
Online Recognition of Handwritten Mathematical Expressions
with Support for Matrices

Chuanjun Li
Brown University

chuanjun@cs.brown.edu

Robert Zeleznik
Brown University

bcz@cs.brown.edu

Timothy Miller
Brown University

tsm@cs.brown.edu

Joseph J. LaViola Jr.
University of Central Florida

jjl@eecs.ucf.edu

Abstract

We present an online system for recognizing hand-
written mathematical matrices in the context of an inter-
active computational tool called MathPaper. Automatic
segmentation and recognition of multiple expressions
are supported based on a spacing algorithm that lever-
ages recognized symbol identities, sizes, and relative lo-
cations of individual symbols. Matrices with ellipses
can be recognized and instantiated with non-ellipsis el-
ements. Both well- and non-well-formed matrices can
also be recognized. Matrix elements can be any gen-
eral mathematical expressions including imbedded ma-
trices. Our recognizer also addresses the poor col-
umn alignment problem of handwritten matrices, and
allows for slight horizontal overlaps between elements
in neighboring columns and different rows.

1 Introduction

As pen-based devices, especially Tablet PCs, be-
come more prevalent in various fields [3], pen-based
entry of 2D mathematical notations in conjunction with
computational support is becoming more and more
commonplace. Thus, accurate recognition of handwrit-
ten mathematical expressions [4] is critical for usable
systems and applications.

Recognition of handwritten mathematical expres-
sions have been widely investigated [1, 2, 13], and vari-
ous structure analysis techniques based on baseline tree
structures [13] or context free grammars for symbol
groups have been explored for recognizing the struc-
tures of single mathematical expressions. MathPad2 [4]
handles multiple expressions by manual segmentation.

Recently, research has been done on recognition of sim-
ple handwritten mathematical matrices [7, 8, 9, 11, 12]
as well as scanned typeset matrices [10]. Due to varia-
tions and incremental updates of handwritten input, ap-
proaches that might work for scanned typeset matrices
might not work for handwritten matrices, such as identi-
fication of matrix elements by projection of strokes onto
the two primary axes [7, 8, 9]. Recognition of non-well-
formed matrices where not all elements are available
has not been addressed in these works or by commer-
cial applications such as Microsoft Math [6]. In the lat-
est work of Toyozumi et. al, insertion of new input be-
tween existing rows or columns is a limiting factor. In
addition, some symbols such as summation (

∑
), square

root (√) and fraction lines etc. are not supported in ma-
trices [11, 12].

To mitigate some of the issues raised above, we have
developed a mathematical expression recognizer with
support for matrices, that recognizes non-well-formed
matrices, matrices with any general mathematical ex-
pression as elements, and matrices with horizontally
overlapped elements in adjacent columns and different
rows. Our recognizer also recognizes ellipses and can
replace ellipses with non-ellipsis elements.

2 Mathematical Expression Recognition
Mathematical expressions are recognized in Math-

Paper by the steps shown in Figure 1. An ink stroke is
first tested to see if it is a gesture, such as a scribble for
stroke deletion, or a lasso for stroke selection, etc. If it
is a gesture, the stroke is handled by the user interface
(UI). Otherwise, it is passed to the Symbol Recognizer.

The Symbol Recognizer uses cusp-related features,
such as straightness of stroke, average curvature be-
tween two cusps, arc length, etc, to recognize a stroke.
The rule-based recognizer is adaptable to different writ-



Ink Gesture?

Y

N

UI

Symbol
Recognizer

Syms
Range
Sub-

division

Parse 1
Ranges

Parse 2
Trees of Lines Exprs

Figure 1. Online recognition of mathematical expressions (From [5])

ing styles by having allographs, or different ways of
handwriting one symbol, for the input strokes. A user
can choose a different recognition from a list of alter-
nates for a stroke. The Symbol Recognizer also in-
corporates Microsoft’s symbol recognizer for further
recognition of strokes which cannot be recognized by
the rule-based default recognizer.

Before passed to the structural analyzer called Parse
1, a Symbol object from the symbol recognizer is first
examined for a range test. A range represents one
grouping of symbols for a single expression. The sym-
bol identity and size are used for inflating the bounding
box of the symbol in order to determine which ranges
are hit by the stroke, or if a new range is added by
the stroke. The Symbol objects in all affected ranges
are first sorted in Parse 1 by the left of the stroke
bounding boxes for constructing baseline trees, one for
each range. Each baseline tree is rooted by a main
Line object, with its Symbol objects having lower lever
Line objects for superscripts, subscripts, etc. The trees
of Line objects are further analyzed by the semantics
parser called Parse 2 and one Expr object is generated
for each range of symbols. The Expr object is output
as a typeset expression below the strokes as shown in
Figure 2, and can be converted into other formats for
different computing engines. One built-in engine and
Mathematica are used for computation in MathPaper.

A matrix can be one component of an expression,
and each of its elements can be a general expression.
Hence, recognition of matrices is based on the recogni-
tion of general mathematical expressions as described
above.

3 Matrix Recognition
For input simplicity, parentheses are used to spec-

ify matrices in MathPaper. Since parentheses are also
used for non-matrix expressions, it is necessary to de-
tect whether strokes between parentheses are matrix el-
ements.

3.1 Matrix detection and element segmenta-
tion

Each open parenthesis Symbol object (parenSym)
stores the Line objects for the matrix elements. Strokes

between a pair of matched parentheses strokes, or to the
right of an open parenthesis stroke, if the open paren-
thesis is not closed, are collected for each parenSym
when the parenSym’s range is updated. A parenSym’s
stroke collection is segmented into ranges, one range
for each element, according to the recognized symbols’
identities, sizes, and distances to other symbols just like
range segmentation for non-matrix expressions as dis-
cussed above. Bounding boxes of symbols are inflated
based on the symbols’ identities and sizes and all inter-
sected symbols fall into one range for an element. The
bounding box inflating ratios for matrix element range
segmentation are specific to individual symbols and are
in general smaller than those for non-matrix expression
range segmentation given that strokes for a matrix el-
ement tend to be closer than strokes for a non-matrix
expression.

If there is only one row as identified in the following
sections, it is likely that the one row is for a non-matrix
expression, and not for a one-row matrix. Hence, if
there is more than one column, a second round parse is
applied to the parenSym’s strokes, with a larger bound-
ing box inflating ratio based on non-matrix expression
range segmentation. If there is still more than one col-
umn, the result of the first round parse is retrieved as
matrix elements. If the second round parse generates
only one column, then the strokes are for a non-matrix
expression as shown in Figure 2. Without element 2
as shown on the right in the figure, the strokes are re-
parsed and only one column is generated rather than two
columns as shown on the left.

Figure 2. Recognition of matrix and single
expression in parentheses.

3.2 Row identification
After range segmentation for elements, symbols in

each element range are sorted and parsed by Parse 1 to



obtain one Line object for each element. The bounding
box of an element Line elementBox is compared with
a bounding box of each row to identify to which row it
belongs or if it is for a new row.

Since handwritten superscripts and subscripts in one
row might intrude into neighboring rows as shown in
Figure 3, we use the bounding box rowBox which con-
tains the bounding boxes of the main baselines for the
elements in the row, rather than the bounding boxes of
the Line trees of all the Line objects in the row, to com-
pare with elementBox. Taking into account handwrit-
ing variations, we allow for certain overlaps between
elementBox and rowBoxes of neighboring rows. An
elementBox falls into one row with rowBox only
when their overlap height is at least half of the height
of either elementBox or rowBox. Hence cmb2

ph
in Fig-

ure 3 is in a separate row.

Figure 3. Recognition of non-well-formed
matrix.

3.3 Column identification

There are two steps in identifying the column for a
new element Line Object. The first step locates the rela-
tive position of the Line object in the list of Line objects
for the row, and the second step identifies the column
number after all element objects have been ”inserted”
into their rows in the first step. This allows for insertion
of new rows or new columns.

Since adjacent elements in a row are separated by
space, the first step needs only to check, from the first
Line object, the right of a new elementBox Rn and the
left of an existing elementBox Le. If Rn > Le, the
new Line object is inserted after the current Line object
in the Line object list. Otherwise the next Line object is
checked until the end of the list.

The second step first identifies the total number of
columns by traversing all rows and generates a bound-
ing box colBoxc for each column c. The list of colBoxi

is initialized by the first row, and updated while all the
other rows are traversed. If there is a new column c, a
new colBoxc is inserted into the list colBoxi, allowing
for insertion of new elements at any location.

The second step then checks the bounding box of
each element b with the column bounding box list
colBoxi. If b is contained by colBoxi, it is in column
i. Since the column bounding box list colBoxi con-
tains one bounding box for each column, all elements’
columns will be identified in the second step.

3.4 Ellipsis recognition and instantiation

Since dots for ellipsis can be far away from each
other, they are recognized by being collected together
and globally clustered to form horizontal, vertical or di-
agonal ellipses. Floating points are removed from the
ellipsis dots, and the dots for i, j are not collected dur-
ing ellipsis detection. If the ellipsis dots are not a multi-
ple of 3 during incremental updates, the remaining one
or two dots are recognized as a default horizontal ellip-
sis.

Figure 4. Pattern detection after recogni-
tion of ellipsis elements.

Since the bounding boxes of horizontal and verti-
cal ellipses can be too narrow or flat, their rows and
columns are identified by using the inflated bounding
boxes which consider both lengths and heights of tight
bounding boxes.

After ellipsis recognition, matrix elements are exam-
ined to detect certain patterns, such as repeated rows,
columns, or diagonals, etc. Common patterns such as
Toeplitz matrices or Hankel matrices are checked first.
If a matrix is not any of these matrices, the element
in the last row and the last column, which is normally
a non-ellipsis element, is compared with another non-
ellipsis element in the last row and another non-ellipsis
element in the last column. If a pattern is found, the row
and column variables are identified, and all the ellipsis
elements can be instantiated with non-ellipsis elements
with default matrix dimensions of 7, as shown in Fig-
ure 4 for a Vandermonde matrix.



Figure 5. Matrix computation.

Matrices can be recognized individually or as com-
ponents of an expression, as shown in Figure 5 for ma-
trix computation after recognition. A double arrow (⇒)
is used for expression evaluation. Linear algebra op-
erations, such as computation of eigenvectors, singular
value decompositions, etc, are also supported.

4 Experiments
We examined our recognition system’s accuracy by

examining both symbol recognition and matrix recog-
nition. For symbol recognition, we had seven subjects
each writing 891 symbols for a total of 6237 symbols
in 43 different expressions. Note that each supported
symbol (79 in total) was included at least twice in the
43 expressions. The average accuracy across all sub-
jects was 91.6%, with the lowest accuracy 81.2% for
one subject and the highest 99.5% for another subject.

Five different subjects performed experiments on
recognition of 50 different matrices. Most of the ma-
trices were taken from algebra textbooks and the liter-
ature. Each matrix was entered once by one subject.
Among the 50 different matrices, 45 were correctly rec-
ognized with an overall recognition accuracy of 90%.
A matrix is correctly recognized only if all symbols
are correctly recognized and all elements are correctly
parsed. Some of the recognized and failed matrices are
listed in Figure 6 and Figure 7.

Figure 6. Examples of correctly recog-
nized matrices.

Neighboring rows can overlap vertically, and neigh-
boring columns can overlap horizontally as shown by

Figure 7. Failed matrix examples.

the last two matrices on the top of Figure 6. Two typi-
cal cases where matrices cannot be recognized correctly
are listed in Figure 7. The first one has slanted row ele-
ments, and the second one has part of one element out-
side the parenthesis range.

5 Conclusion
We have presented an approach for recognizing ma-

trices in the context of our mathematical recognition
and computation system, MathPaper. Matrices can be
components of an expression, and matrix elements can
be any general mathematical expression. Both well-
formed and non-well-formed matrices can be recog-
nized, and elements in adjacent columns can have hori-
zontal overlaps if they are in different rows. Matrices
with ellipses can also be recognized and instantiated
with non-ellipsis elements.

References

[1] K.-F. Chan and D.-Y. Yeung. Mathematical expression recognition: a
survey. International Journal on Document Analysis and Recogntion,
3(1):3–15, 2000.

[2] U. Garain and B. B. Chaudhuri. Recognition of online handwritten
mathematical expressions. IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, 34(6):2366–2376, Dec. 2004.

[3] S. Joy, F. Leslie, and K. Todd. Dataquest insight: Tablet pcs are slowly
gaining momentum. 6 April 2007.

[4] J. LaViola and R. Zeleznik. Mathpad2: A system for the creation and
exploration of mathematical sketches. ACM Transactions on Graphics,
23(3):432–440, Aug. 2004. (Proc. of SIGGRAPH 2004).

[5] C. Li, T. Miller, R. Zeleznik, and J. LaViola. Algosketch: Algorithm
sketching and interactive computation. In Proc. of the 5th EUROGRAPH-
ICS Workshop on Sketch-Based Interfaces and Modeling (SBIM 2008),
pp. 175-182, 2008.

[6] Microsoft. Microsoft math. Computer program.
www.microsoft.com/math.

[7] E. Tapia and R. Rojas. Recognition of on-line handwritten mathemati-
cal expressions using a minimum spanning tree contruction and symbol
dominance. In J. Llados and Y.-B. Kwon, editors, Graphics Recognition,
volume 3088 of LNCS. Springer-Verlag, 2004.

[8] E. Tapia and R. Rojas. Recognition of on-line handwritten mathemati-
cal expressions in the e-chalk system - an extension. In Proc. Int. Conf.
on Document Analysis and Recognition (ICDAR’05), pages 1206–1210,
Seoul, Korea, Aug./Sept. 2005.

[9] D. Tausky, G. Labahn, E. Lank, and M. Marzouk. Managing ambiguity in
mathematical matrices. In Proc. of the 4th EUROGRAPHICS Workshop
on Sketch-Based Interfaces and Modeling (SBIM 2007), Aug. 2007.

[10] K. Toshihiro and S. Masakazu. Detection of matrices and segmentation of
matrix elements in scanned images of scientific documents. In Proc. Int.
Conf. on Document Analysis and Recognition (ICDAR’03), pages 433–
437, Edinburgh, Scotland, Aug. 2003.

[11] K. Toyozumi, T. Suzuki, K. Mori, and Y. Suenaga. A system for real-time
recognition of handwritten mathematical formulas. In Proc. Int. Conf.
on Document Analysis and Recognition (ICDAR’01), pages 1059–1063,
Seattle, WA, Sept. 2001.

[12] K. Toyozumi, T. Suzuki, K. Mori, and Y. Suenaga. An on-line handwrit-
ten mathematical equation recognition system that can process matrix ex-
pressions by referring to the relative positions of matrix elements. Systems
and Computers in Japan, 37:87–96, 2006.

[13] R. Zanibbi, D. Blostein, and J. R. Cordy. Recognizing mathematical ex-
pressions using tree transformation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 24(11):1455–1467, Nov. 2002.


