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ABSTRACT

Practitioners use low-pass filters to improve the quality of noisy in-
put device signals whose optimal parameters depend on application-
specific precision and latency requirements, as well as situational
human and environmental factors. Two common calibration ap-
proaches are to learn optimal filter parameters from training data, or
interactively tune via trial and error until satisfaction ensues, both
having major drawbacks. We propose a novel, automatic custom
calibration technique for pointing tasks called Pitch Pipe that in three
straightforward steps is able to determine appropriate parameters for
a given filter, and is therefore suitable for deployment into unknown
environments. Specifically, we estimate noise and user speed, and
then select those parameters that best meet system requirements. In a
widely deployed Fitts’ task user study, we show that Pitch Pipe-tuned
filters perform on par with their manually calibrated counterparts,
demonstrating that one may use our automatic approach for custom
calibration.

Keywords: Low-pass filter, automatic calibration, pointing, 1e

Index Terms: Human-centered computing—Human computer
interaction—Interaction techniques—Pointing

1 INTRODUCTION

Humans interact with computers through input devices whose sig-
nals are perturbed by thermal noise, interference, precision errors,
and other types of corruption-causing phenomena that affect per-
formance [23, 24]. An augmented reality interface designed for
selection and manipulation or that uses a pointing device may lack
precision due to noise-induced jitter, and a virtual reality, full-body
gesture interface may lack discriminatory power due to inflated
feature variance. For these and other reasons, practitioners often
utilize low-pass filters to improve signal quality before evaluating
embedded content. Such filters attenuate high frequency noise while
preserving low band information, as is appropriate given that humans
interact through low frequency motion [42]. However, noise is not
one’s only concern, as variability in motion similarly impacts signal
quality, and over aggressive filtering may lead to lost information.

More specifically, in calibrating a low-pass filter, one must con-
sider the impact of both precision and lag on performance [5, 23].
When a signal is corrupted by noise, repeated measures of a mo-
tionless input device yields a varying response that is realized as an
imprecise, jittery pointer. Aggressive filtering can attenuate noise
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and improve precision, but doing so introduces latency, which causes
one’s cursor to lag behind its true position. Due to the detrimen-
tal effect of noise and latency on throughput, practitioners must
strike a balance between speed and accuracy while simultaneously
considering their unique application requirements.

In a lab setting, one can achieve acceptable performance by using
trial and error calibration. However, additional considerations influ-
ence parameter selection when conducting user studies or deploying
software into unknown environments. For example, one may deploy
their software across multiple platforms via a transreality system
where one must support a variety of input devices [21]. Noise levels
can vary between input devices as well as individuals based on sen-
sor, software, and environmental factors. A computer vision system
may have difficulty tracking certain skin tones or clothing colors
under various lighting conditions and backgrounds. An individual
with a degenerative disease such as Parkinson’s may inadvertently
add additional noise to the input signal. Unlike noise, latency de-
pends on speed, where fast moving individuals will experience lag
different from those who move slowly.

One way to account for these variabilities is to allow for auto-
matic, custom filter calibration. Common practices, however, are
not automated. Such techniques include off-line parameter sweeps
over representative training data [18, 41], subjective interactive feed-
back [5], guesswork through trial and error, or synchronization
through multiple sensors [38], each of which have their own draw-
backs, thus motivating the need for a better solution. Our answer is
Pitch Pipe, a straightforward approach to online, automatic low-pass
filter parameter selection, comprising only three steps:

1. Estimate noise using power spectral density analysis

2. Estimate maximum speed by asking one to complete a repre-
sentative task

3. Select suitable filter parameters based on noise and speed
measurements as well as precision and lag requirements

In this paper, we not only describe our Pitch Pipe system, but
demonstrate its effectiveness through an online, in-the-wild Mechan-
ical Turk Fitts’ task test using a state-of-the-art low-pass filter [5].
Results show that Pitch Pipe chooses parameters that perform on par
with those selected by participants, and automatic calibration is sig-
nificantly faster. Finally, we also provide Pitch Pipe reference code
that can be found at http://github.com/ISUE/PitchPipe.

2 RELATED WORK

Low-pass filters are used throughout a variety of domains, including
HCI, especially for tracking and smoothing user input. For example,
Xiao et al. [41] focused on jitter reduction to improve motion esti-
mates; Dabra et al. [7] smoothed Kinect sensor motion input; and
Feit et al. [8] used filtering to track eye movement. Filtering has
been used in augmented reality system by Liang et al. [20] and Zhu
et al. [43], as well as in virtual reality [36]. These selected examples
are only a few among many.

In all cases, one has to make some kind of decision about how
to calibrate their filter. Options fall into three broad categories:
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manual or interactive tuning, machine learning based calibration,
and adaptive techniques. Manual tuning is common, where one uses
trial and error to fine tune parameters according to preference and
taste. This approach can be effective and easy for low noise levels,
but may require expert knowledge or prior experience depending
on task and filter complexity. One practical example involves the
1e filter [5] that comprises two parameters, enabling one to balance
jitter and latency, for which the authors propose a manual calibration
procedure. The filter is very effective, but can be enhanced with an
automatic calibration procedure.

2.1 Machine Learning Techniques

Researchers have explored a variety of machine learning techniques
for parameter selection. Saha et al. [28] and Borah et al. [3] used
particle swarm optimization; Horvath et al. [11] utilized a genetic
algorithm; Russo [27] used a histogram of edge gradients for image
denoising; Harshcer et al. [10] used a gradient descent method to op-
timize physical screw turns for their filter; Chen et al. [6] combined
a median filter with an automated parameter tuning technique.

Grid searches (or parameter sweeps) are especially common. In
this approach, each parameter’s range is divided into a set of reg-
ularly spaced intervals that when taken collectively form a grid
pattern. Thereafter, one iteratively walks over the grid in order to
exhaustively evaluate each parameter combination. LaViola [18], for
example, used a grid search to tune the double exponential moving
average and Kalman filters to minimize the root mean squared error
for position and orientation data.

An issue with machine learning based approaches is that one
requires both training and ground truth data to evaluate their filter.
The data may also require cleaning or other preparation work, a
process that typically requires domain knowledge. These issues
make it difficult for one to support custom calibration because of
the large amounts of data one needs to collect in order to cover
all scenarios, which is not a problem for Pitch Pipe. Although we
internally use a grid search to find the optimal parameter set, we
evaluate synthetic signals, eliminating the need for massive data
collection or preparation.

2.2 Adaptive Filters

Another popular tuning approach involves the use of adaptive filters.
Given a first primary input signal and a second reference input
signal, an adaptive filter adjusts parameter weights until differences
measured by an error function are minimized. Research in adaptive
filtering primarily focuses on specialized filters [1, 2, 17, 30] and
optimizations for fast convergence [12, 22, 34], but such filters have
also found their way into HCI applications. For instance, Bulling et
al. [4] applied a filter to remove unwanted noise found during eye
tracking with an EOG device; Lee et al. [19] devised an adaptive
filter for an ECG device; and Kaluri et al. [16] used an adaptive
filter in the context of gesture recognition. Pitch Pipe, unlike an
adaptive filter, does not require a second signal, but instead uses
internal synthetic signals to calibrate a filter.

2.3 Complexity

Straightforward techniques that work well are appreciated and
widely adopted by the HCI community, such as $-family custom
gesture recognizers [35, 40] and double exponential smoothing [18].
Since Pitch Pipe leverages easy to use DSP techniques, we believe
HCI practitioners will also use Pitch Pipe to simplify their own
calibration efforts, as well as enable customize calibration in their
deployments.

3 PITCH PIPE

Pitch Pipe is a custom low-pass filter calibration technique that finds
optimal parameters based on context specific information. As such,

Pitch Pipe requires three inputs: a signal from which to derive rele-
vant characteristics, a low-pass filter to calibrate, and an application
specific criteria to optimize for, namely precision and lag. From the
input device signal, Pitch Pipe extracts noise and maximum user
speed estimates, which we use to generate synthetic noise and edge
patterns. Thereafter, Pitch Pipe performs a grid search over the
filter’s parameter space, evaluating its performance on the stated
synthetic data. Pitch Pipe finally outputs the parameter set that best
matches the application specific criteria. As such, Pitch Pipe in-
ternally comprises three steps that are to estimate noise, estimate
maximum user speed, and optimize the parameter set, each of which
are discussed in throughout the remainder of this section.

Step 1: Estimate Noise Variance. Frequencies void of motion
information that would otherwise carry zero power are neverthe-
less corrupted by noise. When noise is white Gaussian, one can
estimate its variance σ2 using power spectral density (PSD) anal-
ysis. Specifically, we perform a discrete Fourier transform (DFT)
on select frequencies, calculate power, and average together results
over time. Those unfamiliar with digital signal processing (DSP)
concepts and who desire a deeper understanding of what follows can
refer to Smith’s [29] accessible introductory treatment. For efficient
processing, we use a constant time, one second long sliding window
DFT (SDFT) [13, 14] that incrementally computes frequency k’s
Fourier coefficient as each new input device sample arrives. The
SDFT is defined as:

Sk(t) = e2πik 1
N [Sk(t−1)+ xt − xt−N ] , (1)

where xt is the input device sample at time index t, N is the sampling
rate, i is the imaginary unit, and k is the monitored frequency such
that integer k ∈ [0,N/2].

We should not, however, use Fourier coefficient Sk(t) directly
in our analysis because of spectral leakage. Human motion occurs
over a continuum of frequencies, not just on input device harmon-
ics, and so non-integer frequencies discretely sampled “leak” into
neighboring bins. A user unable to hold perfectly still while the
system estimates noise will inflate the variance estimate. We solve
this problem by employing a Hann window, which one can compute
with three SDFTs [13] as follows:

Sk(t) =
1

2
Sk(t)−

1

4
Sk−1(t)−

1

4
Sk+1(t). (2)

With the corrected Fourier coefficient Sk in hand, we then use
Welch’s method [15, 37] to estimate PSD φk for frequency k:

φ̂k = σ̂2 =
1

W (T −N)

T

∑
t=N
|Sk(t)|2 , (3)

where W is the Hann window normalization factor given by:

W =
N−1

∑
n=0

(
1

2

[
1− cos

(
2πn

N−1

)])2

. (4)

Notice that the PSD estimate φ̂k begins after collecting N samples,
the time needed to prime a one second SDFT window when the
sampling rate is N.

Since the PSD φ̂k estimate also yields noise variance (E [φk] = σ2

[32]), we only need to monitor some frequency k until its estimate
converges. Or to improve convergence speed, we can monitor and
average together multiple frequencies. One practical problem is
that it may be difficult for users to hold still during the calibration
process as they adjust their postures or sway; thus Pitch Pipe im-
plementations ought to allow for low frequency movement. Since
most human motion falls below 10 Hz [42], we recommend that one
utilizes all frequencies k ∈ [11,N/2].

Step 2: Estimate Maximum Speed. User speed impacts lag,



Figure 1: Response time in milliseconds over varying edge am-
pltidues for different low-pass filters, illustrating the impact of user
speed on lag.

though the exact relationship is filter and parameter dependent. We
illustrate four examples in Figure 1, where it can be seen that lag
depends on the delta between two input samples, i.e., movement am-
plitude. Specifically, we measure how long it takes for each filtered
response to reach ground truth. Not shown, yet intuitive, is that the
response curves also vary with parameter selection. Therefore, in
calibrating a filter we must estimate a user’s maximum speed. Two
ways of doing this are to apply a-priori knowledge regarding the
application domain, or alternatively measure the user engaged in a
representative task. As an example, in our user study, we ask each
participant to complete one point and click task round. During this
time we record the distance between input samples, discard outliers,
and take the largest of what remains as an estimate of maximum
user speed.

Step 3: Select Filter Parameters. Once noise variance and max-
imum speed are known, we proceed to calibrate the filter, but in
order to do so, we must understand how a given parameter set affects
precision and lag. We choose to estimate precision through Monte
Carlo simulation—to generate a normally distributed random sample
with variance equal to that of the noise level measured in Step 1 (for
instance, by using the Box-Muller transform [25]). Thereafter, we
pass the random sample through a filter configured with the speci-
fied parameter set and measure the filtered sample’s variance, which
is taken as an estimate of the filter’s precision. For filters with a
constant phase shift, we could instead perform a Fourier transform
on the edge response, convolve with constant variance, and measure
the resulting power; however this method only works in a limited
number of cases. Thus, our choice to use simulation in estimating
precision was driven by our desire for simplicity and generality.

Next, to estimate lag with the same level of simplicity, we mea-
sure a given filter’s edge response as discussed above. That is, we
generate a synthetic input signal where the first sample is zero and
all remaining samples are set to the estimated maximum speed found
in Step 2. This signal is then passed through the filter until its output
reaches the desired response within a level of tolerance, and we treat
this time to convergence as an estimate of lag.

One may also choose to deal with ringing and overshooting, which
is a filter-dependent issue. Double exponential smoothing [18],
for example, tends to overshoot during rapid deceleration and so
when estimating lag, to reach the desired response also means to
wait until the system state is settled. Another example is that the
1e filter momentarily rings after an abrupt stop, depending on how
its parameters are set. One can account for these effects in the lag
estimate by including the time it takes for the filter’s response to

stabilize. The effect of this can be seen in the adjusted 1e filter’s
response time in Figure 1.

Now that we have a way to estimate precision and lag, we calibrate
the filter. Pitch Pipe uses a simple grid search over the parameter
space to find those settings that meet application specific require-
ments. First, given a target level of precision, we find all parameter
sets that meet the requirement. From those selected, we then choose
that option which minimizes latency. If Pitch Pipe is unable to find
a solution, then we raise the target precision and continue as such
until a solution is identified, which is not a problem we encountered.
A second constraint that an application may provide is maximum
lag. If the optimal solution’s latency is below this second threshold,
then Pitch Pipe can search for a tighter target precision. In this way,
we can balance jitter and lag, but in a way that always prioritizes
precision.

4 EVALUATION

Inspired by Pavlovych and Stuerzlinger [23] who studied the im-
pact of jitter and latency on pointing tasks of varying difficulty, we
similarly evaluated Pitch Pipe using a web-based tool conforming
to the ISO 9241-9 [31] international standard. We choose to use
this well known approach because it allows us to evaluate the im-
pact of various calibration techniques on throughput and accuracy
using a standard methodology. In our evaluation, we specifically
hypothesize the following:

• H1: Pitch Pipe will reduce the amount of time spent tuning
parameters

• H2: Pitch Pipe will perform as well as manual calibration in
throughout and accuracy

In the remainder of this section, we discuss our Pitch Pipe imple-
mentation for 1e [5] (a popular, state-of-the-art low-pass filter), as
well as our user study design and protocol.

4.1 Low-pass Filter and Pitch Pipe Effectuation
For logistical reasons, we decided to conduct our user study using
a single filter, for which there are a number of commonly used
options to choose from, such as the moving average, exponential
moving average, double exponential moving average, and Kalman
filters [18, 29]. We chose to evaluate Pitch Pitch using the 1e filter
[5] because of its high precision and responsiveness. Unlike other
options, 1e responds to changes in velocity, where at faster speeds,
1e less aggressively filters so as to reduce lag. Formally, we have:

yyyt = αt xxxt +(1−αt)yyyt−1 (5)

αt = 1− exp

{
−2π

fct

fs

}
(6)

fct = fcmin +β |ẏyyt | , (7)

where yyyt is the filtered response at time t, xxxt is the raw input device
sample, fs is the sampling frequency, and αt is a smoothing parame-
terbased on the dynamic cutoff frequency fct . Per Equation 7, this
latter parameter has a minimum cutoff fcmin that increases linearly
with speed—the absolute value of the smoothed derivate ẏyyt (see [5]
more information). As defined, there are two free parameters one
must tune: the minimum cutoff fcmin and slope β parameters.

Since our evaluation is web-based, we implemented Pitch Pipe
in JavaScript. One issue with using an interpreted language and
software deployed over unknown systems is uncertainty in com-
putational power. Recall that we use Monte Carlo simulation to
estimate the precision of a given parameter set, which may be too
slow for some platforms. Therefore, we decided to precompute a
lookup table over varying noise levels, minimum cutoff frequencies
fcmin , and slopes β , for which we then use straightforward trilinear



Figure 2: Web-based interface for user study. An example Fitts’ task
ring is shown in the left white panel, and manual calibration controls
are shown in the right panel. A participant is required to click on the
highlighted (red) target as quickly and acccuractely as possible, as
the taret moves around the ring.

interpolation to estimate precision. For lag estimation, we measure
the edge response as previously described.

Our application-specific requirements are designed to maximize
throughput. Since the smallest target in our evaluation is fourteen
pixels, we set our application-specific target precision to 3.5 pixels.
This decision was informed by prior work [23], where we find that
if jitter is within approximately 25% of the target size, its impact
on accuracy is minimal. We further set lag to 50 ms. Pitch Pipe
prioritizes accuracy and selects the least lag parameter set that falls
within the specified precision requirement. If there are multiple
options under the target lag, then the most precise variant is selected,
which in our testing only occurs with the lowest noise condition.

4.2 Apparatus
We developed a JavaScript web-based application conforming to
ISO 9241-9 [23] that we deployed through Amazon Mechanical
Turk (MTurk)1. For a given noise level, participants were asked
to complete a series of Fitts’ tasks over varying complexities and
calibration modes. Specifically, we presented fourteen evenly spaces
targets around a ring specified by amplitude (diameter) and width
(target size) as shown in Figure 2. Participants were asked to click on
the highlighted target as quickly and accurately as possible, where
after each click, the highlighted target moved to the opposite side
of the ring, which continued on until all targets were visited. Our
software recorded position and time stamp information for each click,
in order to calculate movement time, accuracy, and throughput.

4.3 Protocol
Participants first read a description of the study, after which we
collected standard demographic information. Those using a track
pad or who had an inadequate screen resolutions (< 900 px height)
were not allowed to continue. We then presented a Fitts’ task test
block comprising twelve rounds of varying task complexity, where
the second six rounds duplicate the first six in random order, and
the first are discarded as practice. We use this first test block to
establish baseline performance, as the signal is noise free, and to
cull individuals who are unable to perform the tasks (those who miss
half or more of the targets in any round, which is well above expec-
tation [23]). After establishing baseline performance, a participant
completes three more blocks but with simulated noise added to the
signal. Each block tests a different calibration mode: unfiltered,
manual, and Pitch Pipe.

1https://www.mturk.com/

To support manual calibration, we included a panel with detailed
instructions and two parameter controls, one for minimum cutoff
fcmin and another for slope β , which we presented as the Error and
Speed control parameters, respectively. Participants were allowed
to practice and modify the parameters until they were happy with
overall performance. For automatic calibration, the system adjusted
these same parameters using Pitch Pipe.

4.3.1 User Feedback
Using a 7-point Likert scale, we asked each participant to rate their
satisfaction with the cursor’s speed, accuracy, ease of completing
the tasks, and overall performance. Additionally, we asked each user
to rate their perceived ease and confidence in manual calibration,
and to select their overall preference.

4.4 Design
Our experiment was a mixed, four factor repeated measures design.
The four nominal factors follow, where the first factor is between-
subjects and remaining are within:

• Jitter: ±4, ±8, ±12, and ±16 pixels

• Calibration: Baseline, Unfiltered, Manual, and Pitch Pipe

• Target Width: 14, 32 or 71 px

• Target Amplitude: 372 or 589 px

Width and amplitude were uniformly spaced to create a task dif-
ficulty range typical of those found in a desktop environment, and
the jitter levels follow those measured across various HCI hard-
ware configurations [23]. The dependent variables were throughput
and accuracy. In this work, we treat misses as erasures [9] (lost
information) and calculate throughput as follows:

T P =
(1− ε) log2

(
A
W +1

)
MT

, (8)

where ε is the miss rate for a single round of targets on an A pixel
diameter ring comprising W pixel width targets, and MT is the
average movement time between clicks.

We recruited a total of 80 participants through MTurk, with 20
individuals assigned to each jitter level. There were 47 males and
33 females, with an average age of 36.5 (σ = 9.7). Each participant
was compensated $4 for approximately 40 minutes of time.

5 RESULTS

5.1 Quantitative Results
We measured participant speed during calibration and found large
variability (µ = 88 pixels per s, σ = 32), which may be due to
user proclivities, OS mouse transfer functions and other complex
system interaction effects. This result supports the notion that an
automatic calibration system requires user specific information and
static, off-line, parameters may not fit variations in-the-wild. We
also show the distribution of the minimum cutoff fcmin and slope β

parameters in Table 1 over the varying jitter levels. One will notice
manual calibration results in high variability of parameter selection.
With respect to Pitch Pipe, we see a consistent parameter selection
behavior that gracefully becomes more restrictive as noise increases.
Finally, the mean of all noise variance estimates (not shown) are
within 2.5% (σ=2.0%) of ground truth.

We also recorded the amount of time each subject spent in the
manual and automatic calibration phases. A pairwise t-test, as-
suming unequal variance, revealed a significant difference between
averages (t79 = 1.99, p < .0001). We observed that Pitch Pipe cali-
bration was consistently low (µ = 45.03 s, σ = 28.79) while manual
calibration took a variable amount of time that was higher on average
(µ = 200.29 s, σ = 178.42).



Figure 3: Throughput with 95% confidence interval bands over varying noise levels (left) and target widths (right).

Table 1: Distribution of parameters for each calibration method
across varying jitter levels, reported as mean (standard deviation).

fcmin β

Jitter PP Manual PP Manual

4 .107 (.033) 4.82 (4.70) .03 (.007) .034 (.029)
8 .138 (.117) 4.03 (4.11) .029 (.007) .042 (.035)
12 .462 (.163) 2.85 (4.09) .013 (.002) .026 (.027)
16 .223 (.051) 2.53 (3.74) .005 (.0005) .015 (.018)

Table 2: ANOVA Results

Factor Throughput Miss Ratio

Tuning F3,1865 = 53.76,p < .0001 F3,237 = 254.1,p < .0001
Jitter F3,79 = 4.866,p < .004 F3,79 = 12.02,p < .0001
Width F2,1865 = 191.5,p < .0001 F2,158 = 793.8,p < .0001
T x J F9,1865 = 5.85,p < .0001 F9,237 = 35.54,p < .0001
T x W F6,1865 = 75.81,p < .0001 F6,474 = 145.144,p < .0001
J x W F6,1865 = 6.612,p < .0001 F6,158 = 26.76,p < .0001
T x J x W F18,1865 = 6.346,p < .0001 F18,474 = 20.943,p < .0001

5.2 Throughput and Accuracy
As mentioned in the experimental design we captured throughput
and miss ratio data from each participant. We analyzed these results
using 3-way repeated measures ANOVA, with calibration, jitter, and
width being the independent variables, and miss ratio and throughput,
the dependent variables.

5.2.1 Throughput

We ran a three factor within-subjects ANOVA on the throughput,
shown in Table 2, and found statistical significance on the calibration
method with width and jitter. We further found statistical signifi-
cance across all interactions between calibration, width and jitter.
For our post-hoc analysis we ran a linear hypothesis, shown in Table
3, and found no statistical significance between the Pitch Pipe and
manual calibration methods, written as tuning to save space in the
tables. All other permutations showed statistical significance on the
throughput.

Our post-hoc analysis shows that as noise level increases, unfil-
tered throughput falls below the filtered methods (Figure 3). Baseline
achieved the highest throughput across all conditions, which is ex-
pected since no jitter was introduced. Over the varying target widths,

Table 3: Post-hoc Analysis

Throughput Miss Ratio

Tuning Permutation Z score P Value T score P Value

Pitch Pipe - Manual 1.449 .469 1.359 .5263
Pitch Pipe - Unfiltered -8.828 < .0001 -17.752 < .0001
Pitch Pipe - Baseline -7.522 < .0001 -9.416 < .0001
Manual - Unfiltered -7.379 < .0001 -16.393 < .0001
Manual - Baseline -8.971 < .0001 -10.775 < .0001
Baseline - Unfiltered -16.35 < .0001 -27.168 < .0001

as shown in Figure 3, unfiltered throughput approaches the filtered
methods after target width increases, which is expected because jitter
is less problematic on larger targets and low-pass filters introduce
small amounts of latency.

Interactions were present between the calibration method, width,
and jitter factors, however, post-hoc analysis shows there was no
difference between manual and Pitch Pipe calibration across these
conditions.

5.2.2 Accuracy

We ran a three factor within subjects ANOVA on the miss ratio (re-
sults in Table 2) and found statistical significance on the calibration
method, width, and jitter factors. All permutations of interactions
showed statistical significance. We performed a post-hoc analy-
sis, shown in Table 3, which saw no significant difference in the
miss ratio between Pitch Pipe and manual calibration. Every other
permutation of tuning showed significant difference.

Post-hoc analysis shows that as the noise increases, the miss
ratio for the unfiltered method has a linear increase (Figure 4). The
manual and Pitch Pipe calibration methods showed consistent miss
ratios as jitter increased, demonstrating the effectiveness of low-pass
filtering. In Figure 4, we see that the miss ratio increases drastically
as the target widths grow smaller, and all methods converge for
the largest target width used. Both calibration methods remain
nearly identical and show improvement over the unfiltered response.
Post-hoc testing confirms that each calibration interaction follows a
unique trend, except for manual and Pitch Pipe calibration, which
follow similar trends.

This data reveals that while the filtering does not achieve base-
line performance, there is a significant improvement in accuracy
over using raw, unfiltered data. More importantly, the automated
calibration method introduced in this paper was able to meet the



Figure 4: Miss ratio with 95% confidence interval bands over varying noise levels (left) and target widths (right).

Figure 5: User Satisfaction for different mouse calibrations, ordered
by Jitter level. Error bars are 95% confidence intervals.

accuracy of the manual tuning method. Overall, our quantitative data
demonstrates that the Pitch Pipe tuning method did not significantly
change throughput or miss ratio, making it as effective as manual
calibration. Furthermore, we demonstrated a significant reduction
in the time taken choosing filter parameters with our method versus
manual tuning.

5.3 Qualitative Results
We found that our user satisfaction items were internally valid using
Cronbach’s Alpha (α = .918), so we averaged the values together to
form an index. With this value, we used the Aligned Rank Transform
tool [39] so we could run a repeated measures ANOVA and check
for interaction effects between the jitter and calibration factors. As
expected, our participants preferred a mouse which had no noise in
it, and they did not like the unfiltered cursor; see Figure 5.

5.3.1 ANOVA Results
We performed a repeated measures ANOVA in order to test for
significant differences.

Main Effect of Calibration Mode: An ANOVA revealed a signif-
icant main effect of calibration mode on user satisfaction (F3,228
= 81.12, p < .001, η2

p = .516). As expected, post-hoc t-tests show
significant differences between No Noise and all other conditions,
as well as between Noisy and all other conditions; interestingly,
however, we did not find a significant difference between the au-
tomatic and manual calibration modes (M = 0.08,SD = 1.24, p =
.568, t(79) = 0.342).

Figure 6: User Calibration Preference by Jitter Level. As jitter
increases, users prefer automatic tuning methods.

Main Effect of Jitter Level: An ANOVA revealed a significant
main effect of jitter on user user satisfaction (F3,76 = 418.0, p< .001,
η2

p = .846). As expected, post-hoc Mann-Whitney U tests show
significant differences between the 4 pixels and all others.

Interaction Effect of Calibration × Jitter: An ANOVA also re-
vealed a significant interaction effect of small effect size between
these two factors (F9, 228 = 4.408, p < .001, η2

p = .148).

5.3.2 Feedback from Participants
Participants indicated through our questionnaires a near-split deci-
sion on the preference between calibration types— 38 chose manual,
while 42 selected automatic; see Figure 6. We analyzed the open-
ended response questions in order to help understand why they
selected their favorite; two authors coded their responses, and we
found an acceptable level of inter-rater reliability using Cohen’s
Kappa (K = .788). For split decisions, a third author broke the tie.

We found that a number of participants preferred having full
control over their system. As one individual noted, “I like having
control. I want to test it out to find what’s best.”, and a number of par-
ticipants enjoyed being able to tune the cursor to their personal taste.
On the other hand, some participants did not feel confidence in their
ability to select suitable parameters or would rather not deal with
the problem. “For one it was a lot faster than trying to [manually]
figure things out. Also i felt more comfortable with the automatic
calibrated settings.”. And finally there were a few participants who
had difficulty understanding how to calibrate the filter, despite our



best efforts to provide clear instructions. “The manual calibration
was a little confusing and I would prefer it calibrate automatically.”.
These results show the need for an automatic, custom calibration
solution in creating a quality user experience for those who do not
want to take the time or who do not feel confident in their ability to
calibrate their system.

6 DISCUSSION

Applications that track human input for selection, manipulation,
navigation, and gesture recognition often use filters. Yet, optimal
filter parameters depend on orientation, position, clothing, skin color,
physical size, intensity, extension, environmental factors and appli-
cation objectives, most of which can vary between individuals and
runs, impacting signal noise and amplitude in subtle ways. We see
this, for example, when tracking motion through depth cameras,
where some users are more difficult to track than others, and tun-
ing the system uniquely for each case is cumbersome. Automatic
calibration can help save time and instill confidence in users that a
system is correctly figured. That is, when software is deployed into
an unknown environment, we might expect that non-expert users
will have to calibrate the system, many of whom will be unwilling or
unsatisfied with manual parameter tuning. For these users, automatic
custom calibration software is of high value.

Our solution, Pitch Pipe, begins to address this problem by esti-
mating noise via power spectral analysis and energy by measuring
maximum speed on a representative task. We then use these esti-
mates to select those filter parameters that meet application depen-
dent requirements. Since our first iteration of Pitch Pipe specifically
addresses pointing tasks, we tune the filter so as to minimize latency
(lag) for a given level of precision.

Our evaluation of Pitch Pipe on 2D pointing tasks over varying
task complexities highlights a clear benefit in automatic calibration.
We first observe that across all conditions Pitch Pipe statistically
performs at least as well as manual calibration in both throughout
and accuracy. As expected, both approaches improve performance
for small and medium sized targets when jitter is beyond negligible
(>±4 pixels), but Pitch Pipe achieves this without the hassle of a
sometimes tricky trial and error parameter selection process. Conse-
quently, automatic calibration is significantly faster on average.

Despite little difference in performance, we do observe a user
preference dichotomy in that some users prefer to fine tune their filter,
while others claim an intelligent system ought to solve this problem
for them. Those who prefer manual calibration feel empowered
and able to acquire a level of responsiveness suitable to their taste.
Remaining users found calibration cumbersome. As one participant
wrote ‘I didn’t realize how well the auto calibration worked until I
tried the manual version, I felt like I was just going back and forth
with the manual and making the mouse worse rather than better.”

Regardless of preference, we note that automatic parameter se-
lection can be complementary to manual calibration. For example,
one can use Pitch Pipe to recommend initial parameter settings that
a power user can thereafter modify to fit their personal taste. Even
when an application designer chooses to support manual calibration
exclusively, techniques discussed herein enables one to present pa-
rameters in an alternative, human understandable form. For instance,
given a simple moving average filter, the user interface may present a
slider that configures window size, but rather than report a somewhat
non-obvious integer value, the interface can also report estimated lag
in milliseconds and precision in pixels or millimeters, two human
relatable measures.

6.1 Limitations and Future Work
One limitation is that our evaluation lacks ecological validity. First,
noise profiles may vary with position, movement, and time rather
than manifest as pure static white noise. Second, we use a priori
knowledge from prior work [23] to set Pitch Pipe’s target precision,

which may not be appropriate for all applications and gives Pitch
Pipe an advantage that is unknown to the participant. Last, there
may more efficient mechanisms available for manual tuning, such
as to combine mouse and keyboard input so that participants are
not forced to maneuver between two panels, thereby reducing the
parameter selection time. Despite these limitations, we favored
simulation and a simple design in order to test our method in the
wild, so that we may reach a large and varied participant pool.

Not all applications are designed for or care about pointing tasks,
which is one limitation of our current approach. Gesture recognizers
also benefit from filtering so as to reduce variance in their feature
and similarity measures. Since a number of techniques involve
shape analysis, e.g., [26, 33, 40], constant phase shift may be more
important than latency or precision; and an early Pitch Pipe prototype
for gesture recognition that optimizes for shape rather than latency
shows promise of being able to find optimal parameters at run time.

Perhaps even more compelling is dynamic automatic calibration.
Suppose one uses a controller-based pointing device in a virtual en-
vironment that has 0.25 degrees noise, mean-to-peak. Their pointer
projected onto a virtual surface 2m away will result in approximately
7mm of jitter, and at 10m this error scales to 34mm, which makes
precise selection of small targets at a distance quite difficult. An
automatic method could adjust filter parameters to accommodate for
increases in error as a function of distance. Or a calibrator could
react to those objects that are in the neighborhood of a pointer, so
that as one approaches a small object, the system reduces jitter,
becoming more precise.

7 CONCLUSION

We presented a novel automatic calibration technique for pointing
tasks called Pitch Pipe. In three straightforward steps, our approach
is able to tune one’s filter to user and application dependent cri-
teria, which greatly simplifies the use and deployment of systems
that leverage low-pass filters. Through an Amazon MTurk based
user study, we conducted an evaluation of Pitch Pipe over a set
of 2D pointing task of varying difficulty, noise levels, and calibra-
tion techniques using a state-of-the-art low-pass filter (1e [5]). We
found Pitch Pipe performed as least as well as manual calibration
in throughput and accuracy. Our automatic solution further fit the
needs of those who lacked confidence in their ability to select good
parameters or were unwilling to deal with the hassle of a hands
on experience. We believe these findings motivate and show the
pragmatic benefits of Pitch Pipe.
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