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Abstract

We present a novel decoupled branch processor architecture that separates control-
flow information from computational instructions. The control-flow is encoded in
an independent instruction stream, potentially providing benefits such as instruc-
tion cache prefetching, loop unrolling, code compression, reduced call/return over-
head, and improved throughput. We discuss features and tradeoffs in the design
and implementation of a branch processor architecture. We present a preliminary
instruction set, and describe compilation strategies for the new architecture. We
evaluate the architecture by studying metrics that impact its performance using
the SPEC95 benchmark suite, and comment on the potential for using branch
processor architectures to study control-flow issues in modern processors.

1. Introduction

Branches have long been a source of headaches for designers of pipelined processors. By the
time the processor decodes a branch instruction, determines the branch target, and resolves the
branch, it has already speculatively fetched several instructions that follow the branch. The deeper
the pipeline and the later in the pipeline that branches are resolved, the greater the number of
speculative instructions fetched. These additional instructions are either scheduled in a number of
branch delay slots or speculatively fetched and end up being killed if the branch is mispredicted.
Either method results in significant misprediction penalties and reduced performance.

Modern processors [5,11,28] employ several architectural techniques and devote significant
hardware resources to reduce the number of branch-related stalls in the pipeline, including dynamic
branch prediction, branch-target buffers, and return-address prediction [16,22,30]. Still, these
methods rely on prediction heuristics, cache locality, and guesses to construct the proper program
counter (PC) control sequence for the executed program. The dependence of the next PC on data
values being produced by previous instructions creates a feedback loop in the processor that begins
with instruction fetch and extends through the the pipeline stage where the branch resolves and
selects the PC for the next instruction fetch. This fetch loop can negatively impact the throughput
of the processor, and in fact was the critical path in the asynchronous MIPS processor from
Caltech [15]. In synchronous designs with high clock rates this feedback loop may also affect the
clock cycle time—a much more serious threat to performance than even large branch misprediction
penalties.

We propose a new branch processor architecture that addresses these issues by removing the
branches from the processor code stream and breaking the feedback loop between the ALU and
instruction fetch. The branch processor architecture embeds a special-purpose branch processor in
the microprocessor and decouples control-flow information from the stream of “useful” instructions.
The branch processor has a small, independent instruction set with its own instruction cache,
and is responsible for supplying the data processor with a stream of PC values corresponding to
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computational instructions. The data processor has the ability to communicate data results to the
branch processor via a control queue. Applications are compiled into two separate code streams,
one for the branch processor that specifies all program control-flow information, and one for the
data processor that is void of all control information and contains only computational instructions.

Because of its decoupled nature and its ability to specify entire blocks of PCs with a single
instruction, the branch processor has the ability to “run ahead” of the data processor (especially
in asynchronous designs). The goal of the branch processor is to keep the queue between it and
the data processor full of PCs. Because these are not predicted PC values, the data processor will
not fetch any useless instructions. In fact, as we will see in Section 2, the data processor may even
fetch and execute fewer instructions once the branch processor removes branches, procedure calls
and returns, and loop control information from the data processor instruction stream.

The branch processor architecture has many potential advantages over traditional architectures
including automatic loop unrolling, code compression, instruction cache prefetching, code inlining,
and reduced call/return overhead. In addition, the branch processor architecture is orthogonal to
traditional branch prediction techniques and may be used in combination with these techniques if
warranted. These advantages combined with the potential throughput improvement cited above
make the branch processor architecture an intriguing new technique in the war on branches for
both asynchronous and synchronous processor designs.

We present the branch processor architecture in Section 2, along with a discussion of its po-
tential advantages and disadvantages. We then propose an instruction set architecture (ISA) and
outline compilation strategies in Section 3. Section 4 shows the results of a preliminary evaluation
of the architecture using both analysis and simulation. We discuss related work in Section 5 and
conclude with a summary and suggestions for future research in Section 6.

2. The Branch Processor Architecture

The vast majority of instructions in a traditional processor can be divided into two categories:
computational, and control-flow. Branches and jumps are categorized as control-flow instructions
since they can modify the program counter. Arithmetic instructions such as add, sub, and mult
operate on registers and are thought of as computational instructions.

However, on closer inspection, one is forced to conclude that every instruction in a traditional
processor is a control-flow instruction. An add instruction that adds two registers and stores the
result in a third register implicitly encodes the fact that the next program counter to be executed
is the program counter of the instruction plus the size of the instruction. The left half of Figure 1
shows the overall architecture of an asynchronous MIPS processor [15]. The fetch computes the
next program counter and sends it to the icache, which fetches the next instruction and sends
it to the decode. At this point the decode determines whether the instruction is a branch or
not, and sends this information back to the fetch. This cyclic data-dependency of the fetch on
the instruction that has just been fetched is a direct consequence of the fact that each instruction
affects the control-flow. The latency of this fetch loop adversely affects branch performance, and is
commonly combated by introducing a predicting branch-target buffer [12,16]. The MIPS R12000
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uses such a structure to avoid the full cycle stall on a correctly predicted taken branch that was
present in the MIPS R10000 [27]. The fetch loop latency goes up dramatically on an instruction
cache miss, since the next level of the memory hierarchy is typically several cycles away.

The branch processor architecture eliminates this deficiency in modern instruction sets by
encoding control-flow information in an independent instruction stream executed by a branch
processor that computes the sequence of program counter values for the original data processor. A
program is therefore compiled into two instruction streams: one that determines the computation
to be performed, and one that determines the control-flow. The branch processor is connected
to the data processor by two queues. The instruction queue contains the sequence of instructions
computed by the branch processor, and the control queue contains feedback from the data processor
required for data-dependent branches, as shown in Figure 1.

The architectural features and instruction set of the branch processor are tailored to support
efficient execution of control-flow instructions. Since the primary purpose of the branch processor
is to fetch instructions from the icache, the basic operation performed by the branch processor is a
block fetch. This operation fetches a sequential block of instructions starting at a specified address,
and inserts it into the instruction queue. The instruction queue and PC queue shown in Figure 1
decouple the execution of the branch processor from icache access. The branch processor can
continue processing additional control-flow instructions while the fetched instructions are executed
by the data processor. This decoupled nature of the branch and data processor makes it possible
for the branch processor to “run ahead” of the data processor.

The branch processor can determine control-flow behavior for loops and function calls and
returns without information from the data processor. The branch processor includes a hardware
stack that keeps track of structured control flow information such as loop nests and return addresses
for nested function calls. For example, consider the following loop:

for(i=0;i<10;i++) {

bfetch
—_

cache _pezen

execute
decode

execute

Figure 1: The Branch Processor Architecture.
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alil=b[il+c[i];
}
The branch processor can fetch the instructions after the loop before the loop execution completes,
since the control-flow of the program is not data-dependent on the computation performed in the
loop body.

When a program encounters a truly data-dependent branch, the branch processor cannot
determine the next program counter value without feedback from the data processor. The data
processor sends any information necessary via the control queue, and the branch processor reads
this feedback information before proceeding. Note that while the branch processor can stall while
performing this operation, the data processor might still be executing instructions since the branch
processor has the capability to fetch blocks of instructions.

2.1. Branch Processor Features and Trade-Offs

We now discuss some of the issues and trade-offs in the design of a branch processor architec-
ture.
Latency Tolerance. The branch processor is designed to “run ahead” of the data processor. If
the instruction queue connecting the branch processor to the decode can be kept relatively full,
then the architecture can partially hide the latency of an instruction cache miss. The branch
processor architecture naturally prefetches instructions from the code stream, since it is decoupled
from the data processor.

Code Compaction. Since data processor instructions no longer encode control-flow information,
we can use the same sequence of instructions in different contexts by replicating branch processor
code rather than data processor code. One of the transformations applied by modern compilers
is code inlining. This typically increases the instruction cache footprint of a program because the
same code stream is replicated at each call site [9]. If the scheduled code stream contains blocks of
identical instructions, we can simply replicate the branch processor instructions and share the data
processor instructions among call sites. Since the branch processor instruction stream is compact
compared to the data processor instruction stream, this reduces the memory overhead of inlining,
as discussed in Section 4. Since there are no branches in the data processor, we do not need branch
delay slots for it; this eliminates the additional nop instructions that are inserted into unscheduled
branch delay slots, further reducing code size.

Loop Unrolling. Special loop instructions in the branch processor make it possible to execute
simple loops without feedback from the data processor. Knowledge of program loops enables the
branch processor to continue execution beyond the loop while the data processor is executing the
loop body. This also increases the tolerance to instruction cache misses, because the data processor
could be busy while the cache miss is being serviced. Loops have long been a focus of compile-
time analysis, especially in the context of parallelizing compilers for scientific applications [26].
Compiler-generated loop information can be passed down to the branch processor hardware so as
to take advantage of control-flow information known at compile-time.

Function Call/Return. The stack architecture of the branch processor makes it possible to
precisely determine the sequence of instructions for structured call/return sequences. Therefore,
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the return address of a function need not be predicted; it is known by the branch processor. The
branch processor can fetch the instruction stream after the return of a function call while the
epilogue of the function is executing using the information stored in its hardware stack. This
technique, combined with loop unrolling, makes the branch processor architecture an attractive
solution for scientific applications.

Improved Throughput. The branch processor is a much simpler processor than the data pro-
cessor. In an asynchronous implementation, this implies that we can design the branch processor
to have a higher average throughput compared to the data processor. In addition, we have re-
moved some instructions from the data processor, making its decode and dispatch logic simpler.
This combined effect can result in increased overall throughput for the data and branch processor,
improving the performance of all instructions. In a clocked system, the branch processor architec-
ture could potentially result in higher clock rates for the same reason. Another potential source
of throughput improvement is the removal of the fetch loop, as discussed above. Section 4 shows
how this results in improved overall throughput for an existing asynchronous processor.

Area Trade-offs. While the branch processor has a small instruction set, it does impact the
overall area of the architecture. The largest area increase is due to the introduction of the branch
processor cache that holds branch processor instructions. However, this increase could be offset by
the fact that we have split the original code stream into two instruction streams—one for the data
processor and one for the branch processor. In effect, the increased area due to the branch processor
cache could be thought of as a larger effective instruction cache size for the processor. Using two,
smaller instruction caches with a combined size comparable to the original cache size could also
improve the throughput of the fetch loop, improving the performance of the entire processor.
Some processors store predecoded instructions in the instruction cache to improve decode
performance. Any branch information that is part of the predecoded instruction can be removed
from the cache, thereby reducing the number of bits stored per instruction for such architectures.

Memory Bandwidth. The branch processor architecture requires a split control/data code
stream. Since the two code streams are decoupled, the branch processor cache has to share the
access port to the processor’s second-level cache and memory interface. This new requirement
could destructively interfere with second-level cache performance. However, the branch processor
architecture could have a reduced instruction cache miss rate, thereby alleviating this problem.
In addition, the latency tolerance properties of the branch processor could more than offset any
overhead introduced by destructive interference in the second-level cache.

One of the important features of the branch processor architecture is that it is a technique that
can be readily combined with existing approaches to solving the problem of control dependences.
Branch prediction can be incorporated into the branch processor itself, as can a branch-target
buffer or predicated execution. We discuss some of the effects of combining a branch processor
architecture with branch prediction and predication.

Differentiated Branch History. Several researchers have studied the effect of branch classi-

fication, and its impact on branch predictor performance [6]. The branch processor architecture
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differentiates loop branches, jumps for function calls, and jumps for function return from all other
control-flow operations. Any branch predictor can use this information to selectively incorporate
branch information into its history table. In addition, the predictor may incorporate additional
high-level information—such as whether a program is executing the first or last iteration of a
loop—that can be directly determined by inspecting the state of the branch processor stack.

Predication. Predicated execution is a technique for transforming control dependences into data
dependences. Predication trades off executing branch instructions versus executing conditional
instructions that may not contribute toward the computation. Predicated execution in the data
processor would benefit the branch processor architecture because short sequences of conditional in-
structions could be transformed into predicated code thereby increasing the number of instructions
fetched by a single block fetch instruction.

3. Initial ISA and Implementation Issues

In this section we present an initial instruction set architecture for the branch processor and
compilation strategies for the proposed instruction set. The branch processor includes a hardware
stack to store structured control-flow information, and we describe the effect each instruction has
on the state of the stack.

There are times when control flow information is only available at run time. To execute such
programs, we introduce a class of forwarding instructions in the main data processor. These
instructions send a data value from the data processor to the branch processor via the control
queue in addition to storing the result in the register file. These must be matched by a branch
processor instruction that reads the data from the control queue. Instructions that receive values
from this control queue have a “?” appended to them to make this explicit.

3.1. Instruction Set Summary

In what follows, addr refers to the address of instructions to be executed on the data processor,
and baddr refers to addresses for branch processor instructions. bpc refers to the address of
the current branch processor instruction, while nextbpc refers to the address of the next branch

processor instruction.

Block Fetch. Block fetch instructions are introduced to compress control flow information within
basic blocks. The instruction fetch addr, N fetches and executes N instructions that begin at
address addr. This instruction can also be used to implement straight-line microcode. A sequential
stream of instructions that implements a complex task can be invoked without increasing code
size significantly by using a single fetch instruction. Using this instruction can result in a smaller
instruction cache footprint when common code can be shared among different parts of the program,

as shown in Section 4.

Loops. To permit simple loop constructs to be implemented without significant overhead, we
introduce the following two instructions: loop N and dec. The loop instruction stores the pair
(nextbpc, N) on the hardware stack. Branch processor execution continues with the next instruc-
tion. dec examines the pair (baddr, N) stored on the top of the stack, and decrements N. If the
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result is zero (or negative), the stack is popped; otherwise, the branch processor jumps to address
baddr. For example, the code corresponding to a loop that executes a sequence of 15 instructions
10 times would be:

loop 10
fetch addr, 15
dec

The number of iterations in a loop is not always known at compile time. To permit the execution
of loops with iteration counts determined at run time, we introduce the 1oopN? instruction. This
instruction receives the next data value from the control queue and uses it as the loop count N (as
in the normal loop instruction); other than that it behaves like a loop instruction. When breaking
out of a loop, the hardware stack still contains state information that must be destroyed. The pop
instruction accomplishes this by explicitly popping the top of the hardware stack.

Function Calls. Function calls are implemented with the call instruction. call baddr pushes
(nextbpc, 1) onto the branch processor stack and transfers control to baddr. Returning from a
function is implemented by a ret instruction, that jumps to the address on the top of the stack
and pops the stack. The hardware stack is backed by main memory to handle programs with
deeply-nested calls.

To execute a function call to an address determined at run time (this occurs when executing
a function determined by looking at a function pointer stored in a table, or in the case of dynamic
dispatch of methods in object-oriented languages), we introduce the call? instruction. This
instruction reads the target address from the control queue, and otherwise behaves like a call.

Data-dependent Control Flow. The loop and pop instructions can be used to implement
control flow in loops. To handle arbitrary branches, we introduce goto instructions of two flavors:
goto baddr and goto?. The first instruction unconditionally changes the branch processor PC to
baddr; the second instruction reads the target address from the control queue.

When control flow depends on computation performed by the data processor, the control queue
is used to determine the direction of the branch. We use single-operand branch instructions bgez?,
bltz?, bgtz?, blez? and two-operand branch instructions beq?? and bne?? for this purpose. The
branch instruction bee baddr reads a value (or two values) from the control queue and continues
execution at address baddr if the value received is compatible with the condition code. Otherwise,
execution continues with the next branch processor instruction.

Block Predication. We provide a simple mechanism for predicating a block of instructions. The
instruction fetch? addr, N is used for this purpose. If the value received from the data processor
is non-negative, then the block of N instructions stored at address addr are executed; otherwise,
the instruction behaves like a nop.

Combined Loop/Branch and Fetch. The only branch processor instructions that actually
compute data processor program counter values are fetch and fetch?. We propose to make the
branch and loop instructions also support this functionality. Effectively, we collapse a branch/loop
instruction followed by a fetch instruction into a single instruction. Instruction floop cnt,addr, N
behaves like 1oop cnt followed by fetch addr, N. Instruction f1oopN? addr, N behaves like 1loopN?
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Instruction Purpose

fetch addr, N fetch and execute block of instructions

floop cnt,addr,N push loop counter and block fetch

dec decrement/pop loop counter

floopN? addr,N push loop counter, value unknown at compile time
pop break out of loop

call baddr function call

call? function call, target unknown at compile time
ret return from function call

goto baddr arbitrary control flow

goto? goto with target unknown at compile time
fbee baddr ,addr , N conditional branches

fetch? addr,N block predication

Table 1: Instruction set summary.

followed by fetch addr, N. Branch instructions of the type fbcc baddr, addr , N behave like normal
bee baddr instructions followed by fetch addr, N. Note that these instructions can implement the
original loop and branch instructions. Executing the floop cnt,addr, N instruction pushes the
value (bpc, cnt) with a bit set indicating that the “loop” part of the instruction has already been
executed. Table 1 summarizes the basic ISA for the branch processor.

3.2. Deadlock, Exceptions, and Context Switching

The state in the branch processor architecture is distributed, since we have two streams of in-
structions that are being executed concurrently. In addition, we have instructions that synchronize
the branch processor and data processor. In this section we examine some of the consequences of
such an architecture, presenting solutions to the new issues they raise.

Deadlock Detection. Since our architecture includes explicit instructions that synchronize the
data processor and branch processor, incorrect code could deadlock the hardware. To avoid this
problem, we must be able to detect the occurrence of deadlock and correct the problem. Deadlock
can occur in two different cases in the branch processor architecture:
e areceive on the control queue is blocked because there is no matching forwarding instruction
and the queue is empty
e a send on the control queue is blocked because the queue is full and there is no matching
branch processor instruction that receives a value from the queue
Every forwarding instruction must be fetched before the corresponding receive is executed in the
branch processor. Therefore, the first case can only be caused by an incorrect program. This
possibility can be prevented by using a correct compiler. The second case could occur if multiple
forwarding instructions have been dispatched in advance, causing the control queue to become full
before any receives could be executed. This case could also be prevented by a compiler that keeps
track of the queue space at the end of each basic block, ensuring that the number of pending
send operations does not exceed the hardware limit. Although both cases of deadlock can be
prevented using appropriate compilation techniques, we might want to execute arbitrary programs
on the hardware without causing the processor to deadlock. We discuss some deadlock-detection
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techniques below.

Deadlock can be detected by using a timing assumption or by running a deadlock detection
algorithm. Simple timing assumptions include assuming that the processor has deadlocked if
instructions have not been decoded for a long interval. A more direct solution is to execute a
simple termination detection algorithm to detect deadlock [7]. In the latter case, we only have
to involve the two ends of the control queue in the termination detection algorithm along with
counters to detect that there are no data values in transit from the branch processor to the data

processor.

Deadlock Recovery. If a receive action is blocked forever, the code being executed on the branch
processor is erroneous. In this case, we must be able to begin execution of the exception handler.
If a forwarding action is blocked forever, this could imply that the code generated by the compiler
is erroneous; however, the processor might deadlock because the control queue is full. In this case,
we should gracefully recover by permitting the program to continue execution while draining the
values stored in the control queue.

To permit program execution in the presence of blocked forwarding instructions, we must be
able to save (and restore) the values stored in the control queue to memory. We can do so by
introducing instructions that save and restore the queue state. In particular, we can treat the
control queue as a memory-mapped structure so that we can dynamically increase the queue size.
With such an implementation, a blocked forwarding action will cause execution to fail only when

a process exceeds its resource limits.

Exceptions and Context Switching. The processor architecture just proposed has state stored
in both the data processor and the branch processor. To support context switching, the processor
must have the capability to store its entire state to memory. The state of the data processor can
be saved to and restored from memory in the same way as in traditional processors. The state
of the branch processor is stored in the contents of the branch processor stack and the contents
of the control queue between the data processor and branch processor. We add branch processor
instructions to save and restore the hardware stack to memory to support this functionality.

Exceptions can be handled using a mechanism based on the one used by modern proces-
sors [15,28]. The forwarding instructions must be treated as instructions that modify the state of
the control queue. In addition, if an exception is encountered in the middle of a block fetch in-
struction, we must be able to restore execution from the middle of the block. This implies that the
branch processor must keep track of pending block fetch instructions so that they can be restarted
after an exception is handled.

Exceptions that occur in the branch processor itself (such as address translation errors or stack
underflows) can be handled by sending them to the data processor with a special flag set indicating
a branch processor exception. The instruction will be executed as a nop in the data processor,
and raise an exception in the usual way. Making the graduation unit in the data processor handle
branch processor exceptions ensures that exceptions are handled in program order.

3.3. Compilation
Existing compilation techniques can be used to generate code for the branch processor archi-
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tecture. The branch processor instruction stream is an encoding of the control-flow graph, while
the data processor instruction stream corresponds to the sequence of instructions in a basic block.

Loop Detection. Both fixed length and variable length loops can be detected by modern compi-
lation systems. Most programming languages have constructs for simple iterated loops, simplifying
the problem of loop detection. Therefore, a compiler can generate branch processor instructions
for loops. In addition, function calls and returns are explicit in the language. Therefore, these in-
structions can be easily generated by standard compilation systems. Indeed, the branch processor
instruction set is easier to map to because the call and return semantics are directly implemented
by the hardware.

Peephole Optimization. Peephole optimization can be used to schedule forwarding instructions
away from the end of the block they are executed in. This provides early branch information via the
control queue, improving the performance of the branch processor architecture. These techniques
are similar to the ones used to schedule uses away from loads [9].

Code Sharing. Loop unrolling and loop peeling are transformations used to improve the perfor-
mance of programs. Both transformations replicate the body of the loop to statically determine
the direction of some of the branches in the loop body. Observe that such program transformations
replicate code just in the branch processor; streams of instructions in the data processor can be
re-used because they no longer encode any control flow information. This implies that we may not
have as severe an impact on instruction cache performance by applying such transformations.

4. Architectural Evaluation

In this section we present a preliminary evaluation of the branch processor architecture, qual-
itatively and quantitatively evaluating some of the trade-offs discussed in Section 2.

4.1. Analysis

In the best case, the branch processor keeps the PC queue and instruction queue relatively full
thereby keeping the data processor continuously busy. Instructions that cause the branch processor
to wait are those with “?” in their name, since they receive a value from the control queue before
continuing execution. For these instructions, we examine the conditions under which the branch

processor is forced to wait.

Branches. Instructions of the form fbgtz? baddr, addr, N conditionally modify the branch pro-
cessor PC. If the branch processor is waiting at this instruction, it can fetch the branch processor
instruction at baddr instead of waiting for the control queue. Once the control queue contains
the branch information, we can simply select between addr, and the address specified by the fetch
instruction at the target of the branch. Assuming that the PC queue and instruction queue were
empty (the worst-case scenario), the data processor would have two nop cycles before executing
the next instruction. In a traditional architecture, this case corresponds to the one where the delay
slot is filled with a nop and therefore there is no additional penalty since the traditional processor
executes bgtz followed by the nop.
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The worst-case occurs when the branch processor executes the fbgtz? and reads the control
queue without stalling, but where the PC and instruction queues are empty. This case occurs when
the branch and data processors are synchronized and when the last fetch operation executed two
data processor instructions. In this case, the branch processor cannot fetch the branch processor
instruction at baddr until a cycle later, introducing one additional nop. The likelihood of this case

is examined later in this section.

Calls. The call? and goto? instructions correspond to jump register instructions that are not
function returns. In these cases, the branch processor must wait until the target can be determined
by the data processor. If the PC queue, instruction queue, and control queue are all empty when
the instruction executes, then the data processor executes one additional nop compared with a

traditional architecture.

Block Predication. The fetch? instruction introduces an additional nop when the block of
instructions is killed by the value received from the control queue. There is no additional nop cycle

when the instructions are executed.

Loops. An examination of the definition of the £loopN? instruction shows that this instruction
does not have to wait for the control queue before the branch processor continues execution. The
value received by £1oopN? is only examined when the dec instruction is reached, during which the

branch processor can continue execution.

4.2. Simulation

In this section we simulate the complete integer and floating-point SPEC95 benchmark suite [24]
to determine several metrics that affect branch processor performance. The code was compiled us-
ing gcc version 2.7.2.3 [23] for a standard MIPS processor and run on an execution-driven processor
emulator. The details of the simulator system are not important since we only report simple statis-
tics like branch frequencies and dynamic basic block counts.

Branch Processor Code Size. The number of branch processor instructions required for a naive
translation of standard assembly code into branch processor code can be estimated by examining
the control-flow graph of the original program. Each basic block requires a fetch instruction, and
the conditional branch at the end requires a bec instruction. (A bec followed by a fetch corresponds
to the combined fbcc instruction.) Table 2 and Table 3 show the percentage of basic blocks (after
removing branches) that have identical code sequences in the SPEC95 benchmark suite (% shared
bblocks). These statistics were taken from code compiled by an unmodified version of gcc. Ignoring
outliers, between 18% and 25% of the basic blocks in most SPEC95 applications are identical to
other basic blocks in the code stream. The final change in static code size (in terms of number
of instructions) for a naive translation of the SPEC95 benchmark suite is also shown in Table 2
and Table 3 (% change in code). Note that the actual code size may be larger, because branch
processor instructions might need more bits for encoding the fetch address than data processor
instructions. However, our preliminary results indicate that the combined static code size for the
branch processor and data processor is no larger than the code stream for a traditional processor.

Another interesting statistic is the number of distinct instructions present in the data processor
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Figure 2: Fraction of unique instructions v/s total instruction count.

code stream. This corresponds to a compilation strategy where we attempt to share as many
data processor instructions as possible at the expense of branch processor code size. Table 2 and
Table 3 show the percentage of unique instructions in the code streams for the different SPEC95
benchmarks when branches and jumps are deleted (% unique insns). While the percentage of
unique instructions varies from 8% for gcc to 28.4% for compress, this wide range is a result of
differing total code size. A general trend that can be observed is that as the code size increases,
the fraction of unique instructions decreases. This trend is demonstrated by Figure 2, which shows
the fraction of unique instructions plotted against total code size for 267 standard system binaries
for NetBSD compiled using gcc.

Another source of code compression that we have not measured or estimated (because we do not
have a compiler for the branch processor at the time of writing) is the savings that result due to the
special purpose loop and function call/return instructions. The loop instructions potentially save
a comparison and subtraction per loop iteration because of the special-purpose branch processor
hardware support. The savings of this form are hard to quantify without a realistic compiler,
because optimization techniques like induction variable elimination can be used to share the loop
index calculations with other induction variables required by the body of the loop. Function call
and return instructions use the hardware stack to save and restore the return address, thereby
eliminating instructions from the prologue and epilogue of non-leaf procedure calls that save and
restore the return address of a procedure.

Branch Distance. For the branch processor to achieve maximum benefit, instructions that
produce the source registers used in a later branch would ideally be scheduled as far in advance
of the branch as possible. We refer to the distance between the branch use and the instruction
that defines the register as the branch distance. The worst case for the branch processor occurs
when the branch distance is one and the basic block size is small (3 or fewer instructions), since
it restricts the ability of the branch processor to “run ahead” of the data processor. However,
not all of these distance one branches in small basic blocks cause problems. For example, a two
instruction basic block that branches on the return value of a procedure will not trigger worst-case
behavior in the branch processor.

An exact analysis of the effect of branch distance on branch processor performance is difficult,
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go | m88ksim | gcc | compress 1i | ijpeg | perl | vortex | avg.
Branch freq. 8.6 14.1 12.9 7.2 11.0 | 22.2 20.1 15.1 13.9
Call/Ret freq. 1.6 2.3 2.4 1.2 4.7 11.2 9.4 6.8 5.0
Avg. branch dist. | 2.7 1.4 2.7 1.4 3.0 2.2 2.4 2.6 2.3
% bad blocks 8.3 4.5 11.0 6.0 7.6 14.3 14.0 11.2 9.6
% unique insns 134 21.1 8.0 28.4 22.0 | 19.9 15.3 11.0 174
% shared bblocks | 18.1 21.1 26.6 18.3 20.9 | 225 24.6 33.8 23.2
% change in code | -7.0 9.1 -15.8 -6.0 98 | -9.7 |-141 | -177 |-11.2

Table 2: Measurements for the SPEC integer benchmarks compiled with gcc.

tomcatv | swim | su2cor | hydro2d | mgrid | applu | turb3d | apsi | fpppp | waveb | avg.
Branch freq. 9.3 1.2 3.5 5.5 0.5 2.0 2.7 2.0 0.7 3.4 3.1
Call/Ret freq. 2.3 0.3 0.7 2.1 0.0 0.0 0.3 0.2 0.2 0.3 0.6
Avg. branch dist. 4.6 2.2 3.0 1.8 1.0 1.0 2.0 2.5 3.8 2.1 2.4
% bad blocks 18.8 7.7 15.7 3.8 0.1 0.0 8.7 5.5 6.7 5.5 7.2
% unique insns 24.4 24.8 234 22.5 24.1 22.5 25.8 21.0 | 27.3 19.9 | 23.6
% shared bblocks 19.9 19.3 19.1 19.7 19.8 19.0 20.4 20.8 | 189 18.3 | 19.5
% change in code -8.1 -7.2 -6.3 -7.8 -7.8 -4.9 -7.2 -6.8 -4.8 -5.7 -6.7

Table 3: Measurements for the SPEC floating-point benchmarks compiled with gcc.

and requires a functional compiler for the branch processor architecture. As of this writing, we
do not have a compiler. Still, we wanted to get some idea of what the branch distance was in
real programs, so we measured the average branch distance in each of the SPEC95 integer and
floating-point applications. The results of this study and the dynamic percentage of basic blocks
that could potentially result in worse-case branch processor behavior (% bad blocks) are shown in
Table 2 and Table 3. The results should be interpreted somewhat qualitatively, since the compiler
that is used can dramatically affect the branch distance. We used gcc, which makes no effort to
maximize branch distance. A compiler for the branch processor architecture would attempt to
schedule the register definitions away from branches in the same manner that modern compilers
attempt to schedule loads away from uses to hide read latency. Despite using a standard compiler,
we find the branch distance numbers encouraging: the average branch distance is 2.3 for SPEC95
integer programs and 2.4 for SPEC95 floating-point programs. Another observation is that the
dynamic percentage of “bad blocks” is only 9.6% for integer programs, and 7.2% for floating-point
programs. Given no explicit compiler support and the fact that the percentages are conservative,
we believe this bodes well for a complete branch processor implementation.

In addition, many of the branches in this branch distance study (especially in the floating-point
programs) are loop branches that would actually be removed by the branch processor and converted
into its floop instructions. Interestingly, these loop branches are often distance one branches since
the loop induction variable is updated immediately before the branch. After a compiler for the
branch processor schedules register definitions away from branches and removes loop branches,
only truly data-dependent branches will remain. If these branches have large branch distances
then the branch processor architecture should perform well. If these branches are of distance one,
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then ideally predication could be used to remove these branches, allowing the branch processor to
run far enough ahead of the data processor to improve performance.

Throughput Improvement: A Case Study. One of the bottlenecks in the performance of
the asynchronous MIPS processor from Caltech [15] is the fetch loop described in Section 2. In
asynchronous systems, the throughput of the fetch loop is limited by the latency around the loop
as well as the throughput of each pipeline stage in the loop [25]. HSPICE simulations using HP’s
nominal parameters for its 0.5um CMOS process available through MOSIS indicated that the
latency of the fetch loop was close to 7.2 ns, limiting the system throughput to 280 MHz [15].
In addition, the load on the output of the fetch was sufficient to limit the internal throughput
of the fetch to 285 MHz. However, the cache and the rest of the execution units were capable
of delivering an average-case throughput of 300 MHz. Adding buffers to the output of the fetch
would add 0.6 ns to the loop latency; while this would have increased the internal throughput of
the fetch to over 300 MHz, the overall system throughput would drop (due to the loop latency
constraint) to 258 MHz. The introduction of the branch processor would have eliminated this loop
latency constraint, permitting the fetch to operate at a throughput of 300 MHz thereby boosting
system throughput. This is an overall 7% improvement in throughput as a result of improved
timing, without considering any of the benefits outlined in Section 2. Indeed, this throughput
improvement was the original motivation behind the branch processor architecture.

5. Related Work

There is a considerable body of work on hardware techniques for improving microprocessor
branch performance. Branch prediction was first described by Anderson et al. in 1967 [2] and was
expanded to include more modern techniques in the 80’s and 90’s by Smith [22], Lee and Smith [12],
McFarling and Hennessy [16], and Yeh and Patt [29,30] among others. These modern techniques
include two-level prediction schemes, branch-target buffers, and return address prediction. While
the branch processor removes many of the branches from the control stream, some data-dependent
branches remain. Although for some applications the branch processor can run ahead of the
main processor and build up a queue of PCs that obviates the need for branch prediction, nothing
precludes these traditional branch prediction techniques from being applied to the branch processor
as well. However, since the branch processor has removed many of the easily predicted branches
(loops and returns), prediction rates from traditional schemes for the remaining branches are likely
to be much lower than usual. For prediction to make sense in the context of a branch processor,
new branch prediction techniques or different predictor organizations may be necessary.

Like the branch processor, predication can remove branches from the instruction stream, con-
verting them into conditional computational operations [1,10]. Recent work on hardware predica-
tion includes Mahlke et al. [13] and August [3,4]. We believe that a branch processor architecture
should contain a predicated data processor. The effect of predication is to change control depen-
dences into data dependences that are executed entirely on the data processor. The result would
be an increased basic block size, a property that benefits the branch processor architecture because
it increases the block fetch size and reduces the rate of synchronization with the data processor.
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In fact, both the branch processor and the data processor could have predicated instructions.
Short conditional branches can be replaced with predicated code on the data processor, whereas
long conditional branches can be implemented with block predication instructions on the branch
processor.

One of the potential benefits of the branch processor architecture is its ability to effectively
prefetch instructions and hide fetch latency from the main processor. Other work has adopted
compiler-directed solutions to this problem that require some hardware assistance [17,18,20]. Again,
these techniques are orthogonal to the branch processor architecture and may help extend the
branch processor’s innate instruction prefetching ability. The branch processor architecture may
further enhance these techniques because it performs block fetches of instructions and can run
ahead of the data processor (even “exiting” a loop long before the data processors does) po-
tentially hiding larger latencies. The branch processor also prefetches only instructions that the
processor will actually execute, so it is not a guess—it simply fetches these instructions as early as
possible.

Perhaps the work most closely related to the branch processor architecture is Smith’s work
on decoupled access/execute architectures in [21] and Goodman’s follow-on work in [8]. The
branch processor is also a decoupled architecture in that a program to be executed is divided into
two or more instruction streams, and a number of “processors” cooperate in the execution of the
program. While Smith’s STRETCH and Goodman’s PIPE machines decouple the execution of
computational instructions from memory accesses, the branch processor architecture decouples the
execution of computational instructions from control flow instructions. Both techniques use a set of
queues that in best-case operation completely hide long latency events from the main computational
engine. In Smith’s case those events were memory accesses, and in the branch processor case those
events are a combination of instruction fetch and branch resolution. All modern high-performance
processors have incorporated some form of latency hiding for main memory and mechanisms that
decouple their execution from the main microprocessor (multiple outstanding misses, lockup-free
caches, prefetching, etc.) As clock rates increase and the fetch-branch feedback loop becomes
more critical, techniques to decouple branches like those in the branch processor may find similar
acceptance.

6. Concluding Remarks

The branch processor architecture decouples control flow from computation, allowing the
branch processor to run ahead of the data processor and potentially providing benefits such as
instruction cache prefetching, loop unrolling, code compression, reduced call/return overhead, and
improved throughput. Furthermore, the architecture is orthogonal to traditional techniques such
as branch prediction, predication, and instruction prefetching.

Despite the introduction of a new code stream, we showed that the total code size is smaller
than the original code size for every application in the SPEC95 suite even using a conservative
estimate. We provided an analysis of the conditions when the branch processor does not perform
well, and discussed necessary features of a branch processor compiler that would reduce the fre-
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quency of those conditions. Note that the conditions under which the branch processor cannot run
ahead of the data processor are the ones under which traditional processors exhibit poor perfor-
mance. Techniques that increase effective basic block sizes such as trace scheduling, predication,
and loop unrolling would allow the branch processor to run ahead of the data processor, boosting
performance whenever the basic block size is increased.

We believe the branch processor architecture provides a framework for studying control-flow
issues in modern processors, because of its clean separation of control and data information. Among
the most interesting problems we plan to explore are novel compilation techniques for decoupled
control architectures, the incorporation of a branch processor in high-performance asynchronous
processors, and the effect of decoupling control and data on multi-threaded processors.
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