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Abstract
We constructed an acoustic, gesture-based recognition sys-
tem called Multiwave, which leverages the Doppler Effect
to translate multidimensional movements into user inter-
face commands. Our system only requires the use of two
speakers and a microphone to be operational. Since these
components are already built in to most end user systems,
our design makes gesture-based input more accessible to
a wider range of end users. By generating a known high
frequency tone from multiple speakers and detecting move-
ment using changes in the sound waves, we are able to
calculate a Euclidean representation of hand velocity that
is then used for more natural gesture recognition and thus,
more meaningful interaction mappings.

We present the results of a user study of Multiwave to eval-
uate recognition rates for different gestures and report ac-
curacy rates comparable to or better than the current state
of the art. We also report subjective user feedback and
some lessons learned from our system that provide ad-
ditional insight for future applications of multidimensional
gesture recognition.
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Introduction
Gesture-based interfaces are beginning to see widespread
adoption in consumer electronics, for example, smartphones
like Amazon’s Fire Phone [1] and wearable devices, such as
the Moto 360 [2]. A common technique for gesture capture
is to collect data using camera-based tracking technolo-
gies. Common limitations with such systems include hard-
ware requirements (i.e., the camera), visual occlusion, high
processing power requirements, and security and privacy
issues inherent in image capture technologies [15]. Some
inroads have been made by utilizing different input medi-
ums, such as depth sensing, electromagnetic, and inertial
sensing mechanisms [6]. Yet, capturing user gestures using
these techniques often requires additional sensing devices.

Some recent developments have been made in recognizing
gestures using other ubiquitous devices like smartphone
motion sensors, speakers, microphones and even Wi-Fi sig-
nals; all of which are already present in a majority of peo-
ple’s homes [4, 8, 9, 12, 13, 16, 18]. These techniques aim
to to free the user from the instrumented tracking that cur-
rent commercial devices require and reduce the need for
dedicated sensors. Our work builds upon one such system
called Soundwave, which allows for interaction with a laptop
or desktop using only a microphone and speaker [10].

Because Soundwave was implemented with only one speaker,
it was limited in the type of gestures users could perform.
For instance, gestures were constrained to movements to-

ward or away from the single speaker; Soundwave could
not detect motions from side-to-side. In this way, the sys-
tem was innovative but was limited in scope due to simple
gestures that often had no contextual meaning in their pro-
posed applications. To illustrate, Soundwave used slow and
fast tapping movements to control left and right movement
respectively in a game of Tetris. A more optimal mapping in
this case would have been to map side-to-side movements
of the hand to the analogous movement in Tetris.

In this paper, we present Multiwave, a system for detecting
gestures using uninstrumented acoustic sensing based
on the approach used in the Soundwave system. To deal
with the shortcomings of Soundwave, we generalize the
proposed detection algorithms and apply them to multiple
speakers to increase the possible complexity of gestures
and allow for richer interaction. We discuss the necessary
calculations to generate a Euclidean representation of the
motion information given the positions of the speakers. We
carried out a user study to determine gesture recognition
rates, gain insight on user opinions of acoustic gestures,
and discuss appropriate applications and shortcomings with
acoustic gestures.

Related Work
The design of Multiwave draws from several areas of re-
lated literature, including capturing object velocity from
sound, converting velocity data into positional data, and
using velocity information in place of positional data for ges-
ture recognition using machine learning algorithms. Here,
we will describe the related work that was drawn upon for
designing Multiwave’s theory of operation. First and fore-
most, our work builds upon Soundwave, which uses the
Doppler Effect to detect a set of simple gestures using ubiq-
uitous devices like integrated microphones and speakers
[10]. Soundwave illustrates how it is possible to detect the



shift in the frequency of a known pilot tone emitted from a
speaker using a Fourier transform. Motion is detected using
the sign and magnitude of the change in bandwidth over a
given period of time. The direction of motion can be deter-
mined relative to the speaker source by looking at the direc-
tion of the bandwidth change from the expected frequency
center. The magnitude of the shift gives information about
the inertia of the object moving within the environment: slow
movements of large objects look similar to smaller, rapid
objects but sustain a shift for a longer period of time. Uti-
lizing these assumptions, Soundwave is able to correctly
classify a set of five one-dimensional gestures at about 92
percent accuracy. Soundwave has been shown to be robust
to large amounts of ambient noise and different speaker ori-
entations. Multiwave extends Soundwave by using multiple
speakers instead of just a single speaker allowing for the
detection of more natural gestures which can be applied to
a more diverse set of applications.

Converting accelerometer data into strokes has been done
previously to assist in gesture recognition. The PhonePoint
Pen generated strokes by taking the double integral of the
accelerometer information collected from a smartphone in-
tegrated sensors at every time step to find displacements
[3]. The generated stroke is passed to a classifier to de-
termine what English character was drawn in space. The
data can be passed directly to a recognizer without being
converted into positional information [7]. Our system uses
some of the machine learning features presented in these
papers to assist in gesture recognition, such as utilizing ve-
locity information as position data for recognition.

Figure 1: Sample stroke
representations of the eight
gestures. Left column shows
swipes, right shows taps. From top
to bottom: left, right, forward, back. Theory of Operation

Multiwave uses multiple speakers in a known configura-
tion for gesture recognition. Therefore, the speakers po-
sitions must be determined during a one time calibration

using triangulation. To generate usable data from an arbi-
trary configuration, each calibrated speaker emits a unique
frequency from which changes in bandwidth of the tones
can be extracted, as in Soundwave [10]. This data is trans-
formed into Euclidean space and is used to generate a path
representation over time. The path represents inferred mo-
tion which is then passed through a classifier to determine
what gesture was executed. Multiwave can augment inter-
action on devices without existing gesture support.

We tested a number of frequencies and found that the mini-
mum spacing should be around 500 Hz. Lower values (≈
400 Hz) performed adequately but occasionally experi-
enced interference from other tones. We selected 18 kHz
as our minimum frequency, with each additional tone com-
ing in 500 Hz increments, to avoid possible discomfort due
to sensitivity to high frequency tones.

Speaker Calibration
The change in bandwidth detailed in Soundwave represents
a velocity change that can be utilized directly for simple
gesture recognition; however, further information about the
speaker layout must be known when we want to combine
data from multiple speakers. In order to create a meaningful
representation of the velocities, we determine the position
of each of the speakers relative to the microphone to cre-
ate a known geometry. With two speakers, we can assume
that the speakers will be on the same plane and are some-
where between 50 and 60 degrees away from the baseline
formed by the user and the center of the monitor, as this
is the standard layout on end user laptops and most desk-
top setups. Because we use machine learning algorithms,
Multiwave is robust to changes in configuration.

In cases where we want to use more than two speakers,
we can utilize time difference of arrival (TDOA) to find the
angles in spherical coordinates [14]. To perform calibration



with more than two speakers, we can use two microphones
to determine the angle between the baseline formed by
the microphones and the direction of the speaker emitting
a known sound wave by looking at the phase shift of the
sound between the two microphones using crosscorrela-
tion. To find the two angles to represent the speaker, the
calculation is carried out with the microphones side-by-side
(θ) and stacked one over the other (ρ). This process can be
repeated for an arbitrary number of speakers, as the cali-
bration process for each speaker is independent.

Figure 2: Illustration of expected
motion for gestures. From left to
right: swipe (forward, back, left,
right), tap (forward, back, left, right

Figure 3: The experimental setup.

Generating Euclidean Data
Dealing with the raw data is difficult because each speaker
provides data along an arbitrary axis. It is difficult to gen-
erate heuristics from this data. Given a known speaker
configuration, we can then generate a meaningful repre-
sentation of motion within the environment from a number
of speakers. Each speaker generates a scalar value given
by the change in bandwidth of its corresponding frequency.
This scalar is the magnitude of a vector in spherical coor-
dinates. Because we know the angles of the speakers, we
convert to Euclidean space using the following equations:

x =

n∑
i=1

vi sin θi cos ρi (1a)

y =

n∑
i=1

vi cos θi cos ρi (1b)

z =

n∑
i=1

vi sin ρi (1c)

V = [x, y, z] (1d)

where i represents the speaker index, n is the number of
speakers, vi represents the inferred velocity from bandwidth
shift for speaker i, and θi and ρi are the speaker angles
relative to the baseline from the previous section.

Essentially, we have created a generalized abstraction of an
n speaker array that allows for any number of speakers to
be used in Multiwave. Using V over time, we can generate
a 3D path for gesture recognition. Because we have no po-
sitional information about the beginning of the movement,
we center all movements at the origin and append the cur-
rent V to the end of the path at each step. We leverage the
generated path information for feature extraction.

In this paper, we focus on the two speaker example, for
which we can ignore the Z axis. This simplifies the com-
putation by reducing the number of features and leaves us
with a two dimensional representation of motion. The resul-
tant path can be visualized as a stroke on a canvas. Figure
1 illustrates the appearance of strokes after being extracted
from detected motion.

Gesture Detection
Multiwave allows for two types of single hand gestures,
swipes and taps, in four directions: left, right, towards the
monitor, and away from the monitor, as seen in Figure 2.
A swipe moves in the specified direction and stays there,
similar to swiping on a touch screen. A tap quickly moves
in a direction and then in the opposite direction as it returns
to its resting position. Given the number of gestures used
for input, we had to find a way to accurately classify which
gesture users performed so that we could map it to a partic-
ular action. We chose to use machine learning algorithms
for gesture recognition as we have a fairly large number of
prospective gestures which we will be classifying.

Features to be used with the recognizer were selected from
previous work in sketch recognition [5] and gesture recog-
nition [7]. We calculated the features on both the set of in-
dividual vectors and the generated stroke data giving 39
features. The features extracted from the detected gestures
passed through a Random Forests classifier generated us-



ing WEKA [11]. To segment gestures, we looked at periods
of motion that stopped for 200 ms. To prevent any meaning-
less input, we set a minimum gesture duration at 150 ms.
We assumed that the user’s hand started near their body in
a resting position when beginning a gesture.

Post Study Questions
Q1 The sound-based ges-

ture system was fun to
use.

Q2 The system accurately
recognized the gestures
I was making.

Q3 I liked using this system.
Q4 I felt tired using this

system.
Q5 The sound the speakers

was making irritated me.
Q6 I would recommend this

system to a friend to
use.

Table 1: Survey questions
asked after the study.

Gesture Swipe Tap
Left 91.0% 92.0%

Right 100.0% 96.0%
Toward 98.0% 95.0%
Away 99.0% 80.0%

Combined 97.0% 90.8%
Overall 93.8%

Table 2: Average % of swipe
and tap gestures correctly
recognized.

User Evaluation
We developed a functional implementation of Multiwave
for evaluation purposes.1 The experimental setup, as seen
in Figure 3 consisted of a 55 inch HDTV, a stereo speaker
system, and a low cost USB microphone with no process-
ing enabled, each of which was connected to a PC with a
Intel Xeon dual core processor and 12 GB of RAM. Multi-
wave was implemented in C# using the NAudio .NET audio
library. The microphone was placed on a tripod in front of
the user. Participants were asked to sit behind the micro-
phone. We carried out a user study to evaluate our proof-of-
concept from the perspective of our participants. Our goal
was to determine the accuracy of Multiwave and get user
feedback.

Procedure
Participants first provided training data by performing ten
samples of each Multiwave input gesture. This training data
was collected and a Random Forest classifier was gener-
ated using WEKA. After training the system, users were
then asked to perform each gesture ten more times. This
data was used to calculate the accuracy rate of our gesture
recognizer. A post study survey was administered to our
participants to gather information about their opinions about
the system. We asked users to rate their responses to the
questions in Table 1 on a Likert scale of 1 = Strongly Dis-
agree to 7 = Strongly Agree. Users were also encouraged
to leave comments about their experience.

1Source code available at https://github.com/ISUE/MultiWave/
tree/Simplified

Results
Ten students (9 male, 1 female) were recruited from a local
university to participate in the study. Ages ranged from 19
to 27 with a median age of 21. Of all the participants, five
had previous experience with body tracking of some sort.
The duration of the study ranged from 45 to 60 minutes.
The overall accuracy for swipe and tap gestures in each
configuration is shown in Table 2. The swipe gestures were
slightly more reliably recognized by the gesture recognizer.
The tap gesture accuracy was on par with the quick tap and
slow tap accuracy showed in Soundwave.

Users found the system to be fun to use (M = 6.2, SD =
1.14) and liked the experience of using it (M = 5.9, SD =
1.25). We also analyzed the open ended survey questions
to gain more insight into opinions about the system in gen-
eral. Five of the ten participants liked the idea of leveraging
existing devices to support gesture recognition. Two partici-
pants mentioned enjoyed the gestures that were supported.
Another two found the interactions fluid. Yet, three found the
experiment to be tiresome, likely due to the repetitive nature
of the gestures we asked them to perform. One stated that
the high pitched sound was irritating.

Discussion
Our user study of Multiwave showed that the accuracy of
our system was comparable to Soundwave [10], the near-
est predecessor of Multiwave. The implication of this is
that our abstraction of acoustic gesture recognition main-
tains the responsiveness of Soundwave while allowing for
more expressive user interactions. The main limitation of
Soundwave was that gestures were one-dimensional due
to the use of a single speaker. Because of this, gestures
did not map well to most applications in a meaningful way.
By adding this second dimension for interaction, Multiwave
can easily map motions from an environment to a number

https://github.com/ISUE/MultiWave/tree/Simplified
https://github.com/ISUE/MultiWave/tree/Simplified


of end user applications. Further, the ability to do this with
only a microphone and two speakers minimizes the barri-
ers of use that are often a limitation of other sensor based
gesture recognition systems.

In our implementation of Multiwave, the volume of the speak-
ers controlled how sensitive the system was to movement in
the environment. Smaller motions were more difficult to
sense if the system volume was set too low. For future im-
plementations of Multiwave, we plan to have a brief user
calibration period where the proper volume is dynamically
detected. Yet, there is a clear trade-off in overall accuracy
of the system when the volume is increased by too much,
as spurious inputs become a problem. Even seating po-
sition adjustments can be picked up as significant move-
ments if the volume is too high. Further, some users found
the high pitched sound to be annoying.

Also, we occasionally found that segmentation errors, mis-
takes in determining what is and is not an intentional ges-
ture, caused problems with the overall experience when
participants executed a tap gesture, which included a sharp
turn. Our clutching solution was designed to ignore all mo-
tion following a detected gesture for a set period of time
(250 ms), which functioned well to prevent false positives.
However, some users wanted the ability to continue swiping
without returning to their resting position. For future imple-
mentations of Multiwave, we plan to add an enable gesture,
like a finger snap, which will activate detection for a short
period of time.

Future Work
Now that we have proven that acoustic gesture recognition
can be used to detect multidimensional input through the
use of additional speakers, we are interested in further ex-
tending Multiwave in other ways. For instance, detecting

depth of motion using a surround sound system may be a
promising way to translate gesture input into 3D virtual en-
vironments. In fact, we have done some initial testing with
such a system. Our preliminary findings have showed good
performance with simple swiping gestures, but tapping ac-
curacy has degraded. We are in the process of improving
gesture recognition accuracy rates prior to conducting a full
fledged user study of the new system.

Another extension that we have done some preliminary
work on is exploring complex gestures based on geometric
shapes like circles, squares, and X’s. We tried two meth-
ods for recognition: one being to simply add them into the
machine learning algorithm as additional classifications and
the other being to use taps and swipes as primitives to build
the shapes. Our findings in both cases were that recogni-
tion rates of complex gestures were not sufficient for actual
use, with pilot studies showing accuracies of less than 60%
in two-dimensional configurations. We plan to explore non-
parametric gesture recognizers like template matching as
a possible avenue to alleviate some of the errors that were
occurring with complex gesture recognition [17].

Conclusion
We presented Multiwave, a system which extends Sound-
wave to multiple dimensions to allow for better mapping
of hand gestures to applications. We showed a method of
transforming extracted motion information into Euclidean
space to generalize gestures for any given speaker geom-
etry. We documented the selection process of the recog-
nition algorithms used in Multiwave. We ran a user study
to determine the accuracy of the system. Our results show
that Multiwave is as accurate in two dimensions as Sound-
wave was in a single dimension, giving Multiwave the ad-
vantage of allowing for intuitive mappings into a growing
number of applications that accept gesture-based input.
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