
Exploiting Active CMP-based Devices in System Area

Networks

Ming Hao
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853

haom@csl.cornell.edu

Mark Heinrich
School of Computer Science

University of Central Florida
Orlando, FL 32816
heinrich@cs.ucf.edu

Abstract

We explore the possibility of exploiting the comput-
ing power of chip-multiprocessor-based network interface
controllers and switches in a system area network envi-
ronment. We use stream processing applications as case
studies to show that combining the compute-power of the
host processor and a CMP-based NIC with 4 CPU cores
can achieve speedup up to 1.30 even with the NIC run-
ning at one tenth the speed of the host processor. We
also emphasize that a workload balance between the host
CPU and the NIC CPUs is the key to achieving maximum
speedup. With detailed simulation, we explore the effects
of different NIC memory hierarchies on offloaded appli-
cation performance. In addition, we propose the idea of
two-level active I/O systems with both CMP-based NICs
and CMP-based switches, and demonstrate that they can
achieve even better performance than a system with active
NICs or active switches alone.

1 Introduction
Many network interfaces for System Area Networks

(SANs) use embedded processors to process a portion of
the message passing protocol. This approach not only
avoids the complexity of ASIC design and shortens the
time-to-market, but also offers the flexibility of protocol
debugging and upgrading. The availability of these intel-
ligent NICs has motivated many researches to offload a
myriad of functions to the NICs to boost system perfor-
mance. Typically these functions fall in the category of
processing small packets on the NIC to reduce interrupt
and DMA setup overhead associated with transferring the
packets over the PCI bus, or forwarding input packets di-
rectly to video display devices or the network output link
to avoid the bandwidth bottleneck of the PCI bus.

However, the embedded processor on the NIC has
much lower performance than the host processor because
of power budget, cost, and other design constraints. Con-
sequently, the functions appropriate for offloading are
traditionally limited to simple packet pre-processing or
checksum calculations. In addition, care must be taken
to avoid any adverse effect on normal message protocol

execution. In the past few years, several new SAN stan-
dards have been proposed, like PCI Express [21] and In-
finiBand [8]. These new technologies significantly reduce
the I/O bandwidth bottleneck (though avoiding unneces-
sary data transfer is still desirable). Further, these new
system area networks enable tighter coupling of the net-
work interface with the memory controller, and the over-
head related to transferring packets between host memory
and NIC memory is correspondingly reduced.

But high-level communication protocols will still con-
sume many host processor cycles. With a 1 Gb/s duplex
Ethernet link and Alacritech’s 1000x1 TCP offload en-
gine, 52.5% of two Pentium III 1 GHz processors are still
required to move 1.75 Gb/s of data [9]. Thus, offloading
code to the network interface to reduce host CPU utiliza-
tion will continue to be desirable and important. With
the advance of VLSI technology, integrating more than
one CPU core in a NIC or switch is becoming feasible
and can enable this higher-level offloading. For example,
the Elan network interface [18] has a separate processor
called the thread processor for higher-level communica-
tion protocols in addition to a ucode processor that is
responsible for low-level message passing. Also, some re-
searchers have already tried to use network processors
with multiple CPU cores to build network interfaces.
Though network processors were originally designed for
packet header processing within backbone routers, their
popularity is rapidly driving down their cost. The In-
tel IXP1200 now only costs around $45 while integrating
6 microengines running at 200 MHz. With these CMP
processors at the core of system area network interfaces,
there is more computational power than needed to simply
process low-level message passing protocols, suggesting
the potential for enabling more aggressive offloading.

On the SAN switch side, there is also an opportunity
for integrating multiple CPU cores. A current trend is
to put network processors within switches to implement
protocol conversion between the many different network-
ing standards (e.g. Fibre Channel, iSCSI, InfiniBand,
Ethernet, etc.). As a natural extension, we propose that
application code can be offloaded to switches and cre-

1

ate active SAN switches. Running high-level application
code enables the switch to filter out unnecessary data and
reduce not only host CPU utilization but also the traffic
through the SAN. One possible application is file copy
from one disk to another. An active switch can redirect
data so that it does not pass through the host at all.

In summary, we believe future intelligent network de-
vices including NICs and switches will be CMP-based and
thus provide many more opportunities for application of-
floading. This paper shows the case of stream processing
in a database system that offloads its operators to take
advantage of CMP-based devices to boost overall system
performance. We focus on partitioning the applications
across the host processors and the CMPs on the devices
to maximize performance. Also, we show that combin-
ing active NICs and active switches will lead to better
performance than either alone. We also propose new ar-
chitecture support that makes programming these devices
easier. In particular, we study the memory hierarchy of
active NICs and show that unlike message header pro-
cessing, caches are required for the embedded processors
to achieve good performance for stream processing oper-
ations.

We describe our active NIC and switch micro-
architecture in Section 2 and introduce our simulator and
stream processing database system in Section 3. We dis-
cuss the performance benefits of exploiting active NICs
and switches and examine detailed cache design trade-offs
for active devices in Section 4 and Section 5. We describe
related work in Section 6, and conclude in Section 7.

2 Architecture and Programming
Model

The systems we consider in this paper can be ab-
stracted as a group or cluster of compute nodes and stor-
age devices connected by a switch-based SAN such as
InfiniBand or PCI Express (formerly 3GIO) (the exact
choice of switch-based system area network is not impor-
tant). Figure 1 shows an example of such a SAN-based
cluster. Compute nodes connect to the network via CMP-
based active NICs, to which users can offload application
code. We also propose replacing conventional switches
with active switches which, in addition to routing mes-
sages from source to destination, can execute application-
level code that may process messages more efficiently,
save network or I/O bandwidth, reduce host processor
utilization, or reduce application execution time [7].

Figure 2 shows the architecture of a CMP-based active
NIC. There are multiple CPU cores on the NIC, each with
a private instruction and data cache. We use one CPU,
the protocol CPU, for message protocol processing and
the others for offloading user applications. The assisting
hardware includes checksum computing units and config-

NIC

MemCtl Mem

Host Node

CPU

Switch

Controller

IO node

Switch

Switch

NIC

IO node

Host Node

Figure 1. A typical SAN-based cluster

uration and status registers that can only be accessed by
the protocol CPU. SRAM is used as backing store for
the caches, packet buffering, and application code and
data storage. CPU core accesses to buffered data pack-
ets are uncached so that cache coherence between the
embedded CPU cores is unnecessary. To hide as many
of the hardware details as possible from the program-
mer while keeping a familiar programming paradigm,
messages that will be processed by NIC CPU cores are
memory-mapped into a contiguous unused area of physi-
cal memory. Thus, offloaded applications can use normal
load and store instructions to access the message pay-
load, similar to a memory-mapped file. There is special
hardware called an ATB (address translation buffer) that
acts like a TLB and implements these CPU-to-message-
payload-buffer address translations.

The protocol CPU runs the normal message passing
firmware. In either a special on-chip buffer or SRAM,
it maintains a table (JumpTable) of starting PCs for of-
floaded applications stored in either the on-chip SRAM
or in external memory, and is responsible for invoking
an offloaded application on a CPU core and updating its
ATB with the addresses of its incoming packets. To in-
voke a handler on a CPU core, the protocol CPU writes
the starting PC and message header into a special per-
CPU queue on which the CPU cores poll when idle. The
scratchpad is a small high-speed SRAM that provides fast
communication and synchronization among CPU cores.

Figure 3 shows the architecture of a CMP-based ac-
tive switch with 8 ports. Solid and dashed lines signify
data and control lines, respectively. The shaded portion
of the figure is a normal switch based on a central output
queue scheme similar to that in the IBM Switch-3 [20].
The key active components are multiple switch process-
ing cores (SPs), their cache structures, and on-chip data
buffers (DB) that play an integral role in the processing
of incoming and composing of outgoing messages. The
data buffers are the data interface between the active
and non-active portions of the switch and are connected

2

Scratchpad

A
ssiting

JumpTable

SRAMHost
Interface

Network
Interface

CPU
Protocol

Bus

CPU core

ATB

ICache

DCache

Queue

ICache

DCache

H
ardw

are

Figure 2. CMP-based active NIC

C
ro

ss
ba

r

C
ro

ss
ba

r

Out1

Out8

In1

In8

Central Buffer

Arbiter1

8X9 9X8

Arbiter2

SendUnit

ATB

DB DMA

Multiple SPs
Shared
D−Cache

Shared
I−Cache

Non−active headers

Active headers

 banks

Dispatch

MemCtl

Routing
Table

Jump Table

DBA

Figure 3. Switch architecture with multiple SPs

to the Crossbar. The ATB here is the same as the one in
the NIC. Detailed information on the micro-architecture
can be found in [7].

We adopt a stream-based programming model for both
active NICs and switches. We call the application code
running on the embedded CPU cores handlers. Handlers
are invoked by incoming active messages in the style of
message-driven processors [12, 15, 22]. Handler dispatch
is based on information in the 128-bit header of the mes-
sage. As mentioned above, with the help of the ATB,
handlers can access the message payload like a memory-
mapped file, greatly easing the access of data structures
that cross message packet boundaries. A detailed discus-
sion of the programming model can also be found in [7].
For both switches and NICs, we allow handlers to freely
allocate memory. For protection reasons, we assume for
now that only a trusted system programmer can offload
applications to active devices.

3 Methodology

In this section we briefly discuss the simulation envi-
ronment and architectural parameters we use to evaluate
our active NIC and active switch systems. Our simula-
tor models a MIPS-based host processor, its cache sub-
system, memory controller, and memory system in detail
based on a simulator that was validated against real hard-
ware in [10]. Our NIC model is based on the Myrinet
network interface card [14], enhanced with multiple CPU
cores. It has 3 DMA engines, two for transporting data
between the NIC’s SRAM and network interface and one
for the host interface. The simulator accurately models
the message protocol execution latency and DMA setup
and interrupt overhead. The NIC exports a queue-pair
communication interface to the host. The embedded pro-
cessors of both NICs and switches are modeled based on
an R4000 with 5 pipeline stages. Embedded cores run at
one tenth the speed of host processors. We also model a
CMP-based SAN switch connected to the memory con-
troller via links and the NIC (as shown in Figure 1) with
embedded processors (as shown in Figure 3). Switches
route packets in a virtual cut-through style. Its detailed
design can be found in [7].

Our host processor runs at 2 GHz and is equipped
with separate 32 KB primary instruction and data caches,
both of which are two-way set associative. The secondary
cache is unified, 512 KB, two-way set associative, and
has a line size of 128 bytes. Our simulator accurately
models an RDRAM memory system for both the host
and switch. The maximum bandwidth of both systems is
1.6 GB/s. The latency of a page hit is 100ns and 122ns
for a page miss. Details can be found in [4]. Active NICs
use SRAM as backing store. As in the Myrinet NIC, the
SRAM is pipelined and has an access latency of 3 cycles.
The embedded processors on both NICs and switches run
at 200 MHz with an 8 KB, two-way set-associative in-
struction cache with 64-byte lines and a 8 KB two-way
set-associative data cache with 32-byte lines.

The main parameters are summarized in Table 1.

Table 1. Architectural Simulation Parameters

Host CPU: 2 GHz, D$: 32KB
I$: 32KB, L2$: 512KB

NIC CPU: 200 MHz, D$: 8KB, I$: 8KB
SRAM: 4MB, Latency: 3cycles

Switch CPU: 200 MHz, D$: 8KB, I$: 8KB
Data Buffers: 32, Latency: 100ns

Memory 120ns, 1.6GB/s
Network 1 Gb/s

Our evaluation has three main goals. The first is to
demonstrate the potential benefits of higher-level offload-
ing of application code to a CMP-based NIC. The second

3

is to study the effects of various architectural parameters
of CMP-based devices on the performance of offloaded
applications. We focus on the memory hierarchy of ac-
tive NICs in this paper because it is the most important
determinant of offloaded application performance. The
third goal is to show the benefits of combining CMP-
based devices together (both NICs and switches) to form
a multi-level active I/O system.

Our main application is a stream processing database
system. This application domain is becoming increas-
ingly important and includes applications like sensor data
processing. Data stream processing is typically imple-
mented by the execution of queries over input streams.
Those queries are comprised of many basic query opera-
tors that can run in parallel—either in a pipelined fash-
ion, within a stream, or across different streams. This
modularity and coarse-grain data parallelism fits a CMP
architecture well. The specific database system we choose
is called Aurora [1], a research system that manages data
streams for monitoring applications. In Aurora, input
streams consist of a series of tuples that have the form
(ts, v1, ..., vn). The system adds ts, a timestamp, to each
tuple. The other fields are application-specific. Aurora
uses primitive operators to construct queries. These are
analogous to operators in a relational algebra; however,
they differ in fundamental ways to address the special
requirements of stream processing. Table 2 summarizes
the Aurora operators that we use in our evaluation.

Table 2. Operators and Their Forms
Operators Forms

Map (B1 = F1,...,Bm = Fm)(S)
Filter (P1,...,Pm)(S)
BSort (Assuming O)(S)

Aggregate (F, Assuming O, Size s, Advance i) (S)
Join (P, Size s, Left Assuming O1,

Right Assuming O2) (S1, S2)
Resample Resample (F, Size s, Left Assuming O1,

Right Assuming O2) (S1, S2)

All the operators have the same basic meaning as in
normal database systems. Readers are referred to [1] for
detailed descriptions of each operator. Here we only give
a brief explanation on the function of each operation. Map
is an extended projection operation; Filter is used to se-
lect tuples satisfying specified predicates. The remaining
4 operators are called order-sensitive since they can only
be guaranteed to execute with finite buffer space and in
finite time if they can assume some ordering (potentially
with bounded disorder) over their input streams. Order
specifications have the form

Order(On A,Slack n,GroupBy B1, ..., Bm)

where A is the ordering attribute and Slack n is the
number of out-of-order tuples considered by the opera-

tors. Specifically, BSort performs a buffer-based approx-
imate sort equivalent to n passes of a bubble sort where
slack = n; Aggregate performs aggregation within slid-
ing windows over input streams; Join is a join opera-
tion over two data streams; Resample is an asymmetric,
semijoin-like synchronization operator that can be used
to align pairs of streams.

In addition to the above stream processing system, we
also use the MD5 and Blowfish decryption algorithms to
particularly show that multiple CPU cores on an active
NIC can work on a single stream by partitioning the input
stream among them. Except Filter and Map, it is not
easy to do this for stream processing in Aurora since other
operators are order-sensitive. The original MD5 uses block
chaining to ensure sensitivity to block order that prevents
arbitrary parallelism. We slightly alter MD5 to run on mul-
tiple CPUs. There should be a predetermined finite num-
ber of blocks processed from independent seeds, such that
the Ith block is part of the “I mod K”th chain. The result-
ing K digests themselves form a message, which can be
MD5-encoded using a single-block algorithm. Based on
this algorithm, each CPU core is assigned a packet in an
interleaved fashion and sends a partial digest to the host
independently. Blowfish is a symmetric block cipher al-
gorithm that encrypts and decrypts data in blocks of 64
bits. It makes use of a key that ranges from 32 bits to
448 bits. Although CBC (Cipher Block Chaining) mode
requires each plaintext block to be XORed with the pre-
vious ciphertext block, this dependence does not affect
executing the decrypt in parallel. We run block decrypt
in parallel by assigning data packets to each CPU core in
an interleaved way as in MD5. Sending decrypted output
is ensured to keep original packet order.

4 CMP-based NIC Results
CPU cores on a NIC can either work together with the

host CPU in a pipelined fashion, or work independently
on unrelated streams in parallel. In this section, we will
show that significant performance improvement can be
achieved in all these cases.

First, to chain NIC CPU cores together with the host
CPU in a pipelined fashion, we need to partition a query
into a host portion and a NIC portion. We use a synthetic
query as the benchmark that consists of two operators:
a Filter that runs on the NIC and a sliding-window
based Aggregate operator that runs on the host. The
tuple has a size of 164 bytes and streams into the NIC
continuously from the network. Since the query has only
two operators, we run the more complicated Aggregate
operator on the host and Filter on the NIC. There is
only one input data stream. When we use more than one
CPU core on the NIC, the input stream is partitioned in
a round-robin fashion among the cores.

Figure 4 shows the active NIC speedup relative to the

4

1 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
pe

ed
up

CPU cores per NIC

no cache, 200MHz
no cache, 400MHz
cache 200MHz
cache 400MHz

Figure 4. Speedup of Partitioned Query with Filter and Ag-

gregate

case without using any NIC CPU cores at all (running
both operators on the host). We show cases with NIC
CPU cores running at one-tenth (200 MHz) and one-fifth
(400 MHz) the host processor speed. We consider two
NIC memory configurations. One is with both an 8 KB
instruction cache and an 8 KB data cache with SRAM
as backing store, while the other uses only SRAM. In
both cases, streaming data is uncached. With one or two
200 MHz CPUs cores, the slower NIC CPUs are a bot-
tleneck and the host is under-utilized. As a result, ex-
ecution time actually increases relative to running both
operators on the host. A balanced workload is reached
with 4 200 MHz CPU cores plus caches, where the ac-
tive NIC achieves a speedup of 1.30. When the NIC
CPU frequency is doubled, the balance is reached with
only 2 CPU cores plus caches, with no improvement at
4 400 MHz cores because the NIC’s computing power
becomes under-utilized and the host becomes the bottle-
neck. The NIC CPU cores form a two-stage pipeline with
the host processor, and the maximum speedup can only
be achieved when the application partitioning balances
these two stages. The computational intensity of each op-
erator strongly depends not only on the query itself and
the values in the input streams but also on the number
of available NIC CPU cores. Therefore, an ideal scheme
is one that dynamically decides whether to offload oper-
ators and which to offload based on this information. As
an experiment, we adjusted the parameters of the same
Filter and Aggregate combination so that 4 400MHz
CPU cores can reach a load balance with the host and
achieve a speedup of 1.76. Figure 4 also indicates the im-
portance of both the instruction and data caches. With
only SRAM, the NIC still can not keep up with the pro-
cessing speed of the host even with 4 400 MHz CPUs.

Figure 5 shows the host CPU utilization in the
above simulations. Host utilization is defined as 1 −

IdleT ime/TotalT ime. We can clearly see that the host is
under-utilized when the NIC is the bottleneck, thus per-
formance suffers, though saved host CPU cycles can be
used for other queries in a multiprocessing environment.

1 2 4
0

0.2

0.4

0.6

0.8

1

ho
st

 C
P

U
 u

til
iz

at
io

n

CPU cores per NIC

no cache, 200MHz
no cache, 400MHz
cache 200MHz
cache 400MHz

Figure 5. Host Utilization of Partitioned Query

In the above example, the CPUs of the NIC work to-
gether on the same input steam. The key to this execu-
tion model is computation balance and synchronization
among participating CPU cores. Though Filter can run
in this way, non-uniform selectivity can cause load im-
balance. MD5 and Blowfish are two typical applications
that better fit this model: both apply the same opera-
tions repeatedly on small units of data. Figure 6 shows
the speedup of MD5 and Blowfish decryption with dif-
ferent numbers of cores. The host CPU remains idle for
this measurement. In the case of MD5, CMP-based NICs
achieve a speedup of 1.98 and 3.92 for 2 and 4 CPUs,
respectively, because there is almost no synchronization
overhead. Blowfish decryption achieves a speedup of
3.45 for 4 cores, slightly worse than MD5 because of the
need to synchronize to ensure correct output packet or-
der. We want to point out that most network processors
also use this processing model, but at the granularity of
packets. Since we map input packets into a contiguous
address space, the NIC CPUs can partition data in a more
flexible manner.

Obviously, in addition to partitioning a single data
stream across multiple CPU cores, each CPU core can
also be used to process different streams. This is partic-
ularly useful for order-sensitive operators where it is rel-
atively difficult to partition the data streams. Next, we
will compare the processing throughput of 6 operators, re-
spectively. They are Join, Resampling, Aggregate, Map,
Filter and BSort. We use the same stream as in the
above experiments, with a tuple size of 164 bytes. Here
we briefly introduce what each operator does. Filter
selects 20% of tuples by checking an integer field; Map se-
lects three integer fields from original tuples; Aggregate

5

md5 Blowfish
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
pe

ed
up

1 core
2 cores
4 cores

Figure 6. Speedup of MD5 and Blowfish Decryption

performs a sliding window-based average operation on
one integer field. BSort sorts input tuples with a window
of 20 tuples; Resampling selects 10% of tuples by resam-
pling based on an average operation; Join performs a
window-based join operation with a window size of 10
tuples. For each operator, we also vary the number of
processors. In all cases, each NIC CPU core and the host
CPU run the same operator but process independent in-
put data streams. The metric we use is the aggregate
processing throughput of all participating CPUs.

We particularly focus on the performance impact of
the NIC memory subsystem. As previously mentioned,
using CMP-based network processors as kernel compo-
nents of programmable NICs will become increasingly
cost-effective as their variety of usage widens. Since the
major data references of network processors are either
the streaming data (the message payload) that have low
temporal and spatial locality, data caches are typically
not very effective in comparison to an SRAM buffer or
multiple memory interface units. But with offloaded ap-
plications running on the NIC, the situation is different.
In our simulations with data stream operators, we find
that caches are quite effective at buffering the most fre-
quently used instructions and application data other than
the streaming data (though the specific working set size
strongly depends on query and input data characteris-
tics). In the experiments, we consider 3 memory hi-
erarchies: SRAM only, a private instruction cache and
SRAM, and both a private instruction cache and data
cache plus SRAM. Streaming data accesses remain un-
cached because of their poor locality. We consider only
private caches here. We did not consider a shared cache
structure, though it would allow the sharing of data/code
between NIC processor cores, because of the necessity
of multi-porting the shared cache (for performance) and
because of the resulting implementation complexity and
potential impact on NIC core clock rate.

Figure 7 and Figure 8 show the aggregate through-

1 2 4
0

10

20

30

40

50

60

70

80

90

100

110

T
hr

ou
pu

t(
M

B
/s

)

CPU cores per NIC

no cache
only inst. cache
inst. and data cache

Figure 7. Throughput of Filter Operator

1 2 4
0

10

20

30

40

50

60

70

80

90

T
hr

ou
pu

t(
M

B
/s

)

CPU cores per NIC

no cache
only inst. cache
inst. and data cache

Figure 8. Throughput of Map Operator

put of Filter and Map, respectively. Since these two are
relatively simple operators and using the host CPU only
would make the network input link a bottleneck, we only
show the aggregate bandwidth of each operator across
different numbers of NIC CPU cores. With 1 Gb/s input
link bandwidth, Filter and Map achieve an aggregate
throughput of 106.1 MB/s and 84.9 MB/s, respectively,
with 4 CPU cores plus both instruction and data caches.
The 8 KB caches are large enough for their instruction
and data working sets. In contrast, with 4 CPU cores,
Filter and Map achieve only 19.7 MB/s and 17.7 MB/s,
respectively, in the cases without caches. Adding only an
instruction cache greatly improves the throughput since
CPU cores need to fetch instructions from SRAM each
cycle. Still, adding a data cache helps even further. For
Filter with 4 CPU cores, the throughput achieved with
a data cache is 1.62 times larger than without one. Next,
for all the rest of operators, we show their aggregate band-
width along with that of the host CPU alone. Zero NIC
CPU cores means the throughput achieved with only the
host CPU.

6

0 1 2 4
0

5

10

15

20

T
hr

ou
pu

t(
M

B
/s

)

CPU cores per NIC

host only
no cache
only inst. cache
inst. and data cache

Figure 9. Throughput of Aggregate Operator

For the Aggregate operator, we can see from Figure 9
that the achieved throughput is much lower than either
the Filter or Map operators. Aggregate is a relatively
compute-intensive operator. With only the host CPU, it
achieves 14.0 MB/s. Adding NIC CPU cores significantly
improves the aggregate throughput. 4 NIC CPU cores
with caches achieves 1.39 times higher throughput than
the case with only the host CPU. 8 KB caches can cover
its working sets and it only spends 8.0% and 2.0% of its
execution time on instruction cache misses and data cache
misses, respectively. Caches greatly improve the process-
ing throughput. In the case of 4 CPU cores with caches,
it achieves 1.26 times higher throughput than without
any caches.

0 1 2 4
0

5

10

15

20

25

30

35

40

45

T
hr

ou
pu

t(
M

B
/s

)

CPU cores per NIC

host only
no cache
only inst. cache
inst. and data cache

Figure 10. Throughput of Resample Operator

The throughput of the Resample operator reflects a
similar trend as Aggregate. With only the host, it
achieves a throughput of 31.0 MB/s. Using NIC CPU
cores clearly has a large benefit. Considering the cases
with caches, 1.22 times and 1.34 times more throughput
are achieved with 2 CPU cores and 4 CPU cores, respec-
tively. The improvement is smaller in comparison to the

Aggregate operator because the Resample operator has
an instruction working set between 16 KB and 32 KB. It
spends 24.3% of its execution time on instruction cache
stall. Similarly, caches improve the throughput achieved
by NIC CPU cores. In the case of 4 CPU cores with
caches, it achieves 1.10 and 1.23 times higher throughput
than the case with only an instruction cache and the case
without caches, respectively.

0 1 2 4
0

10

20

30

40

50

60

70

T
hr

ou
pu

t(
M

B
/s

)

CPU cores per NIC

host only
no cache
only inst. cache
inst. and data cache

Figure 11. Throughput of Join Operator

Figure 11 shows the performance of the Join opera-
tor. With only a host CPU, it achieves a throughput of
50.3 MB/s. Like the Aggregate and Resample operators,
adding NIC CPU cores results in a significant through-
put increase. Considering cases of 4 CPU cores with both
an instruction cache and a data cache, active NIC sys-
tems can achieve a throughput 1.4 times higher than the
case with only a host CPU. This large improvement also
results from the fact that the host spends 18.8% of its
execution time on cache misses. Further, 8 KB caches
are small for this specific Join operation, which spends
15.6% of its execution time on cache stall. Still, with 4
CPU cores, the throughput of the case using caches is
1.29 times higher than the case without any caches.

Figure 12 shows the aggregate throughput of the BSort
operator under different cases. With only a host CPU, it
achieves a throughput of 93.0 MB/s. Adding NIC CPU
cores does not increase the achieved throughput much be-
cause the network input link soon becomes the bottleneck
and the NIC CPU cores are under-utilized. With 4 CPU
cores on a NIC with both instruction and data caches, it
achieves only 1.21 times the throughput of the case with
only a host CPU. As an experiment we increased the net-
work link bandwidth to 10Gb/s for Bsort and then indeed
having 4 NIC CPUs with both instruction cache and data
cache improved the throughput by a factor of 1.44 over
the host alone.

We also want to point out that though all operators
have small working sets, some have a relatively large in-

7

0 1 2 4
0

20

40

60

80

100

120

140

T
hr

ou
pu

t(
M

B
/s

)

CPU cores per NIC

host only
no cache
only inst. cache
inst. and data cache

Figure 12. Throughput of BSort Operator

Separate 8 banks 16 banks 32 banks
0

0.05

0.1

0.15

0.2

0.25

0.3

Ic
ac

he
 s

ta
ll−

tim
e

pe
rc

en
ta

ge

Filter
Map
Resample
BSort

Figure 13. Instruction Cache Performance

struction footprint and 8 KB NIC instruction caches are
not sufficient. Both Resample and Bsort operators spend
over 20% of execution time on instruction cache stall.
Current network processors provide only a very small in-
struction cache or on-chip SRAM since their limited func-
tionality results in a small code size. One possible solu-
tion to this problem is to use a shared instruction cache
to increase utilization. If all cores run the same handler
at the same time, obviously a shared cache is beneficial.
But shared caches can also introduce destructive inter-
ference between different handlers. Figure 13 shows the
performance of both private and multi-banked shared in-
struction caches. We consider three different numbers of
banks for the shared cache configurations. The private in-
struction cache is 2-way set-associative, while the shared
cache is 8-way set-associative. For the shared cache, two
requests can proceed in parallel to different banks, but
not to the same bank. The total cache size, 32 KB, is
the same for all four configurations. Four different oper-
ators are executed simultaneously and the figure shows
the percentage of instruction stall-time experienced by

each operator. With a private instruction cache, we can
see that both Fill and Map have negligible instruction
cache stall time with an 8 KB cache. But with a shared
instruction cache, their instruction stall-time percentage
increases to the same level as BSort and Resample be-
cause of destructive interference. Since the instruction
cache needs to be accessed almost every cycle, a shared
instruction cache usually exhibits larger interference than
a shared data cache. We also see that the number of
banks clearly determines the probability of conflicts and
thus the percentage of stall time. To avoid interference
from operators with a large instruction footprint, a hybrid
shared cache scheme may be used with the combination
of a small private cache for each core and a relatively
large shared cache, though this would increase the com-
plexity of the cache subsystem. We expect that limited
instruction cache sizes will limit the complexity of user
functions that can be executed on an active NIC.

In summary, using CPU cores on the NIC can signifi-
cantly boost the performance of operations in the stream
processing system we consider here. These CPU cores can
be used either to form a pipeline with the host CPU or
to work on independent data streams. Further, both in-
struction caches and data caches are necessary to achieve
good performance for offloaded operators, even with an
SRAM backing store.

5 Two-Level Active I/O Systems
In [7], we proposed the idea of active switches and

demonstrated its potential performance benefits. In com-
parison to active NICs, active switches are closer to the
data source and thus can reduce the network workload
between host systems and switches. Further, for those ac-
tive switches that connect two different networks, avoid-
ing converting data from a simpler protocol to a more
complicated one may lead to extra benefits. For exam-
ple, Fibre Channel is currently widely-used in storage
area networks. But a new standard, iSCSI, is gaining
attention because of thee ubiquitous usage of Ethernet.
Switches with embedded processors can convert traffic
between these two protocols and merge the two networks
at the switch. In comparison to the Fibre Channel proto-
col, the IP stack is more compute-intensive. Processing
Fibre channel data right at the switch can help reduce
the data traffic that must go over Ethernet.

We believe active NICs and active switches can be
combined together to achieve better performance than
either of them alone. The following example shows a
simple filter running on either an active CMP-based NIC
alone or an active CMP-based switch alone or both to-
gether. The filter checks one integer field in the input
record and filters out those whose value is smaller than
an integer constant. The selectivity is 0.8. The result
is shown in Figure 14. The number in the labels on the

8

x-axis stands for the number of CPU cores. The hybrid
case means that half of the CPUs are running on the NIC
and the other half on the switch. Since the network link
has only 1 Gb/s bandwidth, with 4 CPUs on the NIC the
overall throughput achieved is limited by the input link
bandwidth. However, utilizing two CPUs on the switch in
conjunction with 2 CPUs on the NIC can avoid this bot-
tleneck and achieve 181.1 MB/s—more than 50% higher
than the case with same number of CPUs on the NIC
alone.

sw.1 sw.2 nic.1 nic.2 nic.4 hybrid.2 hybrid.4
0

20

40

60

80

100

120

140

160

180

200

T
hr

ou
pu

t(
M

B
/s

)

Figure 14. Throughput of Filter

6 Related Work

There is a large body of research attempting to exploit
intelligent NICs. These efforts are mainly in two direc-
tions. First, there is a desire to avoid communication
overhead between the host memory and the NIC via the
PCI bus, particularly for small packets since they have
relatively high DMA and interrupt overhead. The com-
putation performed on these NICs is limited to simple
operations so as to avoid overloading the slow NIC CPU,
which also needs to execute the message passing protocol.
[13] offloaded applications that require small amounts of
computation on a large number of small packets. The
amount of computation ranges from 0.75 to 2 instruc-
tions/byte. One example is an airline global information
system that receives a continuous stream of small mes-
sages from all airports, tickets agents, baggage handlers
and the FAA. [2] does NIC-based MPI collective reduc-
tions (supporting simple integer and floating point reduc-
tions like binary AND, OR, MAX, MIN and SUM opera-
tions). Though the NIC’s processor is much slower than
the host processor, the overhead reduction from eliminat-
ing messages between the host and the NIC makes this
scheme achieve up to a factor 1.19 performance improve-
ment. [3] experimented with offloading part of a network
traffic analysis code to the NIC but claimed that the slow
CPU cores on their NIC could not do any useful work

besides message protocol processing. Another interesting
example is [16], which uses programmable NICs to im-
prove the performance of a Time-Warp application. One
of the optimizations proposed in the paper is to migrate
GVT computation to the NIC since this computation is
not on the critical path of the Time-Warp simulation and
can be performed in the background. It is also not com-
putationally intensive and does not place excessive load
on the NIC. I/O bandwidth is also saved by intercepting
and preventing messages from going across the I/O bus.

The second research direction is avoiding the PCI
bandwidth bottleneck. Until recently, the PCI bus has
been a bottleneck for applications that communicate
large amounts of data like forwarding servers and me-
dia servers. This motivates the idea of decoding video
streams on the NIC and passing data directly to a dis-
play system or caching data on the NIC and forwarding
it directly from there to bypass the PCI bus. Along this
direction, [5] is a typical example that provides a safe,
programmable, and integrated network environment. It
enables applications to compute directly on the network
interface. This environment allows network-oriented ap-
plications to communicate with other applications exe-
cuting on the host CPU, peer devices, and remote nodes
with low latency and high efficiency. [23] proposes a pay-
load caching technique that extends the network inter-
face to cache portions of the incoming packet stream, en-
abling the system to forward data directly from the cache.
[11] applies the idea of caching on the NIC to webservers.
Its performance gains mainly come from avoiding the PCI
bus bandwidth bottleneck.

Our approach is different from the research efforts
above in that it assumes a CMP-based NIC and exploits
the computing power on a NIC while simultaneously re-
ducing data traffic into host memory. It also first pro-
poses the idea of two-level active device systems by com-
bining both active NICs and active switches together to
provide more computing power and reducing the data
traffic flowing through the network.

7 Conclusions
Emerging I/O standards like InfiniBand and PCI Ex-

press eliminate the bandwidth bottleneck of the PCI bus
and reduce message transfer overhead between host mem-
ory and the NIC because of the corresponding tighter
coupling of the NIC and the memory controller. Offload-
ing applications to the NIC will focus on exploiting the
available computing power on a CMP-based network in-
terface controller to reduce the host CPU’s utilization
and improve application performance. In this paper, we
use stream processing applications as case studies, show-
ing that combining the computing power of the host and
the NIC can achieve a speedup of 1.31 with 4 NIC CPU
cores running at one tenth the speed of the host CPU.

9

We also point out that a workload balance between the
host CPU and the NIC CPU cores is the key to achieving
maximum speedup.

The decision whether to process messages on the NIC
and what kind of applications to offload depends strongly
not only on the performance difference between the NIC
CPUs and the host CPU, but also on input data and
application characteristics. Furthermore, each NIC CPU
core can process independent data streams and achieve
near linear aggregate throughput improvement. Via de-
tailed simulation, we also show that private caches for
each NIC CPU core are necessary to achieve good per-
formance.

In addition to active NICs, active switches equipped
with multiple CPU cores can also execute offloaded user
applications. Further, we propose the idea of combin-
ing active NICs and active switches together in the same
system and demonstrate that such a system can not only
provide more computing power, but can also reduce traf-
fic over the input links of NICs, thus achieving better per-
formance than either active NICs or active switches alone.
Specifically, 50% more throughput can be achieved in a
two-level active device system than using only a CMP-
based NIC design.

Acknowledgments

This research was supported by US National Science
Foundation CAREER Award CCR-0340600.

References

[1] D. Abadi et al. Aurora: A New Model and Architec-
ture for Data Stream Management. In VLDB Jour-
nal , Vol. 12, No. 2, August, 2003.

[2] D. Buntinas and D. K. Panda. NIC-Based Reduction
inMyrinet Clusters: Is It Beneficial? In The Second
Workshop on Novel Uses of System Area Networks,
Feburary 2003.

[3] C. Cranor et al. Gigascope: A Stream Database
for Network Applications. In SIGMOD (Industrial
Track), June 2003.

[4] Direct RDRAM 256/288-Mbit Specification.
http://www.rdram.com/documentation/.

[5] M. E. Fiuczynski et al. SPINE - A Safe Pro-
grammable and Integrated Network Environment.
InProceedings of the Eighth ACM SIGOPS European
Workshop, 1998.

[6] J. Gibson et al. FLASH vs. (Simulated) FLASH:
Closing the Simulation Loop. In Proceedings of
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 49–58, November 2000.

[7] M. Hao and M. Heinrich. Active I/O Switches in
System Area Networks. In Proceedings of the 9th In-
ternational Symposium on High-Performance Com-
puter Architecture, pages 365–376, February 2003.

[8] InfiniBand Architecture Specification, Volume 1.0,
Release 1.0. InfiniBand Trade Association, October
24, 2000.

[9] InfiniBand and TCP in the Data Center.
http://www.mellanox.com/technology

[10] D. Kim, M. Chaudhuri and M. Heinrich. Leverag-
ing Cache Coherence in Active Memory Systems. In
Proceedings of the 16th ACM International Confer-
ence on Supercomputing, 2002.

[11] H. Kim, V. S. Pai, and S. Rixner. Increasing
web server throughput with network interface data
caching. In 10th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems , October 2002.

[12] J. Kuskin et al. The Stanford FLASH Multiproces-
sor. In Proceedings of the 21st International Sym-
posium on Computer Architecture, pages 302–313,
April 1994.

[13] K. Mackenzie et al. A Intel IXP1200-based Network
Interface. In The Second Workshop on Novel Uses of
System Area Networks, Feburary 2003.

[14] Myrinet/PCI-X and Myrinet/PCI Host Interfaces.
http://www.myrinet.com/myrinet/PCIX/m3f2-
pcixe.html

[15] M. D. Noakes, D. A. Wallach, and W. J. Dally. The
J-Machine Multicomputer: An Architectural Evalu-
ation. In Proceedings of the 20th International Sym-
posium on Computer Architecture, pages 224–235,
May 1993.

[16] R. Noronha and N. B. Abu-Ghazaleh. Using Pro-
grammable NICs for Time-Warp Optimization. In
6th International Parallel and Distributed Process-
ing Symposium, April 2002.

[17] D. Patterson and J. Hennessey. Computer Architec-
ture: A Quantitative Approach, Morgan Kaufman,
2nd edition, 1996.

[18] F. Petrini et al. The Quadrics Network (QsNet):
High-Performance Clustering Technology. In A Sym-
posium on High Performance Interconnects 13 , Au-
gust 2001.

[19] E. Riedel, G. A. Gibson, and C. Faloutsos. Active
Storage For Large-Scale Data Mining and Multime-
dia. In Proceedings of the 24th international Confer-
ence on Very Large Databases (VLDB ’98), August
1998.

[20] C. B. Stunkel et al. A new switch chip for IBM
RS/6000 SP systems. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing , January
1999.

[21] Third Generation I/O Architecture.
http://www.intel.com/technology/3GIO/

[22] T. von Eicken et al. Active Messages: A Mechanism
for Integrated Communication and Computation. In
Proceedings of the 19th International Symposium on
Computer Architecture, pages 256–266, May 1992.

[23] K. Yocum and J. Chase. Payload Caching: High-
Speed Data Forwarding for Network Intermediaries.
In 2001 USENIX Technical Conference, June 2001.

10

