
The Transreality Interaction Platform: Enabling
Interaction Across Physical and Virtual Reality

Kyle A. Martin
Dept. of Computer Science

University of Central Florida

Orlando, Florida

Email: kmartin@cs.ucf.edu

Joseph J. LaViola Jr.
Dept. of Computer Science

University of Central Florida

Orlando, Florida

Email: jjl@cs.ucf.edu

Abstract—The convergence of the Internet of Things (IoT) and
interactive systems will enable future interactive environments
which transcend physical and virtual reality. Embedded Things
provide sensors and actuators to virtualize the physical environ-
ment, while Interactive Things extend the virtualized environment
with modalities for human interaction, ranging from tangible and
wearable interfaces to immersive virtual and augmented reality
interfaces. We introduce the Transreality Interaction Platform
(TrIP) to enable service ecosystems which situate virtual objects
alongside virtualized physical objects and allow for novel ad-hoc
interactions between humans, virtual, and physical objects in a
transreality environment. TrIP provides a generalized middleware
platform addressing the unique challenges that arise in complex
transreality systems which have yet to be fully explored in current
IoT or HCI research. We describe the system architecture, data
model, and query language for the platform and present a proof-
of-concept implementation. We evaluate the performance of the
implementation and demonstrate its use integrating embedded
and interactive things for seamless interaction across physical
and virtual realities.

I. INTRODUCTION

The convergence of the Internet of Things (IoT) and in-

teractive systems will have profound effects on the design

and implementation of future interactive environments (IEs).

While some research in the Human Computer Interaction

(HCI) and IoT communities has begun to explore these effects,

the potential for overcoming the boundaries between physical

and virtual reality has yet to be fully explored. The bulk of

previous IoT research has focused on non-interactive Embed-
ded Things, which are hidden in the environment and provide

sensors or actuators which collectively virtualize our physical

environment to enable new kinds of interactions between

humans, services, and the physical world. We introduce the

concept of Interactive Things to refer to the combination of

an emerging subset of IoT devices providing human interface

modalities and networked Human Interface Devices (HIDs)

not traditionally considered as IoT devices. Extending the

virtualized environment (VE) provided by Embedded Things

with the interface modalities of Interactive Things enables

transreality interaction across physical and virtual environ-

ments. Service ecosystems leverage transreality environments
(TEs) to situate virtual objects alongside virtualized physical

objects to achieve novel ad-hoc interactions amongst humans,

virtual, and physical objects.

Transreality systems are highly complex and present a

number of unique challenges which have yet to be addressed

in HCI or IoT literature. Chief amongst these is decoupling

services from user interface (UI) implementations to facilitate

interaction with users across the wide variety of interface

modalities present in a transreality environment. Ensuring

responsiveness while protecting user privacy and security

additionally requires a novel architecture departing from the

traditional multi-tier and big data architectures commonly used

for implementing UIs and IoT systems. While some previous

work has studied the intersection of IoT and interactive sys-

tems, such as the use of IoT devices in Augmented Reality

(AR) applications, no known work has explored these specific

challenges.

We introduce the Transreality Interaction Platform (TrIP)

to address these challenges by providing a novel general-

purpose middleware implementation of the Distributed View-

Model (DVM) design pattern previously demonstrated for

Distributed User Interfaces (DUIs). A DVM is a network

shared object which represents the state and functionality of a

UI element bound to a portion of an application domain model,

effectively decoupling the application domain logic (Model)

from the implementation of the application UI (View). TrIP

is a specialized event-driven object database for managing

DVMs represented as live XML DOM objects with out-

of-band metadata for indexing, security policy, and other

ViewModel properties. It provides a query API for defining,

manipulating, and brokering events on DVMs, which is used

by backend services managing domain Models and reusable

frontend clients providing physical and virtual Views.

In this paper, we describe the requirements of transreality

systems and detail the architecture, object model, and query

language for TrIP. We evaluate the performance of a proof-

of-concept TrIP implementation and demonstrate its use in

a simple transreality environment scenario. Results show the

present implementation provides an adequate foundation for

exploration of transreality interactions and also indicate areas

for future transreality systems research and development.

II. RELATED WORK

The Internet of Things is expected to be composed of more

than 38 billion devices by 2020 [1]. The majority of these

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.54

177

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.54

177

devices are Embedded Things with sensors and actuators that

collectively virtualize an environment and the physical objects

contained therein, e.g., RF or visual object tracking and spatial

mapping sensors or control systems providing remote control

of equipment. Up to 12 billion IoT devices are expected to

be consumer oriented, and many of those will be interac-

tive, such as wearables, tangibles, domotics, and smart space

devices [2], [3]. Interactive Things are distinguished from

Embedded Things by providing human interface modalities

that can be discovered and appropriated by ecosystem services

for situated user interaction [4], [5].

Much of present IoT research is derived from earlier re-

search on RFID sensor networks and sensor databases [6]–

[10]. This lineage has led to a strong focus on sensor data

management and big data solutions for supporting the ex-

tremely large volume of sensor data expected to be generated

by billions of IoT devices [11]. To a lesser extent, there has

also been research on exposing service-oriented interfaces for

controlling large numbers of IoT devices individually and in

aggregate [6], [7]. A common thread in both is sharing sensor

data and device controls at scale to foster multi-application

ecosystems [11]. One significant shortcoming of current IoT

platforms is the increased scale and centralization in the

cloud reduces response times, especially when services are not

collocated with the platform and require another round trip to

handle an interaction. Lack of end-user control of data has

also been cited as a shortcoming of current IoT platforms and

enforcing end-user control has led to federated IoT platforms

being proposed as a privacy and security preserving alternative

to cloud-based platforms [7], [12]. While IEs have been

frequently mentioned as application areas in IoT literature,

there is comparatively little corresponding research in HCI

literature, and no literature found from either addressing the

challenges and requirements for supporting IoT devices within

IEs [6], [7], [13].

The virtuality continuum classifies perceived reality along

a spectrum ranging from purely physical reality, to mixed

and augmented reality (MR and AR), and finally to purely

virtual reality (VR) [14]. Each point along the spectrum

is associated with specific interface modalities with vary-

ing degrees of mediation between user perception and their

physical reality [15]. Examples include tangible interfaces for

physical reality, mobile phones for augmented reality, and

Head Worn Displays (HWDs) for virtual reality. Previous

work in this area has been limited to studying interaction

at specific points along the spectrum. The only known work

to consider simultaneous interaction across multiple points

along the spectrum comes from research on pervasive gaming

which introduced the concept of transreality gaming [16], [17].

We have generalized and significantly extended these original

concepts to incorporate IoT devices for everyday interaction

across physical and virtual realities.

One of the few examples of HCI research on IoT presented

several examples using IoT devices as Human Interface De-

vices (HIDs) and derived guidelines for embedded interaction

with IoT [18]. A number of papers describe AR interaction

with IoT devices, such as using visual tracking to facilitate

AR overlays for IoT devices [19]–[24] or sensor based object

tracking to provide augmented virtuality for tangible UIs

(TUIs) in toys, gaming, and entertainment applications [25]–

[30]. The concept of mirror worlds considers mixed reality

environments where situated agents can augment the physical

world through a VE consisting of virtual objects coupled to

IoT devices [31]–[34]. While mirror worlds share a number

of similarities with transreality, research has been limited to

interactions between agents and the VE and does not consider

the much broader space of interactions possible between

humans, virtual, and physical objects.

One of the primary challenges to implementing complex in-

teractive systems is reducing the coupling between application

logic and UI implementation to avoid the costs of developing

platform specific UIs. Cross-platform UI toolkits and UI de-

sign patterns like Model-View-Control (MVC), Model-View-

ViewModel (MVVM), and Model-View-Presenter (MVP) help

to manage the complexity of UI design and implementation

and enforce decoupling between domain and UI logic [35]–

[37]. However, even when using these techniques, supporting

a wide range of device platforms still requires the develop-

ment of platform specific implementations. Distributed User

Interfaces (DUIs) are complex interactive systems that allow

application UIs to be distributed across multiple devices, such

as tabletop, wall mounted, and mobile screens, necessitating

complex state synchronization and event routing between

hosts [38]. Research on DUIs has yielded the most promis-

ing approach to managing complex multi-platform interactive

systems by adapting UI design patterns to distributed systems.

The Distributed ViewModel (DVM) pattern, which de-

rives from the MVVM pattern, effectively decouples appli-

cation logic from UI implementation [39], [40]. It consists

of network-shared ViewModel objects stored in an object

database and synchronized across clients implementing appli-

cation logic and platform specific Views. A similar approach

derives from the MVP pattern to provide a distributed multi-

modal UI framework consisting of Views on hosts providing

interface modalities, shared synchronized ViewModels, and

Presenters running on hosts managing the Model and domain

logic for an application [41]. Ravel is a data-flow oriented

IoT framework that generates code for distributing MVC

components across IoT sensor devices, gateways, and cloud

hosts while coordinating components based synchronizing

portions of shared Model state across the hosts [42]. Utilizing

an object database to implement the DVM rather than a

shared ViewModel runtime provided by a framework [41], [42]

significantly decouples the ViewModel from View and Model

component implementations. This approach frees developers to

implement Views and Models using any platform supported by

the object database client, rather than the constrained set of

platforms supported by the runtime. The shared ViewModel

also significantly reduces the complexity of implementing

DUIs, where a shared ViewModel can be easily synchronized

and adapted across different hosts by binding to Views suitable

for each host’s available interface modalities.

178178

III. TRANSREALITY SYSTEMS

Transreality environments (TEs) consist of two types of

devices: Embedded Things and Interactive Things. Embed-

ded Things are non-interactive IoT devices with sensors and

actuators which collectively virtualize the physical environ-

ment. These may be infrastructural devices, such as building

or environmental control systems, or scanning and tracking

devices which monitor physical objects in the environment.

While not directly interactable, they provide additional affor-

dances through the network to facilitate indirect interaction

with devices which would otherwise not be possible, such as

remote control and configuration interfaces. They also enable

interaction through non-networked physical objects sensed in

the environment, such as using RFID tags placed on objects

or visual object recognition and tracking. Interactive Things

are IoT devices which extend the VE with modalities for

human interaction. These include everything from tangible and

wearable IoT interface devices like buttons, medical sensors,

and watches, to traditional human interface devices (HIDs)

like mounted and mobile screens, to immersive AR and VR

HWDs.

The virtualized environment and interface modalities pro-

vided by Embedded and Interactive Things combine to form a

seamless transreality environment enabling interaction across

a wide range of modalities. There are three types of objects

that may be situated within a TE. Virtualized objects provide

3D representations of Embedded or Interactive Things which

mimic the appearance and interactions of the physical objects

using available modalities. Examples include a thermostat

providing temperature control for a particular room in a smart

building, or smart appliances in a kitchen workspace, or

spatially tracked tangible controllers like those used with the

HTC Vive. Virtual objects are 3D objects with appearance and

interactions which imply physicality. Interaction with virtual

objects is similar to virtualized objects with the exception of

not being coupled to a physical device. Examples of virtual

objects include 3D avatars for agents, 3DUIs for services, or

arbitrary 3D content situated in the environment, like virtual

sculptures or flowers. Meta objects are 2D or 3D objects

with no implied physicality, such as abstract 3DUIs, GUIs,

documents, and multimedia. These objects are most commonly

encountered using traditional screen-based HIDs and enabling

placement within transreality environments opens up new

possibilities for novel interactions and collaboration.

Service ecosystems leverage the transreality environment to

situate virtual and meta objects alongside virtualized physical

objects to enable novel interactions that have not been possible

in previous IEs. Transreality objects within the environment

may be situated within the VE, or may be mapped from

remote environments into the VE around a user. Any number

of available modalities provided by the TE may be utilized

for interaction with transreality objects and users may seam-

lessly utilize multiple modalities simultaneously or transition

between modalities over time. Managing multi-modal interac-

tion with both virtual objects and Embedded and Interactive

TrIP

TrIP Client

Web Gateway

Application 1

TrIP Client

Application 2

TrIP Client

Platform View

TrIP Client Cross-Platform View

TrIP Client

Cross-platform Toolkit

Web View

Web Browser

Fig. 1. The TrIP system architecture enables service ecosystem interaction
across a wide range of Embedded and Interactive Things using general purpose
clients implemented for specific platforms, using cross-platform toolkits, or
web-based interfaces.

Things, while simultaneously exposing the environment to

service ecosystems for interaction, is an extremely challenging

problem which no previous work in either HCI or IoT research

is known to have considered. We introduce the Transreality

Interaction Platform (TrIP) to address these challenges.

IV. THE TRANSREALITY INTERACTION PLATFORM

TrIP is a specialized event-driven object database designed

to provide the first known general purpose implementation

of the Distributed ViewModel design pattern to support de-

velopment of transreality environments [39], [40]. TrIP man-

ages DVMs and provides a query interface for defining and

manipulating DVMs, synchronization mechanisms for sharing

DVMs between multiple clients, and granular event brokerage

over DVM XML data structures. DVMs are managed as

persistent live XML DOM trees with out-of-band metadata

used internally for indexing, security policies, and associating

type-specific properties. TrIP places no restrictions on the

schema of ViewModels in order to allow the many avail-

able XML UI languages [43] and emerging IoT modeling

languages [44], [45] to evolve over time. Reusable platform-

specific TrIP clients adapt and bind DVMs to Views supporting

available platform modalities, including the physical Views of

Interactive and Embedded Things.

A. Architecture

Although Interactive Things provide human interface

modalities that services can utilize for interaction, IoT devices

are not traditionally treated as presentation components in a

multi-tier architecture [46]. Furthermore, current IoT platforms

expose devices through data management and service-oriented

179179

interfaces, which reside within the data and application lay-

ers of a multi-tier architecture. This disparity complicates

development of transreality environments using existing IoT

platforms as aspects of the presentation layer leak into the

application and data tiers. TrIP addresses this issue by acting

as a presentation layer middleware that provides a unified

interface to both Embedded and Interactive Things available

in a transreality environment.

The proposed architecture for transreality systems is shown

in Fig. 1. Decoupling service logic from UI implementation

through DVMs allows for a wide variety of Embedded and

Interactive Things to be supported through reusable general

purpose TrIP clients. These clients adapt ViewModels to

available platform modalities and may be implemented using

native platform interfaces, cross-platform toolkits, or web-

based interfaces. Services utilize TrIP clients within their

presentation layer to appropriate virtualized objects and situate

virtual and meta objects within the TE to facilitate user inter-

action. Service ecosystems share the TE to interact with users

and may also interact amongst themselves through situated

objects, such as an agent represented by an avatar which can

interact with services on behalf of a user through objects in

the TE.

Unlike most Embedded Things, the latency requirements

for Interactive Things are much more stringent to ensure

responsiveness [47]. Interactive Things also expose signifi-

cantly more personal information than non-interactive devices.

These two factors favor a decentralized platform that can

minimize latency and ensure end-user control of collected

information [7]. Most IoT platforms, however, are centralized

in the cloud and employ big data techniques to manage

the large number of devices and volume of collected sensor

data. A centralized platform incurs higher latency than a

decentralized platform as there are at least two Internet hops

between an IoT device and a service (unless the service is

collocated on the centralized platform), compared to the single

hop from a decentralized platform to the service outside of the

local network. For these reasons, the present implementation

of TrIP is architected as a standalone server connecting with

Embedded and Interactive Things through the local network

to provide local or cloud-based services access to the local

transreality environment.

B. Distributed ViewModels

The Distributed ViewModel design pattern [39], [40] pro-

vides a powerful tool for developing complex interactive

systems such as transreality environments. TrIP implements

the pattern using XML DOM data structures as ViewModels.

Compared to JSON and other serialization formats, XML is

widely used for UI modeling languages [43] and a number

of emerging IoT modeling languages [44], [45]. The XML

DOM specification also includes mechanisms for dispatching

events through the DOM tree [48] and generating events in

response to mutations [49]. TrIP leverages these capabilities to

synchronize DVMs shared across multiple clients and provide

event brokerage over XML trees.

Service B

Query

Button

Service A

Button

Sync

TrIP

ButtonQuery

Sync

Physical
Button

Query

Button

AR Shell

Button

Sync

Fig. 2. An example of a DVM shared across multiple frontend and backend
TrIP clients. A resource constrained Physical Button modifies a node in its
ViewModel using a query. On the TrIP server, the live DOM of the button
ViewModel is updated, triggering an event sent to XML node subscribers
(Service B) and synchronized clients (Service A and the AR Shell).

When a client submits a query to modify a ViewModel,

such as a resource limited IoT button as shown in Fig. 2, the

modification is applied to the persistent ViewModel managed

by TrIP, which in turn triggers mutation events sent to synchro-

nized clients with local copies of the ViewModel (Service A
and the AR Shell), or clients which have subscribed to mutation

events on a particular XML node (Service B). Similarly,

when a client modifies a local copy of a ViewModel, the

mutation event is relayed to the TrIP server and applied to the

persistent ViewModel, which in turn dispatches events to other

synchronized clients or subscribers. The same mechanism is

used for general events which may be published by dispatching

the event on a node in a local copy of a ViewModel or by

submitting a publish query specifying the node. Mutations

and event dispatches must be “replayed” on the TrIP server to

allow for subscribers to mutations or events on particular XML

nodes to be properly notified. Synchronized ViewModels are

not always feasible, especially for resource constrained devices

with limited memory and processing capabilities insufficient

for synchronizing an XML DOM structure. For this reason,

TrIP provides a query API for performing equivalent modi-

fications and event dispatching on ViewModels using XPath

for selecting nodes and a set of modification commands for

altering the XML state and structure.

While the use cases for DVMs are well studied for UIs,

nothing similar is known to have been proposed for IoT

devices. If Embedded and Interactive Things are considered

as physical Views, then their ViewModels represent their

state, functionality, and metadata — data typically managed in

aggregate by current IoT platforms. Using these ViewModels,

services can discover and appropriate devices based on con-

textual metadata to enable situated interaction within a TE.

180180

id
name
owner
schema
xml

ViewModeldevice_id
device_model
token

Thing

description
token

Service

Id
credentials
role_ids
permissions

Role
1-n

n-n

Fig. 3. TrIP object model

They can retrieve ViewModels to observe the state of device

sensors or subscribe to events on the ViewModels to receive

real-time sensor data. Likewise, manipulating the state of

ViewModels or dispatching events on ViewModels can be used

to alter the configuration of a device, invoke functionality, and

control actuators. Appropriation involves a service requesting

permissions from a device owner (if not already granted) to

observe and manipulate a device’s ViewModel. Depending

on the device capabilities, multiple services may be given

permissions on a single ViewModel, allowing sensor data to

be shared among services or control of different modalities of

a device to be assigned to specific services.

C. Object Model

The proposed object model for TrIP is shown in Fig. 3. The

present design of TrIP provides a general-purpose ViewModel
object intended for use with virtual and meta objects. Every

ViewModel has a universally unique identifier, a name, and

an owner assigned by security policy. Each also contains the

XML DOM data structure which is serialized along with other

assigned metatdata. An out-of-band schema property is as-

signed to each ViewModel to allow queries to select ViewModel
by schema and support assigning schemas independent of any

schema defined in the XML to facilitate evolution and richer

typing. For virtualized objects like Embedded and Interactive

Things, a Thing object, which descends from the ViewModel
type, adds additional metadata such as device identification,

model information, and security tokens. Services are another

type of ViewModel which represents an ecosystem service

and allows services available in a TE to be discoverable and

interactable, such as for launching a service by publishing an

event on its ViewModel.

Roles are security policy objects used to associate creden-

tials and other metadata with users and for storing permission

assignments. Every ViewModel is assigned an owner by ref-

erence to a Role ID. Roles can also represent policy groups

or delegates by assigning one or more other Roles to form

a hierarchy. Permissions assigned to a Role may be inherited

by delegates and delegates may also be assigned ownership of

ViewModels. Token-based authentication allows Things and

Services to be authorized to assume an assigned role without

supplying credentials. This also allows resource constrained

devices to issue queries for updating state and publishing

QUERY := VIEWMODEL | VIRTUALIZED | ROLE
VIEWMODEL :=

(’viewmodel’ | ’thing’ | ’service’) ’.’
(’insert’, DEFINITION+
| ’find’, SELECTOR, [PROJECTION]
| ’update’, SELECTOR, MODIFIER
| ’destroy’, SELECTOR
| ’subscribe’, SELECTOR, EVENT+
| ’publish’, SELECTOR, EVENT+, ARGUMENTS?
| ’chown’, SELECTOR, Role.id)

VIRTUALIZED :=
(’thing’ | ’service’) ’.’
(’authorize’, SELECTOR, Role.id?
| ’status’, SELECTOR
| ’properties’, SELECTOR, PROPERTIES?)

ROLE :=
’role.’
(’create’, CREDENTIAL
| ’add’, Role.id, Role.id+
| ’remove’, Role.id, Role.id+
| ’destroy’, Role.id
| ’credentials’, Role.id, CREDENTIAL
| ’grant’, Role.id, PERMISSION+, SELECTOR
| ’revoke’, Role.id, PERMISSION+, SELECTOR)

DEFINITION :=
JsonObject[type properties]

SELECTOR :=
JsonObject[type properties | XPath]

MODIFIER :=
JsonObject[type properties | modifier command]

EVENT := String
ARGUMENTS := JsonObject | JsonArray
PROPERTIES := JsonObject
CREDENTIAL :=

JsonObject[’username’,’password’]
| JsonObject[’username’,’certificate’]
| JsonObject[’token’]

PERMISSION :=
JsonObject[’permission’]

| JsonObject[’permission’,’object’:SELECTOR]

Fig. 4. TrIP query syntax. Production rules determine a sequence of elements
in a JSON array representing the query.

events in a single message, avoiding the typical handshake

used during credential exchange.

D. Query Language

In the present design of TrIP, a simple JSON protocol is

used and a query language based on JSON arrays allows for

efficient query parsing. The query syntax is summarized in

Fig. 4. ViewModels and descendants support typical Create

Retrieve Update Delete (CRUD) operations. When inserting

new ViewModels, one or more JSON objects containing the

serialized XML and associated metadata are provided. Find-

ing, updating, and destroying ViewModels requires a selector

JSON object containing values for a subset of the properties

to match against. An XPath property may also be provided

to retrieve ViewModels by matching against the XML DOM

structure. Update queries also include a modifier JSON object,

which may set property values or contain commands for

performing XML DOM modifications, like setting or removing

attributes and adding or removing child elements. Publish and

subscribe queries on ViewModels can specify simple events on

181181

the ViewModel itself or on particular XML DOM nodes if an

XPath is provided in the selector. Finally, ownership can be

changed on one or more selected ViewModels.

Thing and Service objects support several additional queries.

Authorization tokens may be assigned to allow devices or

services to assume a particular Role by supplying the token.

The network connectivity status of a Thing or Service may

also be queried to determine if the device or service client

associated with the object is connected. Thing and Service
metadata properties, such as device identifiers or service

descriptions may be retrieved or set.

Roles provide queries for basic CRUD operations, setting

credentials for a particular Role, and granting and revoking

permissions. The permissions assigned to a Role may be

object-neutral for assigning broad capabilities to users, such as

administrative rights, or may be specific to particular objects

or object types.

E. Query Examples

Consider the ViewModel and queries (Fig. 5) used for

an IoT button device providing a tangible UI in a simple

transreality environment (Fig. 7). The button provides a sensor

for detecting button presses and an actuator for controlling an

RGB LED for indicating state. The XML ViewModel for the

button provides a simple representation of the device (lines

1-5). The button element represents the button sensor and

when the button is pressed it dispatches a press event on

this element. The led element represents the LED actuator

and the state attribute can be modified by a service to turn

the LED on or off to notify a user. If the button device had

sufficient capabilities, the firmware could use a synchronized

ViewModel to allow it to directly alter the local XML DOM or

listen and dispatch events on DOM nodes. In these examples

we assume the button device has limited capabilities and must

rely instead on the query API.

To create the ViewModel, the button issues an insert
query with a JSON object containing the XML and metadata

(lines 6-8). The result of this query will be a JSON object

for the ViewModel, including any default metadata properties

added during insertion, such as the owner id which defaults to

the authorized role for the session. To remove the ViewModel,

a remove query is issued (line 9) by providing a JSON selec-

tor which is matched against indexes to locate the ViewModel

to remove. Similarly, one or more ViewModels owned by a

particular Role can be found using a find query (line 10).

When the button first connects to the TrIP server, it may

retrieve the persistent state of the LED by issuing a find
query including an XPath for the led element (line 11-13).

This returns the serialized XML for the led to allow for

current attribute values to be retrieved. To set the state of the

LED, a service may issue an update query (lines 14-17) which

selects the led element and performs an attribute modification

to set the value of the state attribute.

To receive real-time notification when the button is pressed,

services issue a subscribe query selecting the button ele-

ment and specifying the press event (lines 18-20). Similarly,

1: <thing schema="button">
2: <button name="button1">
3: <led name="led1" state="on"></led>
4: </button>
5: </thing>
6: ["thing.insert",
7: { "name":"my-button", "schema":"button",
8: "xml": ... }]
9: ["thing.remove", { "name":"my-button" }]
10: ["thing.find", { "owner_id": ... }]
11: ["thing.find",
12: { "name": "my-button",
13: "\$path": "//button/led[@name=’led1’]" }]
14: ["thing.update",
15: { "name": "my-button",
16: "\$path": "//button/led[@name=’led1’]" },
17: { "\$set": { "state": "on" }}]
18: ["thing.subscribe",
19: { "name": "my-button", "\$path": "//button" },
20: "press-event"]
21: ["thing.publish",
22: { "name": "my-button", "\$path": "//button" },
23: "press-event", ...]

Fig. 5. Query examples

the button publishes a press event specifying the button
element along with additional arguments, such as duration or

whether it was a single or double press (lines 21-23).

V. EVALUATION

A proof-of-concept implementation of TrIP has been devel-

oped to investigate transreality interactions. We present results

from a benchmark evaluation gauging the responsiveness of

the platform under varying concurrency and types of load.

We also present a demonstration of a transreality environment

implemented using the platform. Both the benchmarks and

demonstration rely on queries similar to the button ViewModel

query examples shown previously.

A. Proof-of-Concept Implementation

We have developed a proof-of-concept TrIP implementation

using Javascript and Node.js [50]. While not optimal for a

large-scale deployment, the event-driven Node.js framework is

highly scalable and well suited for real-time message oriented

systems such as TrIP. The present implementation utilizes

an in-memory object database with log-based persistence to

manage the XML DOM and metadata associated with View-

Model objects (Roles and session state are persisted using the

same facilities). AVL-tree indexes over ViewModel metadata

are constructed from the persistent log upon startup and used

during query processing to quickly select ViewModels for

operations and detect unique constraint violations. Simple

two-phase locking provides concurrency control to prevent

conflicts among asynchronous modification queries; locking is

not performed for read-only queries like find and publish
queries. In addition to XML DOM event dispatching, simple

events may be published/subscribed on the ViewModel itself,

this includes a reserved mutation event used for synchroniza-

tion amongst clients.

182182

TrIP clients have been implemented for Javascript (Node.js

and web browser with WebSockets), C#, and Unity3D. Tran-

sreality shells which render DVMs on a particular plat-

form have been developed for web browsers, the Microsoft

Hololens, and the HTC Vive. The Hololens shell leverages

the spatial mapping capabilities of the device to virtualize

the surrounding environment, share the generated 3D meshes

using a ViewModel representing the virtualized environment,

and position objects relative to the mapped environment. The

Vive shell renders the virtualized environment and objects

situated therein. The browser-based shell provides a cross-

platform GUI interface for browsing and interacting with

objects in a TE, such as for remotely controlling devices or

collaborating with other users in a TE if a HWD is unavailable.

B. Performance

Response time is the most important performance metric

for interactive systems. User studies suggest that the re-

sponse time for an interaction must be less than 100ms to

appear instantaneous [47]. Our evaluation methodology seeks

to quantify the performance limits of the proof-of-concept

TrIP implementation under response time constraints, namely

the maximum query rate and concurrency levels for varying

types of load. TrIP is implemented using Node.js, which uses

a single-process event-driven architecture to support highly

concurrent loads. While this avoids thread switching costs typ-

ical of thread-per-connection architectures, there is an upper

bound on the maximum throughput imposed by the event-

loop and query processing costs. Above this bound, incoming

queries are delayed and queued for processing resulting in

reduced response times. Since query operations are executed

synchronously, they may also block the event-loop and further

reduce throughput by delaying the processing of asynchronous

I/O operations.

1) Methodology: For CRUD queries the cost varies by

query type and query cardinality (the number of affected

objects) and consists of concurrency controls (locking, com-

mitting, and releasing objects), executing query operations

(querying indexes, filtering objects, modifying objects, updat-

ing indexes, and persisting changes), and sending responses

with query results. For publish queries the processing cost is

relatively small and consists of a retrieval to find the target

ViewModel and either a subscription lookup or dispatching

an event through the ViewModel DOM which is handled by

subscribers. However, if the number of subscribers for an

event (the cardinality) is large or there are large numbers

of concurrent events being published the outbound message

queue can quickly become saturated and significantly reduce

responsiveness.

To quantify the query processing costs and the responsive-

ness of the TrIP implementation, the mean throughput and

response time were measured for a number of different query

types and varying cardinalities and concurrencies. Six query

types were evaluated with cardinalities of n = 1 and n = 10:
CRUD queries (insert, find, update, remove), and

publish queries against a ViewModel and against an XML

DOM node. For each query type and cardinality, 200 simulated

TrIP clients issue a collective total of 800 queries at concurren-

cies varying from 3 to 180. Clients are selected to issue a query

in round-robin fashion (up to the concurrency limit) as soon as

a client completes a query. For each variation the TrIP server

is restarted and initialized with 1000 ViewModels. Each client

operates on a mutually exclusive set of ViewModels created

during warm-up after each client connects. For publish
queries the cardinality sets the total number of subscribers

on each ViewModel and each client publishes an event on a

single ViewModel. Published events are echoed back to the

publishing client after being sent to all other subscribers to

measure the round trip time (RTT) for each event. Throughput

and response time statistics are collected over 5 runs of each

variation. The TrIP server ran in one process while clients

were simulated by a Node.js load generator running in another

process. The evaluation was performed on a single host with

dual Intel Xeon E5335 2.00GHz CPUs (8 cores total) with 16

GB RAM running Ubuntu 14.04.5.

2) Results: The results of the evaluation are shown in

Fig. 6. The decreasing publish query throughput is unexpected

and is due to limitations of the load generator caused by

incoming events interfering with publish query responses and

causing a reduction in the throughput. Both CRUD and publish

query response times increase linearly with concurrency as

expected. CRUD query throughput degrades by more than half

when the cardinality increases, while publish query throughput

only decreases slightly. Corresponding increases in query

response times are also observed. For both query types, the

100ms responsiveness constraint is exceeded at relatively low

concurrency levels, restricting the present implementation to

use with small-scale transreality environments where less than

≈ 10 concurrent queries are expected at any time.

It is clear that there are scalability issues with the proof-of-

concept implementation that must be addressed as the platform

is optimized to support larger and more complex transreality

environment. However, the performance is adequate for sup-

porting initial investigations into transreality interaction using

small-scale transreality environments. In these cases the con-

currency and overall query rates are expected to be relatively

low as most interactions with either Embedded or Interactive

Things are bursty and transient. One exception is devices

providing real-time spatial tracking which will continuously

update ViewModels as device or objects locations change in

the environment. Supporting more than ≈ 5 of these devices

in a transreality environment will require future optimization

to increase publish query throughput and reduce mean event

RTT. It is important to note that very little optimization

was performed during development. There are many avenues

available to optimize critical paths and increase performance

beyond the baseline results provided by this proof-of-concept.

C. Demonstration

Using the proof-of-concept implementation of TrIP we

demonstrate a simple transreality environment in which users

can interact with a virtualized button in AR using a Microsoft

183183

●
●

● ●
● ●

●
●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●●

●

●

●
●

●

120

150

180

210

0 25 50 75 100
Concurrency

M
ea

n
T

hr
ou

gh
pu

t
Mean Throughput (n=1)

●

●

●

●

●

●

●

●

●

●

●●●●
●●●
●

●●●
●

●●●

●
●●
●

● ●●
●

● ●●
●

● ●●
●

● ●●
●

● ●●
●

●

50

100

150

200

5 10 15 20
Concurrency

M
ea

n
R

es
po

ns
e

T
im

e

Mean Response Time (n=1)

●

●

●

●

●

●

●

●

●

●

100

200

300

5 10 15 20
Concurrency

M
ea

n
R

T
T

Mean RTT (n=1)

●
●

● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●50

75

100

125

0 25 50 75 100
Concurrency

M
ea

n
T

hr
ou

gh
pu

t

Mean Throughput (n=10)

●
● ● ● ● ● ● ●

● ●

●●●
●

●●
●

●
●
●
●

● ●
●
●

● ●
●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0

200

400

600

800

5 10 15 20
Concurrency

M
ea

n
R

es
po

ns
e

T
im

e

Mean Response Time (n=10)

●

●

●

●

●

●

●

●

●

●

100

200

300

5 10 15 20
Concurrency

M
ea

n
R

T
T

Mean RTT (n=10)

Query

●

●

●

●

●

find

insert

remove

update

publish

Fig. 6. Evaluation results for CRUD and publish queries with cardinalities n = 1 and n = 10. CRUD query throughput decreases with increasing cardinality
while publish query throughput only decreases slightly. For n = 1, response times exceed the 100ms responsiveness constraint above 10 concurrent queries
for both CRUD and event operations. For n = 10, nearly all CRUD queries exceed the constraint. Event RTTs exceed the 100ms constraint above ≈ 7
concurrent queries for n = 1 and above ≈ 6 for n = 10.

TrIP

Button
Thing <Button>

Hololens Shell
Thing <Spatial Shell>

Button
Monitor

Vive Shell
Thing <Spatial Shelll>

Web Shell
Thing <Web Shell>

Environment
ViewModel <Space>

User 3

Web
Shell

User 2

Vive
Shell

User 1

User 1

Hololens
ShellShell

User 2

Fig. 7. System components of the proof-of-concept demonstration. TrIP
clients are shown along with associated DVMs. The objects depicted in the
shells represent objects visible to each user. Images show the virtualized button
as perceived in each modality (counterclockwise from top left): in AR a virtual
button is overlaid on the physical button, in VR the button is situated in the
VE, for the web the button is represented as a GUI, finally we show the
physical button used in the demo.

Hololens, in VR using an HTC Vive, remotely using a web-

based GUI, and physically by directly pressing the button.

Users can observe each other within the same VE as though

physically present, allowing a user in VR to see an AR

user standing next to them and “physically” pass a virtual

object to the AR user and vice versa. The virtualized button

is implemented using a Node.js client running on a Linux-

based embedded computer using GPIO to control an LED and

detect button presses. A button monitoring service observes the

state of the virtualized button and responds to presses of the

button by flashing its LED. A system diagram for the proof-

of-concept demonstration in Fig. 7 depicts the DVMs used,

their types and schemas, the relationships between them, and

the associated frontend and backend clients. Images in the

diagram depict how the button is perceived in each modality

provided by the frontend clients.

The Hololens Shell, Vive Shell, and Button DVMs are as-

signed spatial locations and orientations relative to the spatial

mapping of the environment generated by the Hololens and

stored in the Environment DVM. The Vive Shell retrieves

the spatial mapping from the Environment DVM to display

the virtualized environment in VR. Both the Hololens and

Vive shells display an avatar representing the position and

orientation of other Spatial Shell DVMs, and a 3D repre-

sentation of the virtualized button within the VE. The Web
Shell schema does not support spatial locations, so it does

not appear situated in the VE when viewed through the

Hololens or Vive. However, through the web shell, a user can

browse for DVMs matching the Button schema and display

a GUI interface for interacting with the button. Note that the

Environment and Button DVMs are shared and synchronized

across frontend and backend clients, and that the application

logic of the Button Monitor service is completely decoupled

from the multi-modal views presented through the shells and

the virtualized button. Implementing even this simple system

using traditional UI design and architectural techniques would

have required significant development effort. As support for

new platforms is added, development costs would increase and

would be largely duplicated for every subsequent application

developed.

184184

VI. FUTURE WORK

Transreality is an extremely deep concept with many facets

to be explored in future work. The proof-of-concept plat-

form provides a basis for studying transreality interactions

and discovering novel interactions not possible in previous

interactive environments. Many of these novel interactions

rely heavily on spatial context, which currently is embedded

within the ViewModel XML. Extending the object model to

include spatial metadata and implementing spatial indexes

over that metadata can allow for complex spatial relationships

to be queried, such as proximity, nearest neighbors, and

relative orientations. As we develop more complex transreality

systems, ViewModel composition will become necessary to

represent more complex relationships between ViewModels,

such as when an object is displayed within a shell, or when

a shared configuration is applied to multiple Things. While

it is possible to define compositions within XML, not every

schema will support the same syntax, and it will be necessary

to define compositions in out-of-band metadata. The current

implementation does not support efficient XPath queries over

ViewModels, as it relies on a scan operation to apply the

XPath on each ViewModel. Indexing XML elements will allow

XPath queries to be efficiently performed over large subsets

of ViewModels, enabling pattern based queries for discovering

ViewModels with particular structures, such as finding all

objects which provide a notification modality within proximity

of a user. These are just a few possible directions for future

research and development on TrIP.

VII. CONCLUSION

Transreality environments are highly complex interactive

systems which will become more prevalent in the coming years

as interactive systems and the Internet of Things converge. Ser-

vice ecosystems leverage the virtualized environment provided

by Embedded Things and the interface modalities provided

by Interactive Things to situate virtual objects alongside

virtualized physical objects, which allows for novel ad-hoc

interactions between humans, virtual, and physical objects.

To explore the space of transreality interactions and foster

further research, we developed a proof-of-concept Transre-

ality Interaction Platform: a specialized event-driven object

database based on the Distributed ViewModel pattern which

provides a novel architecture for decoupling service logic from

UI implementation to simultaneously support a wide range of

interface modalities. We evaluated the platform for a number

of common query types to determine responsiveness under

varying loads and concurrency levels, and we demonstrated

the platform for integrating embedded and interactive things

for seamless physical/virtual interaction in a simple trasreality

environment. This work provides a foundation for future

research into transreality interaction and exploration of novel

and compelling interactions which span physical and virtual

realities.

REFERENCES

[1] S. Sorrell, “IOT - internet of transformation,” Juniper Research, White
Paper, Jul. 2015.

[2] A. Whitmore, A. Agarwal, and L. D. Xu, “The internet of
Things—A survey of topics and trends,” Information Systems Frontiers,
vol. 17, no. 2, pp. 261–274, Mar. 2014. [Online]. Available:
http://link.springer.com/article/10.1007/s10796-014-9489-2

[3] P. Montuschi, A. Sanna, and G. Paravati, “Human-Computer interaction:
Present and future trends,” Computing Now, vol. 7, no. 9, Sep.
2014. [Online]. Available: http://www.computer.org/web/computingnow/
archive/september2014

[4] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M service platforms: Survey,
issues, and enabling technologies,” IEEE Communications Surveys Tu-
torials, vol. 16, no. 1, pp. 61–76, 2014.

[5] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov. 2014.

[6] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct.
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128610001568

[7] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis
of Internet-of-Things platforms,” arXiv:1502.01181 [cs], Feb. 2015,
arXiv: 1502.01181. [Online]. Available: http://arxiv.org/abs/1502.01181

[8] K. Ashton, “That ‘internet of things’ thing,” RFiD Journal, vol. 22,
no. 7, p. 97–114, 2009. [Online]. Available: http://www.itrco.jp/
libraries/RFIDjournal-ThatInternetofThingsThing.pdf

[9] K. A. Hua, R. Peng, and G. L. Hamza-Lup, “WISE: a Web-Based
intelligent sensor explorer framework for publishing, browsing, and
analyzing sensor data over the internet,” in Web Engineering, ser.
Lecture Notes in Computer Science, N. Koch, P. Fraternali, and
M. Wirsing, Eds. Springer Berlin Heidelberg, Jan. 2004, no. 3140, pp.
568–572. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-540-27834-4 69

[10] R. Peng, K. A. Hua, H. Cheng, and F. Xie, “An internet framework
for pervasive sensor computing,” Int. J. Adv. Pervasive Ubiquitous
Comput., vol. 1, no. 3, p. 1–22, Jul. 2009. [Online]. Available:
http://dx.doi.org/10.4018/japuc.2009090801

[11] K. Akpınar, K. A. Hua, and K. Li, “ThingStore: a platform for internet-
of-things application development and deployment,” in Proceedings
of the 9th ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’15. New York, NY, USA: ACM, 2015, p. 162–173.
[Online]. Available: http://doi.acm.org/10.1145/2675743.2771833

[12] P. Fremantle, B. Aziz, J. Kopecky, and P. Scott, “Federated identity and
access management for the internet of things,” in 2014 International
Workshop on Secure Internet of Things (SIoT), Sep. 2014, pp. 10–17.

[13] T. L. Koreshoff, T. Robertson, and T. W. Leong, “Internet of things:
A review of literature and products,” in Proceedings of the 25th
Australian Computer-Human Interaction Conference: Augmentation,
Application, Innovation, Collaboration, ser. OzCHI ’13. New
York, NY, USA: ACM, 2013, p. 335–344. [Online]. Available:
http://doi.acm.org/10.1145/2541016.2541048

[14] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual
displays,” IEICE TRANSACTIONS on Information and Systems, vol. 77,
no. 12, pp. 1321–1329, 1994.

[15] S. Mann, “Wearable, tetherless, computer-mediated reality (with possible
future applications to the disabled),” MIT Media Lab, Technical report
260, 1994.

[16] C. A. Lindley, “Trans-Reality gaming,” in Proceedings of the 2nd Annual
International Workshop in Computer Game Design and Technology,
Liverpool John Moores University, UK, 2004, p. 15–16.

[17] ——, “Game space design foundations for trans-reality games,” in
Proceedings of the 2005 ACM SIGCHI International Conference
on Advances in Computer Entertainment Technology, ser. ACE ’05.
New York, NY, USA: ACM, 2005, p. 397–404. [Online]. Available:
http://doi.acm.org/10.1145/1178477.1178569

[18] M. Kranz, P. Holleis, and A. Schmidt, “Embedded interaction: Inter-
acting with the internet of things,” IEEE Internet Computing, vol. 14,
no. 2, pp. 46–53, Mar. 2010.

[19] P. Belimpasakis and R. Walsh, “A combined mixed reality and networked
home approach to improving user interaction with consumer electron-
ics,” IEEE Transactions on Consumer Electronics, vol. 57, no. 1, pp.
139–144, Feb. 2011.

185185

[20] Paúl E. Estrada-Martı́nez, Jorge Álvarez-Lozano, J. Antonio Garcı́a-
Macı́as, and Jesús Favela, “The sentient visor: Towards a browser for
the internet of things,” Intl. Symposium on Ubiquitous Computing and
Ambient Intelligence (UCAmI), 2011.

[21] P. E. Estrada–Martinez and J. A. Garcia–Macias, “Semantic interactions
in the internet of things,” International Journal of Ad Hoc
and Ubiquitous Computing, vol. 13, no. 3-4, pp. 167–175, Jan.
2013. [Online]. Available: http://www.inderscienceonline.com/doi/abs/
10.1504/IJAHUC.2013.055464

[22] M. J. Kim, J. H. Lee, X. Wang, and J. T. Kim, “Health smart
home services incorporating a MAR-based energy consumption
awareness system,” Journal of Intelligent & Robotic Systems,
vol. 79, no. 3-4, pp. 523–535, Sep. 2014. [Online]. Available:
http://link.springer.com/article/10.1007/s10846-014-0114-x

[23] T. Leppänen, A. Heikkinen, A. Karhu, E. Harjula, J. Riekki, and
T. Koskela, “Augmented reality web applications with mobile agents
in the internet of things,” in 2014 Eighth International Conference on
Next Generation Mobile Apps, Services and Technologies (NGMAST),
Sep. 2014, pp. 54–59.

[24] B. Pokrić, S. Krc?o, and M. Pokrić, “Augmented reality based smart
city services using secure IoT infrastructure,” in 2014 28th International
Conference on Advanced Information Networking and Applications
Workshops (WAINA), May 2014, pp. 803–808.

[25] M. Back, D. Kimber, E. Rieffel, A. Dunnigan, B. Liew, S. Gattepally,
J. Foote, J. Shingu, and J. Vaughan, “The virtual chocolate factory:
Building a real world mixed-reality system for industrial collaboration
and control,” in 2010 IEEE International Conference on Multimedia and
Expo (ICME), Jul. 2010, pp. 1160–1165.

[26] P. Coulton, D. Burnett, A. Gradinar, D. Gullick, and E. Murphy, “Game
design in an internet of things,” Transactions of the Digital Games
Research Association, vol. 1, no. 3, Sep. 2014. [Online]. Available:
http://todigra.org/index.php/todigra/article/view/19

[27] P. Coulton, “Playful and gameful design for the internet of
things,” in More Playful User Interfaces, ser. Gaming Media and
Social Effects, A. Nijholt, Ed. Springer Singapore, 2015, pp.
151–173, DOI: 10.1007/978-981-287-546-4 7. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-981-287-546-4 7

[28] C. Lu, “IoT-enhanced and bidirectionally interactive information vi-
sualization for Context-Aware home energy savings,” in 2015 IEEE
International Symposium on Mixed and Augmented Reality - Media, Art,
Social Science, Humanities and Design (ISMAR-MASH’D), Sep. 2015,
pp. 15–20.

[29] A. MacDowell and M. Endler, “Internet of things based multiplayer
pervasive games: An architectural analysis,” in Internet of Things.
User-Centric IoT, ser. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering,
R. Giaffreda, R. Vieriu, E. Pasher, G. Bendersky, A. J. Jara, J. J. P. C.
Rodrigues, E. Dekel, and B. Mandler, Eds. Springer International
Publishing, Oct. 2014, no. 150, pp. 125–138, DOI: 10.1007/978-3-
319-19656-5 19. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-3-319-19656-5 19

[30] V. C. Stoianovici, D. Talaba, A. V. Nedelcu, M. M. Pisu, F. Barbuceanu,
and A. Stavar, “A virtual reality based human-network interaction system
for 3D internet applications,” in 2010 12th International Conference
on Optimization of Electrical and Electronic Equipment (OPTIM), May
2010, pp. 1076–1083.

[31] J. T. Carvalho, R. A. P. d. Santos, S. S. d. C. Botelho, N. D. Filho, R. R.
Oliveira, and E. Santos, “Hyper-Environments: a different way to think
about IoT,” in Internet of Things (iThings/CPSCom), 2011 International
Conference on and 4th International Conference on Cyber, Physical and
Social Computing, Oct. 2011, pp. 25–32.

[32] A. Ricci, L. Tummolini, M. Piunti, O. Boissier, and C. Castelfranchi,
“Mirror worlds as agent societies situated in mixed reality
environments,” in Coordination, Organizations, Institutions, and
Norms in Agent Systems X, ser. Lecture Notes in Computer
Science, A. Ghose, N. Oren, P. Telang, and J. Thangarajah,
Eds. Springer International Publishing, May 2014, no. 9372, pp.
197–212, DOI: 10.1007/978-3-319-25420-3 13. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-25420-3 13

[33] A. Ricci, A. Croatti, P. Brunetti, and M. Viroli, “Programming mirror
worlds: An Agent-Oriented programming perspective,” in Engineering
Multi-Agent Systems, ser. Lecture Notes in Computer Science,
M. Baldoni, L. Baresi, and M. Dastani, Eds. Springer International
Publishing, May 2015, no. 9318, pp. 191–211, DOI: 10.1007/978-3-

319-26184-3 11. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-3-319-26184-3 11

[34] C. W. Thompson, “Next-Generation virtual worlds: Architecture, status,
and directions,” IEEE Internet Computing, vol. 15, no. 1, pp. 60–65,
Jan. 2011.

[35] M. Macik, T. Cerny, and P. Slavik, “Context-sensitive, cross-platform
user interface generation,” Journal on Multimodal User Interfaces, pp.
1–13, Feb. 2014. [Online]. Available: http://link.springer.com/article/10.
1007/s12193-013-0141-0

[36] I. Dalmasso, S. Datta, C. Bonnet, and N. Nikaein, “Survey, compari-
son and evaluation of cross platform mobile application development
tools,” in Wireless Communications and Mobile Computing Conference
(IWCMC), 2013 9th International, Jul. 2013, pp. 323–328.

[37] A. Syromiatnikov and D. Weyns, “A journey through the land of Model-
View-Design patterns,” in 2014 IEEE/IFIP Conference on Software
Architecture (WICSA), Apr. 2014, pp. 21–30.

[38] N. Elmqvist, “Distributed user interfaces: State of the art,” in
Distributed User Interfaces, ser. Human-Computer Interaction Series,
J. A. Gallud, R. Tesoriero, and V. M. R. Penichet, Eds. Springer
London, Jan. 2011, pp. 1–12. [Online]. Available: http://link.springer.
com/chapter/10.1007/978-1-4471-2271-5 1

[39] H. Jetter, M. Zöllner, J. Gerken, and H. Reiterer, “Design and
implementation of Post-WIMP distributed user interfaces with ZOIL,”
International Journal of Human-Computer Interaction, vol. 28, no. 11,
pp. 737–747, Nov. 2012. [Online]. Available: http://dx.doi.org/10.1080/
10447318.2012.715539

[40] T. Seifried, H. Jetter, M. Haller, and H. Reiterer, “Lessons
learned from the design and implementation of distributed Post-
WIMP user interfaces,” in Distributed User Interfaces, ser. Human-
Computer Interaction Series, J. A. Gallud, R. Tesoriero, and
V. M. R. Penichet, Eds. Springer London, 2011, pp. 95–
102, DOI: 10.1007/978-1-4471-2271-5 11. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-1-4471-2271-5 11

[41] M. A. Fernández, V. Peláez, G. López, J. L. Carus, and V. Lobato,
“Multimodal interfaces for the smart home: Findings in the process
from architectural design to user evaluation,” in Ubiquitous Computing
and Ambient Intelligence, ser. Lecture Notes in Computer Science,
J. Bravo, D. López-de-Ipiña, and F. Moya, Eds. Springer Berlin
Heidelberg, Dec. 2012, no. 7656, pp. 173–180, DOI: 10.1007/978-3-
642-35377-2 24. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-3-642-35377-2 24

[42] L. Riliskis, J. Hong, and P. Levis, “Ravel: Programming iot
applications as distributed models, views, and controllers,” in
Proceedings of the 2015 International Workshop on Internet of Things
towards Applications. ACM, 2015, p. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820977

[43] J. Guerrero-Garcia, J. Gonzalez-Calleros, J. Vanderdonckt, and J. Muoz-
Arteaga, “A theoretical survey of user interface description languages:
Preliminary results,” in Web Congress, 2009. LA-WEB ’09. Latin Amer-
ican, Nov. 2009, pp. 36–43.

[44] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE Communi-
cations Surveys Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[45] M. Maheswaran, J. Wen, and A. Gowing, “Design of a context aware
object model for smart spaces, things, and people,” in 2015 IEEE
International Conference on Communications (ICC), Jun. 2015, pp. 710–
715.

[46] M. Fowler, Patterns of Enterprise Application Architecture. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[47] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993.

[48] “Document object model (DOM) level 2 events spec-
ification,” https://www.w3.org/TR/2000/REC-DOM-Level-2-Events-
20001113/. [Online]. Available: https://www.w3.org/TR/2000/
REC-DOM-Level-2-Events-20001113/

[49] “W3C DOM4,” https://www.w3.org/TR/2015/REC-dom-20151119/.
[Online]. Available: https://www.w3.org/TR/2015/REC-dom-20151119/

[50] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build High-
Performance network programs,” Internet Computing, IEEE, vol. 14,
no. 6, pp. 80–83, 2010.

186186

