained for the two
new possibilities. Thus, this method can represent all of the possibilities in an am-
biguous situation. However, the multiple operator hierarchies imply that there are
multiple interpretations for the opponent’s actions: the opponent is possibly run-
ning away or possibly engaging in a missile firing behavior. Choosing an appropriate
reaction is thus problematical for AP: should it chase the opponent, or should it
prepare for a missile evasion maneuver? In addition, this method can potentially
lead to a large number of operator hierarchies. Maintaining all of them can be ex-
pensive (at least given a sequential implementation), making it difficult to continue
to track events in real-time. Thus, this method cannot satisfactorily deal with all of
the aspects of ambiguity.

A possible refinement of the above method can help improve its performance. In
particular, AP can delay tracking the opponent’s maneuver until the completion of
her maneuver. For instance, if the opponent starts a turn, AP could maintain in
memory information regarding the starting point of that turn, and then wait till the
completion of the turn before tracking it. This can help reduce the ambiguity, and
hence the number of operator hierarchies required to track the opponent’s actions.
However, such a delay in tracking the opponent’s actions is sometimes unaffordable —
it can make it difficult for AP to react appropriately, and allow the opponent to gain
a positional advantage over AP. Additionally, in some cases, the opponent’s aircraft
may become invisible to AP’s radar before her maneuver is completed. For instance,
if the opponent performs a missile evasion maneuver, she disappears from AP’s radar
before the completion of her maneuver. Thus, it may not always be possible for AP
to wait for the completion of the opponent’s maneuver before tracking it.

To avoid these problems, AP relies on a single operator hierarchy to continually
track the opponent’s actions — there is a single on-going interpretation of the oppo-
nent’s actions. This single interpretation enables AP to react appropriately to the
opponent’s on-going actions. This solution also does not burden AP with processing
multiple operator hierarchies, thus helping it to track events in real-time. However,
the single operator hierarchy makes it difficult for AP to represent ambiguous situa-
tions. To alleviate this problem, AP uses two different strategies to attempt to resolve
the ambiguity. The first, passive ambiguity resolution strategy is to rely on operator
selection heuristics. The key heuristic here is the worst case assumption. In particu-
lar, given that this is an adversarial environment, AP may always select the worst-case
operator (from its own perspective) while tracking the opponent’s actions. Thus, if
there is ambiguity between RUN-AWAY . onent or EMPLOY-MISSILEpponent, AP
will select EMPLOY-MISSILEpponent to track the opponent. With this heuristic,
AP’s reaction to an opponent’s on-going action will always be a cautious one. In-
deed, AP’s reaction may be overly cautious, and other strategies are required to
resolve the ambiguity.

The second, more novel strategy is the active ambiguily resolution strategy. A
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“strong” version of this strategy is for AP to act in a such a way so as to force the
opponent to resolve the ambiguities in its actions. For instance, AP can “fake” a
missile firing by engaging in a deceptive Fpole maneuver, to check if the opponent
is reacting to its actions — it is possible that the opponent has not yet seen AP on
radar. AP may also rely on a “weak” version of the active resolution strategy. It
may avoid actions that are likely to engender an ambiguous response. For instance,
in some cases, AP may avoid turning while the opponent is also turning, since the
opponent may or may not accurately observe such a turn on her radar, and thus her
response may be ambiguous. In employing an active resolution strategy, AP’s event
tracking resembles an active vision system(Ballard 1989), that can take actions, such
as moving cameras to get closer to objects or changing focus, to simplify the com-
putation required in early vision. Unfortunately, unlike an active vision system, AP
cannot dedicate itsell to active ambiguity resolution, since it also needs to accom-
plish its own goals, including getting into position to fire a missile at the opponent.
Therefore, ideally, AP needs to execute maneuvers that accomplish its own goals,
while simultaneously aiding it in active ambiguity resolution. However, discovering
such maneuvers is extremely difficult, since deep domain knowledge is required for
such a discovery. Therefore, AP currently does not discover new active resolution
maneuvers, and instead relies on a fixed set of known maneuvers (supplied by the
domain experts).

Thus, using its different ambiguity resolution strategies, AP attempts to use
a single operator,pponens hierarchy to track the opponent’s actions and behaviors
in real-time. However, despite this, AP cannot eliminate inaccuracies in its track-
ing. Such inaccuracies usually manifest themselves in terms of malch failures. For
instance, AP’s passive ambiguity resolution heuristic may select the POINTING-
MANEUVERpponent operator for tracking the opponent’s action. As mentioned ear-
lier, this operator subgoals to where the START-AND-MAINTAIN-TURN ,pponent is
applied. For its corroboration, this operator requires that the opponent’s aircraft
turn towards AP’s aircraft. However, in reality, the opponent may have decided to
run away, possibly causing it to turn away from AP’s aircraft. This difference in the
anticipated and actual turn directions leads to a match failure, indicating an inaccu-
racy in tracking. Similar match failures can also occur if the opponent fails to stop
turning even though a STOP-TURN,pponent anticipates the opponent’s stopping its
turn; or if the opponent starts turning even though MAINTAIN-HEADING opponent
anticipates the opponent to continue to maintain heading. Of course, in some cases,
there may be an inaccuracy in tracking, and yet there may not be a match failure.
For instance, in the above POINTING-MANFEUVER,pponens case, the opponent may
actually need to make a big 180-degree turn to run away. This may initially cause it to
turn towards AP’s aircraft, thus corroborating the POINTING-MANEUVER opponent
operator. However, in such cases, there is typically a match failure in some subse-
quent operator, such as FFPOLE,pponens- In all these cases of match failures, AP tries
other operators from its opponent-centered problem spaces. Essentially, AP tries out
a systematic backtrack search to attempt to locate an operator that can match the
opponent’s on-going action. We will return to this backtracking search in Section
4.5.

4.2. Real-time Event Tracking

AP faces two main obstacles when attempting to track events in real-time. The
first is dealing with ambiguity, which we have discussed in detail in the previous
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section. The second is tracking an agent’s detailed actions. As Hill and Johnson
(Hill & Johnson 1993) have recently argued, detailed actions may overwhelm an
agent with tracking overheads. This can be particularly problematical for AP, since
this may disallow it from acting in real-time. AP faces this problem due to the
dynamic and realistic nature of its environment. In particular, there are almost
always minor errors in the opponent’s actions, or in her perception of AP’s current
position and heading. As a result, she makes continuous minor adjustments in her
own position and heading to compensate for her sensor and/or action errors. For
instance, in Figure 1-a, the opponent can rarely achieve a precise collision course
heading. As her aircraft continues to deviate from the collision course, she may then
make a minor course correction, which may possibly over-compensate for the error
and then cause her to turn again. There can also be some small two-three degree
errors in AP’s perception of the opponent’s heading. If AP is to track the opponent’s
actions in detail, it can only do so by modeling these errors and corrective actions.
The overheads of tracking at this level of detail can be overwhelming. Of course, for
some maneuvers, such as the Fpole, the opponent may not be required to maintain
a precise heading. In these situations, she may tolerate fairly large deviations (10 to
15 degrees) from her initial heading. Such maneuvers add to the tracking problem.

To avoid this problem, AP relies on filters that help it focus on significant events.
One simple filter is to ignore any changes in the opponent’s heading of less than
three degrees, to compensate for the small errors in AP’s perception of the opponent’s
heading. A second simple filter is the use of the fuzz-boz approximation(McDermott &
Davis 1984). A fuzz-box indicates AP’s tolerance for deviations in a given quantity,
such as heading, altitude, speed, etc. For instance, for the opponent’s pointing
maneuver, where the opponent points at AP to fire a missile, the fuzz-box accepts
five degrees of deviation. Thus, as long as the opponent’s heading is within five
degrees of the heading required for the pointing maneuver, AP considers that as part
of the opponent’s pointing maneuver. While this small fuzz-box is sufficient for some
maneuvers, maneuvers such as the Fpole discussed above, require a larger fuzz-box,
accepting up to 20-degrees of deviation in heading. In general, these fuzz boxes may
or may not be symmetrical. As of now, the fuzz box for each maneuver is hand-coded.
Automatic discovery of the amount of “fuzziness” for each maneuver is a topic for
future work.

4.3. Modeling Agent Interactions

The approach outlined in Section 3.2 requires AP to build multiple problem-
space hierarchies, one for its own behaviors and one for modeling its opponent (and
perhaps additional operator hierarchies for modeling other agents in the environ-
ment). To model real-world agent interactions, there is a need to facilitate commu-
nication among these problem space hierarchies. For the purpose of the following
discussion, we may divide these agent interactions into three categories. The first
category of interactions requires pre-conditions (or conditions) of operators in one
hierarchy to reference the operators or the state from other hierarchies. For instance,
to select CHASE-OPPONENT,,,, operator, AP needs the ability to refer to the
RUN-AWAY ,onent operator from the opponent’s operator hierarchy. Similarly, the
MISSILE-EVASION pponent operator depends on the ability to reference EMPLOY-
MISSILE,,,, and vice versa. This first type of interaction implies that at the very
least, the multiple problem space hierarchies cannot be watertight compartments,
completely isolated from each other.
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The second type of agent interaction requires that the continuously changing
aircraft positions be communicated from one problem space hierarchy to another.
For instance, suppose there is a change in AP’s position and heading. This causes a
change in state,,,. This change has to be communicated to state,pponens to keep it
updated. Furthermore, given this change, quantities in state,,onens that depend on
AP’s heading and position such as the range (distance) between the opponent and
AP, their angle-off and target-aspect need to be re-calculated. Given the dynamic
nature of the environment, where AP is continuously moving, and often turning
its own aircraft, there is thus a need to almost continuously update much of the
information on stateypponent to keep it consistent. While stateg,, has to be similarly
updated after the opponent’s moves, this updating is simplified since many of the
calculations are automatically done by AP’s radar. This form of interaction also
includes the entities in state,,, and state,pponens that represent the missiles that the
agents fire at each other. In particular, if the opponent fires a missile, some object
or entity representing that missile needs to be communicated from state,,ponens to
stateyyn, and vice versa.

Thus, this second form of agent interaction can involve substantial communication
and re-calculation overheads. In addition, it involves duplication of information —
e.g., AP’s heading is represented in both state,,, and state,,,onens — Which can be
problematical, as it may lead to inconsistencies. If there are other aircraft involved in
the simulated combat, this duplication and overhead can be even more substantial.
This can be particularly problematical for continued real-time event tracking.

The problem AP faces here is that opponent-centered and self-centered problem
spaces are compartmentalized hierarchies. To avoid the duplications and expensive
recalculations, one solution is to merge the different operator hierarchies into a single
compartment, which we will refer to as a world-centered problem space (WCPS
for short). A WCPS eliminates the boundaries between different self-centered and
opponent-centered problem spaces. Instead, the different operator hierarchies are
maintained within the context of a single WCPS, with a single world state. This single
world state can now allow information sharing between state,,, and state,pponent,
thus avoiding communication overheads and potential inconsistencies. For instance,
AP’s range to its opponent is identical to the opponent’s range to AP. Thus, the
range information, which AP has available on state,,, directly from its radar, can
be directly used as the range in state,pponens. As this range changes in stateyyy, it is
automatically updated in state,pponens. Thus, the range is shared among state,,,, and
stategpponent, avoiding recalculation. AP’s heading in state,,, and state,,ponens can
also be shared. Interestingly, the angle off in state,pponens turns out to be the target
aspect in statey,,, and the target aspect in state,pponens turns out to be the angle
off in state,y,. These quantities can also be shared, thus avoiding recalculations.
Similarly, a single entity may be used to model a single missile in the world, thus
avoiding duplicate representation of the missile. A WCPS encourages such sharing of
information among the different self-centered and opponent-centered problem space
hierarchies, and thus reduces the burden of modeling state,pponens. However, such
sharing is clearly not always appropriate, e.g., AP may deceive the opponent into
believing that it has fired a missile, without actually firing one. We will further
discuss this issue in Section 6.

AP’s shift from single-agent centered problem spaces to a WCPS also facilitates a
third form of agent interaction. In particular, it enables AP to represent mulli-agent
operators that can track events instigated by multiple agents. For instance, consider a
pincer event instigated by multiple opponents (See Figure 2). In a WCPS, this may be
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tracked by directly executing a multi-agent operator, i.e., PINCERcqq—and—wingman
which can operate on both on statej,q and state,ingman, since both are part of a
single WCPS. Similarly, a FIRED-FIRST 5.n—and—opponent Operator may be used to
check if AP fired its missile before (or after) the opponent, which is again a multi-
agent operator that can operate on both state,,, and state,, onent-

The shift from self-centered and opponent-centered problem-spaces to a WCPS
is related to the objective framework used in simulation and analysis of DAI sys-
tems(Decker & Lesser 1993), which describes the essential, “real” situation in the
world. However, the focus of our work is on an individual agent using its own world-
centered model for event-tracking. While this model introduces a shift towards an ob-
jective point of view, by definition, it is an agent’s subjective view of its environment,
and may contain approximations in operator,pponent and state pponens. The specific
idea of avoiding duplicate representation of an object in state,,, and state,pponent, is
similar to a key feature of the SNeP§S belief modeling framework(Shapiro & Rapaport
1991). In SNePS, the models of different agents’ belief spaces may share the repre-
sentation of an object and thus avoid duplication. WCPS extends this sharing to
dynamic environments, so as to avoid the cost of updates, and harnesses the sharing
in service of event tracking.

4.4. Addressing Assumptions in Event Tracking

Three assumptions were outlined in Section 3.2. The first one was the pres-
ence of only a single opponent in the world. This assumption enabled AP to rely
on a single operator,pponens hierarchy to track its opponent’s actions. If there are
multiple opponents present, then in the simplest case, AP may track their actions
by creating multiple operator,pponens hierarchies. Thus, if there are two opponents,
a lead and a wingman, then two separate hierarchies, specifically operatore,q and
operatoryngmar hierarchies, may be used to track their actions. All of these would be
modeled within a single WCPS, so as to allow sharing among state,,,, and stateje,q,
as well as state,,, and stateyngman, and even among stateje,q and state,ingmarn. In
addition, AP may track their coordinated maneuvers using operators such as the
PINCERcqd—and—wingman operator introduced in the previous section. While this
approach seems reasonable here, there are some issues that remain unresolved in
general multiple opponent situations. For instance, suppose the two opponents at-
tacking AP are not coordinating their actions, and they are not acting as the lead
and the wingman. Should AP still use a single WCPS to track both opponents’
actions? Or should it use two, one to model its interactions with one of the oppo-
nents and track that opponent’s actions, and a separate one for the other opponent?
Addressing these issues is a topic for future work.

The second assumption was that AP and its opponent are identical in terms of
their problem spaces and operators. This assumption enabled AP to use a copy of its
own problem spaces to track its opponent. This assumption is a reasonable one to
make in the air-combat simulation environment, given the similarity among agents’
missions, tactics and maneuvers. Furthermore, if AP does have some additional
knowledge about how some of the opponent’s operators differ from its own, then AP
could use those operators in modeling the opponent, instead of using copies of its own
operators. However, the more important point underlying this assumption is that
AP has full knowledge of its opponent’s overall set of problem spaces and operators.
If the opponent does execute operators from outside this set, e.g., new maneuvers
that AP is not familiar with, AP may not successfully track them. This is similar
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to the assumption in the plan recognition literature: the agent that is recognizing a
plan is assumed to have full knowledge of all of the plans that the planning agent
can execute(Kautz & Allen 1986). We return to this assumption in Section 5.

The third assumption was that AP can generate an accurate state pponens. While
at first this seems like a highly problematical assumption, there are several ways in
which this problem is simplified. First, as mentioned earlier, a WCPS helps avoid the
computations required for generating state,pponent:. With a WCPS, various aspects of
stategpponent such as, target-aspect, angle-off, range and so on are all automatically
calculated. Second, some aspects of the opponent’s state are too detailed and AP
can safely not model them in state,pponens. For instance, each opponent typically
has a call sign, e.g., condor101, which it uses to communicate with its partners. AP
does not need to model this, since it is not modeling the opponent’s communications.
Third, portions of state,,ponens may be generated via background information. In
the air-combat simulation environment, this information includes the “intelligence”
reports that are available to AP. These reports may provide the necessary infor-
mation regarding the opponent’s aircraft, radars, missiles, etc. and can aid AP in
generating the necessary portions of state,,ponens during simulated air-combat. How-
ever, this information can be approximate or incomplete, and hence the generation
of state,pponens is not always straightforward. For instance, AP typically has back-
ground information regarding its opponent’s maximum radar range — suppose the
information is that the range is a maximum of 50 miles. However, given this in-
formation, AP should not directly assume that its aircraft would be visible to the
opponent’s radar when AP is at a range of 50 miles from the opponent. In particular,
the opponent’s radar may actually have a range of only 43 miles. Furthermore, the
radar may not even be pointed in the direction of AP. Thus, if AP assumes that it
becomes visible to the opponent’s radar as soon as the 50 miles range is reached,
AP may unnecessarily give up opportunities for gaining positional advantage. In
contrast, as AP moves closer and closer to the opponent, the chances of it becoming
visible to the opponent’s radar continually increase, and AP can commit a serious
mistake if it continues to assume that the opponent cannot see it on radar. Thus,
the important question that comes up here is: at what point during the combat
should AP assume that it is visible on the opponent’s radar? Injecting assumptions
of this form into state,pponens based on such parametric background information is
not straightforward.

The solution we are experimenting with here is to inject an assumption into
stateopponent at the point where the opponent indicates a likely change in her state.
One important form of this indication is a match failure. As mentioned in Section
4.2, a match failure indicates an inaccuracy in tracking the opponent’s actions, and a
possible explanation for this inaccuracy is a change in her actual state. In particular,
if there is a change in her actual state, then state,,,onens may no longer accurately
model her state, and therefore, operator,pponens may not accurately track the oppo-
nent’s actual action. Hence, a match failure is used as a trigger for injecting the
assumption into state,pponens, Wwith the expectation that it will enable state,pponens to
continue to accurately model the opponent’s state. The injected assumption is then
verified by corroborating the resulting operator,,ponens With the opponent’s actual ac-
tions. In the above example, when AP is at the range of 50 miles from its opponent,
AP “queues” the assumption that it is visible on the opponent’s radar, i.e., AP gets
the assumption ready for injection into state,pponent. If there is a match failure, say
at the range of 42 miles, then AP injects the queued assumption into state,pponent
The resulting operator,pponens indicates that the opponent is likely to turn to collision
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course. If the opponent does indeed turn to collision course, the assumption is con-
sidered corroborated, else the assumption may be withdrawn. Thus, while Section
4.2 pointed out the possibility of a full backtrack search in case of a match failure,
this section suggests the introduction of an assumption(s) into state,pponens. The
following section clarifies this apparent discrepancy.

4.5. Summary of Event Tracking

The proposed approach for event tracking is based on the following key ideas:

¢ A uniform mechanism for generating own flexible and reactive behaviors, and for
tracking other agent’s behaviors.

e A single operator hierarchy, i.e., a single interpretation for the other agent’s
actions, with active and passive ambiguity resolution strategies, and backtrack
search.

Use of approximation filters to avoid detailed tracking overheads.
A world-centered representation (WCPS) for modeling continuous agent interac-
tions.

¢ Assumption injection for modeling the other agent’s state.

AP’s approach to event tracking is presented in a high-level algorithmic form in
Figure 5. The algorithm focuses on tracking a single opponent’s actions, although
in addition, AP also executes operator,,, hierarchy for its own actions, as well as
other possible hierarchies for tracking other opponents’ actions. The algorithm is
based on the ideas mentioned above. It tracks the opponent’s actions as presented
in Section 3.2. In case of a match failure, there is an attempt to bias the backtrack
search by first introducing a change in state,pponens. This bias is intended to reduce
the amount of backtracking on match failures, by first attempting to search with a
changed state,pponens. Nonetheless, a full backtrack search continues to be a part
of this approach (both in steps 4-c¢ and 5), and the overheads of this search can
potentially be problematical for real-time performance. Addressing this backtrack
search is also a topic for future work.?

5. IMPLEMENTATION AND EVALUATION

An important test for the event tracking approach introduced in this article
is its actual application in constructing automated pilots for simulated air-combat.
Ideally, such a pilot could be constructed simply by “plugging in” the event tracking
mechanism into the TacAir-Soar system. However, the underlying Soar architecture
does not directly support the construction of a WCPS containing multiple operator
hierarchies.?

We have therefore implemented an experimental variant of TacAir-Soar that can
support such hierarchies. To create this variant, we started with the operators that
are used by the original TacAir-Soar system. Based on our current assumption re-
garding similarity of pilots’ behaviors, we then generated a copy of these operators

?Since the submission of this article, we have addressed this issue in (Tambe & Rosenbloom 1995).
3There is on-going research on determining whether/how the Soar architecture can support a WCPS
and this may impact the final implementation of event tracking in TacAir-Soar(Jones et al. 1994).
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1. Create an initial stateopponens using WCPS.

2. Create an operatoropponent hierarchy based on the existing stateopponent, while using ambiguity
resolution strategies and approximation filters.

3. As long as the operatoropponen: hierarchy leads to a match success, continue with appropriate
modifications in stateopponen: and the operatoropponen: hierarchy, again while continuing to use
the ambiguity resolution strategies and approximations.

4. If there is a match failure, and there is a queued assumption(s), then:

(a) Inject all assumption(s) into stateopponent.

(b) If changed stateopponen: leads to new operatorgpponen: hierarchy and a match success, then
the assumption is corroborated, continue with step 3.

(c) If changed stateopponen: leads to a match failure, try selecting other operators from the
operatoropponent hierarchy. This leads to a backtrack search over the hierarchy. If this
search succeeds in selecting an operator that matches the opponent’s actions, then go to
step 3. If this search fails, then delete the assumption, go to step 5.

5. If there is a match failure, and there is no queued assumption(s), then try selecting other oper-
ators from the operatoropponen: hierarchy. This leads to a backtrack search over the hierarchy.
If this search succeeds in selecting an operator that matches the opponent’s actions, then go to
step 3. If this search fails, there is a failure in event tracking.

FIGURE 5. A high level algorithmic description of AP’s event tracking

to model the opponent. We then added a simple interpreter layer to Soar to enable it
to support a WCPS containing multiple operator hierarchies (the interpreter itself is
constructed in terms of Soar operators). The resulting TacAir-Soar implementation
contains about 900 Soar rules (a single operator consists of multiple rules), and it
tracks the opponent’s actions as outlined in Section 4.5. Currently, this implementa-
tion focuses on tracking events in single-opponent situations. Lessons learned from
this implementation are continuously transferred back into the original TacAir-Soar,
including the sharing of representations of objects as specified in a WCPS (but not
the use of multiple operator hierarchies), and the use of a single interpretation for
the opponent’s actions and so on.

How do we evaluate the effectiveness of this implementation for event tracking?
There are at least two aspects to this question. The first question is whether the
current approach enables AP, the TacAir-Soar pilot agent, to track opponent’s ac-
tions accurately in real-time. The second question is whether the current approach
improves AP’s overall performance. This question is more complex and arises due to
the fact that AP is an integrated agent with event tracking as only of its many capa-
bilities. There is thus a need to understand the effect of the current approach on AP’s
overall performance. For instance, if AP spends most of its time in event tracking,
that would not necessarily lead to an improvement in its performance. A detailed
answer to both these concerns will have to involve extensive experiments with AP fly-
ing against human pilots in air-combat simulations. These experiments are currently
planned for sometime early next year. In the meanwhile, we have attempted simpler
experiments with AP flying against its clone in air-combat simulation scenarios. The
clone has all of AP’s operators, although it pilots an “enemy” aircraft, with different
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radar and missile capabilities. The advantage of this experimental set up is that it is
possible to examine the operators being executed at each point by each pilot. This
helps in addressing our first concern above of assessing the accuracy of event track-
ing. Table 1 shows the results of one such experiment. The experiment involves five
different scenarios. All five are based on a skeletal scenario outlined by our domain
experts. They differ in the the initial positions of the two aircraft involved in the
combat and the missile and radar capabilities of the aircraft.

Scen. Total num. of Percent Percent event track
num. | operator executions | operator executions | operators causing
in event tracking match failures
| 1 | 37 | 8% | 0% |
| 2 | 62 | 45% | 17% |
| 3 | 101 | 45% | 28% |
| 4 | 133 | 45% | 17% |
| 5 | 138 | 48% | 20% |
TABLE 1. Results of Soar-vs-Soar experiments.

In Table 1, the first column lists the scenario number. Each scenario takes about
the same execution time, about five minutes. However, the scenarios do differ in
their complexity, in terms of the maneuvers that AP and its opponent execute in
the scenario. The second column in the table attempts to capture this difference. It
indicates the total number of AP’s operator executions in each scenario. This includes
operators for AP’s own actions, as well as for tracking the opponent’s actions. The
total number provides some indication of the comparative complexity of the different
scenarios. Obviously, given that the scenarios take about the same execution time,
these operators are not all applied one after another. Instead, as described in Section
3.2, AP often has to wait for the situation to change so as to apply a new operator.
For instance, if AP applies the GET-MISSILE-LAR,,,, operator, it may not be able
to apply any other operator until it achieves its missile firing position.

The third column shows the percentage of operator executions involved in event
tracking. This percentage clearly depends on the number of maneuvers that the
opponent executes. The key point here is that event tracking is a non-trivial task
for AP — up to 48% of the operator executions may be dedicated to event tracking.
Obviously, given that AP spends much of its time waiting, this does not translate into
48% of the total time that AP pilots its aircraft in a given simulation scenario. The
fourth column shows the percentage of event tracking operators involved in match
failures, including both low- and high-level operators. While some of these failures
appear avoidable, some others are unavoidable — they occur because the opponent
first engages in a particular maneuver and then, due to changes in its state, engages
in a different maneuver. Nonetheless, the overall percentage of these operator is quite
low; a maximum of only 28% of the event tracking operators are involved in match
failures.

Despite these match failures, AP does accurately track events in all of the above
scenarios. Accuracy is checked as follows: if the opponent performs a particular
maneuver, does AP track that maneuver in real-time so as to react appropriately?
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Thus, even though AP encounters match failures, it is able to backtrack or inject
appropriate assumptions into state,,ponens 50 as to track the on-going events in real-
time and respond appropriately. Thus, our basic approach to event tracking and its
refinements, such as the fuzz-boxes and ambiguity resolution strategies, are able to
achieve accuracy in tracking the opponent’s actions and behaviors.

Clearly, this accuracy also depends on the fact that the opponent does not exe-
cute any new, unknown maneuvers. To test AP’s response in situations where the
opponent actually does engage in unknown maneuvers, we ran a new set of scenar-
ios. Here, instead of adding new maneuvers to the opponent’s set of maneuvers, we
deleted some of AP’s operators for tracking the opponent’s maneuvers. Thus one
or more of the opponent’s maneuvers may appear like unknown maneuvers to AP.
Running experiments involving these “unknown” maneuvers has illustrated some of
the weaknesses in our current event tracking approach, specifically in its backtrack-
ing search. Essentially, if the opponent engages in an unknown maneuver then AP
engages in backtrack search ruling out all of the possible operators. Subsequently,
it begins a new effort to track the opponent’s actions, but it keeps failing as long
as the opponent continues its execution of the new maneuver. This repeated effort
can be computationally expensive. In addition, even if the opponent subsequently
engages in a known maneuver, AP may not recover in its event tracking, especially
if stategpponent is left inconsistent. Dealing with such novel maneuvers is a topic for
future work.

The second question above was related to understanding the effect of the current
approach in improving AP’s overall performance. It is difficult to evaluate the overall
performance of a complex intelligent agent like AP(Hanks, Pollack, & Cohen 1993).
Obtaining quantitative estimates of the contribution of one of AP’s component ca-
pabilities (such as event tracking) can prove to be even more difficult. Nonetheless,
we can at least understand some of the types of benefits that AP accrues from its
event tracking capability. These types are enumerated below:

1. FEwvent tracking is crucial for AP’s survival: It is based on event tracking that AP
can recognize an opponent’s missile firing behavior. Event tracking also enables
AP to recognize if it managed to fire its missile before or after the opponent fired
at it, via the FIRED-FIRST y.pn—and—opponent , mentioned in Section 4.3.

2. FEvent tracking enables AP to act and react in a more intelligent manner: Event
tracking improves AP’s overall understanding of a situation, and thus it can plan,
act and react in a more intelligent manner. A simple example is that if the oppo-
nent is understood to be running away, AP can chase it down. However, such a
chase is inappropriate if the opponent is not really running away. Similarly, if AP
recognizes that the opponent is about to fire a missile, it can be more tolerant of
small errors in its own missile firing position — it may not strive for an optimal
positioning. These types of examples can also be seen in situations involving
more than one opponent. For instance, suppose AP is facing two opponents, and
that it tracks one of them as engaging in a missile evasion maneuver. It can then
predict that that opponent is going to disappear from its radar, and that that
opponent is also not likely to be firing a missile while evading a missile. Based
on this understanding, AP may now concentrate its attack on the second oppo-
nent. The situation would be very different if the first opponent had disappeared
from its radar without engaging in the missile evasion maneuver. Without an
understanding of this situation, this type of switching of AP’s attack may not be
possible.
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3. Fvent tracking helps in providing a betler explanation: An explanation capabil-
ity, for explaining AP’s decisions to human experts, is currently under develop-
ment(Johnson 1994). This capability is to be used by the domain experts to un-
derstand AP’s decision making process. If AP is seen to perform its task without
tracking events appropriately, domain experts will not have sufficient confidence
in its capabilities to actually use it for training or tactics development.

6. SUMMARY

This article makes two contributions. First, it presents a detailed analysis of
event tracking in the real-world, dynamic, multi-agent environment of air-combat
simulation. This analysis raises three novel issues for event tracking: (i) tracking
agents’ flexible and reactive behaviors; (ii) tracking events in the context of continu-
ous agent interactions; (iii) tracking events in real-time. The second contribution is
the new approach for event tracking. Some of the key ideas in this approach include:
(i) use of a uniform mechanism for generating flexible and reactive behaviors as well
as tracking them; (ii) a single interpretation for the other agent’s actions with a
mechanism for backtracking; (iii) active and passive ambiguity resolution strategies
and approximation filters; (iv) triggered assumption injection; and (v) world-centered
representation (WCPS). While this approach was introduced in the context of air-
combat simulation, we expect it to generalize to other competitive or collaborative
real-time, dynamic multi-agent environments, including music synthesis (for intelli-
gent accompaniment), game playing, entertainment(Bates, Loyall, & Reilly 1992),
and education(Ward 1991).

The article also outlined several unresolved issues. One important issue is ro-
bustness in the face of unknown events. As mentioned earlier, the system needs to
improve its tracking capability in such situations. Towards that ends we are inves-
tigating an approach where AP attempts to track an opponent’s novel maneuver by
“self examination”. Informally, this technique may be described as follows. Sup-
pose AP observes the opponent performing a novel maneuver, say a 30 degree turn
to the left, that it cannot track. It then poses itsell the following question: What
operator,,,, would cause it (AP) to turn 30 degrees to the left? Suppose the answer is
CUT-TO-LATFERAL-SEPARATION,,,, then this is what the opponent is hypoth-
esized as performing at this point. A preliminary implementation of this technique
reveals that although it enables AP to track novel maneuvers, the real-time pressure
makes timely self-examination difficult in some cases. Further investigations on this
topic are underway. A second related issue for future work is that of reducing the
backtracking overheads, particularly in situations involving such unknown events.

A third issue for future work is the automatic discovery of the size of the fuzz-box
approximation for each maneuver. Experiments reveal that small reductions in the
size of the current fuzz-boxes do not affect the accuracy of event tracking; although,
not surprisingly, big reductions lead to possibly fatal errors in tracking. Can AP begin
with large fuzz-boxes and possibly narrow them down with “experience” in simulated
air-combat? A fourth important issue is modeling what AP believes the other agent
knows about itself (i.e., AP). For instance, if AP believes that the other agent believes
that its (AP’s) missile range is larger than its actual range, AP may be able to take
advantage of this situation. In particular, AP may deceive the opponent into believing
that it has fired a missile without firing one. Alternatively, as the opponent attempts
to deceive AP, in some situations, AP may discover this deception. This topic is
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related to issues of recursive agent modeling(Gmytrasiewicz, Durfee, & Wehe 1991;
Wilks & Ballim 1987). Work on this topic is already underway.

A fifth issue for future work is extending event tracking to situations involving
different groups of agents. Key questions that come up here include: how does a
WCPS generalize to this situation? Should an agent use a single WCPS or multiple
ones, particularly if the other agents are not interacting amongst themselves? Should
an agent spend equal amount of time tracking each of the agents in the group, or
should it be selective to avoid overwhelming itself with event tracking? Closely
related to this is also the issue of abstracting away from tracking individual agents’
behaviors to tracking group behaviors.
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