
Interactive 3D Model Acquisition and Tracking of Building Block
Structures

Andrew Miller, Brandyn White, Emiko Charbonneau, Zach Kanzler, and Joseph J. LaViola Jr., Member, IEEE

Fig. 1. An overhead view of our system in action. A depth camera observes the creation of a physical structure made of building
blocks. Our system continuously updates a virtual model of the structure as the user adds and removes pieces.

Abstract—We present a prototype system for interactive construction and modification of 3D physical models using building blocks.
Our system uses a depth sensing camera and a novel algorithm for acquiring and tracking the physical models. The algorithm,
Lattice-First, is based on the fact that building block structures can be arranged in a 3D point lattice where the smallest block unit
is a basis in which to derive all the pieces of the model. The algorithm also makes it possible for users to interact naturally with the
physical model as it is acquired, using their bare hands to add and remove pieces. We present the details of our algorithm, along with
examples of the models we can acquire using the interactive system. We also show the results of an experiment where participants
modify a block structure in the absence of visual feedback. Finally, we discuss two proof-of-concept applications: a collaborative
guided assembly system where one user is interactively guided to build a structure based on another user’s design, and a game
where the player must build a structure that matches an on-screen silhouette.

Index Terms—Interactive physical model building, 3D model acquisition, object tracking, depth cameras, building block structures.

1 INTRODUCTION

3D model acquisition, reconstruction, and tracking of physical objects
have a long history in computer graphics, with applications in areas
such as virtual and augmented reality, object modeling, simulation,
CAD/CAM, and cultural heritage [6]. Although great strides have
been made in this domain, highly interactive applications using this
technology for virtual and augmented reality are still limited. Specif-
ically, we envision a system where 3D models can be tracked in real
time and acquired as they are being built. Such a system would support

• Andrew Miller is with University of Central Florida, E-mail:
amiller@cs.ucf.edu.

• Brandyn White is with University of Maryland, E-mail:
bwhite@cs.umd.edu.

• Emiko Charbonneau is with University of Central Florida, E-mail:
miko@cs.ucf.edu.

• Zach Kanzler is with University of Central Florida, E-mail:
othey4kman@gmail.com.

• Joseph J. LaViola Jr. is with University of Central Florida, E-mail:
jjl@eecs.ucf.edu.

Manuscript received 15 September 2011; accepted 3 January 2012; posted
online 4 March 2012; mailed on 27 February 2012.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

the interactive construction of 3D physical models that would have a
virtual counterpart. Additionally, a projection system that accurately
superimposes visual imagery on and surrounding the physical model
would support natural user interface applications for collaborative as-
sembly tasks and augmented reality.

To support our vision, there are three significant challenges that
must be solved: (1) continuous tracking, acquisition, and reconstruc-
tion of 3D models as they evolve through time; (2) support for natural
interaction where users manipulate and modify the models during the
construction process with their bare hands; and (3) visual feedback
that provides the user spatial information to assist in construction.

In this work, we focus on the first two of these challenges for the do-
main of building block structures. We use a novel algorithm, Lattice-
First, that takes advantage of the orthogonal and grid-like properties
of building block structures in order to achieve robustness to interfer-
ence and occlusions from the user’s hands, and to support a dynamic
model in which pieces can be added and removed (see Figure 1). The
algorithm is fast and effective, providing users with the ability to in-
crementally construct a block-based physical model while the system
maintains the model’s virtual representation. We provide the algo-
rithm details, examples of models the algorithm can acquire, and a
preliminary experiment that evaluates the effectiveness of our system
with the added restriction of no feedback to the user. We also present
two proof-of-concept applications that use a visual display to guide the
user through physical construction tasks.

651

 1077-2626/12/$31.00 © 2012 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 4, APRIL 2012

2 RELATED WORK

A significant amount of work has dealt with the problem of 3D model
acquisition and reconstruction. The goal of a model acquisition sys-
tem is to construct a virtual model of a physical object, using optical
sensors such as cameras or laser scanners [9, 21].

Approaches to model acquisition typically consist of two high-level
components: first, a registration algorithm that can estimate the cam-
era poses of images from several viewpoints in order to align them to
a common frame of reference, and second, a representation of the 3D
object that supports fusing the information from the images. The most
common representations are volumetric models (e.g., an occupancy
grid [18]), or an implicit surface definition embedded in a distance
field [8]). The registration algorithm typically is a variation of Itera-
tive Closest Points (ICP) which involves computing a least-squares fit
to estimate the camera pose [3, 33].

Although many of these systems allow the model to be acquired
in realtime [15, 32, 41], they are not inherently robust enough to sup-
port natural user interaction during acquisition. In particular, the user’s
hands (and foreground objects generally) are often spuriously added to
the model, subsequently causing alignment error and a positive feed-
back loop (i.e., drift) as discussed in Section 7. One approach is to
segment out the pixels corresponding to the user’s hands, although
this typically requires additional constraints that impede natural user
interaction, such as requiring the user to wear a colored glove [40],
requiring a static background [34], or by relying on skin color seg-
mentation [4]. Alternatively, KinectFusion supports real-time model
acquisition of a scene followed by robust segmentation of foreground
objects, but not both at the same time [15]. This is insufficient for the
user-interaction scenario we consider, in which users construct and
modify the physical object as it is being acquired.

Our approach involves introducing a domain restriction (i.e., or-
thogonal building blocks) that we can exploit to improve the robust-
ness of tracking and acquisition. Previous work has similarly used ge-
ometric constraints to aid in 3D scene reconstruction [37]. Approaches
that rely on the orthogonal features of buildings are commonly used in
robotics and urban modeling [31]. A technique due to Schnabel uses
RANSAC to identify shape primitives in a scene, such as cones, cylin-
ders, and planes [35]. These bottom-up techniques could be applied
as well to building block models; however, building block models sat-
isfy a stronger constraint that we use: the block structures exhibit a
global lattice-like symmetry and periodicity (see Section 3). The Com-
plex Extended Gaussian Image (CEGI) is a method that decouples the
translation and rotation components of the tracking problem in order to
locate a prior model in a range image, even without an initial pose esti-
mate [17]. Our method involves a similar decoupling (see Sections 4.2
and 4.3) and can be thought of as extending the CEGI to include the
periodic structure of blocks, eliminating the need for the prior model.
Thus we exploit the a priori knowledge of this regularity to improve
the robustness of realtime acquisition.

There are several tangible interaction systems based on building
blocks that involve instrumenting the blocks with electronics [1, 14,
19, 27, 36, 44]. Other construction toys have also been used, such
as hub-and-spoke pieces [43]. In these systems, custom circuitry is
used for accurate tracking and shape reconstruction, but at the cost
of developing and making specialized parts. Such approaches to ob-
ject tracking include inertial, acoustic, or magnetic sensing [42]. An
other solution has been reported that requires a customized passive
block without internal electronics [2]. An advantage of our depth cam-
era system is that it can work with unmodified off-the-shelf building
blocks.

We highlight several projects that explore the physical realization
of initially virtual models. ‘Popup’ creates a printable papercraft tem-
plate from a 3D model [22], and ‘Plushie’ generates fabric templates
that can be sewn together to make a stuffed animal [24]. Using an
projector-based augmented reality display, a 3D guide has been be pro-
jected onto a foam block to help the user carve out a complex shape
with a wire tool [23]. We demonstrate the use of our system in this
context with the collaborative guided assembly application described
in Section 6.3.

(a) (b) (c) (d) (e)

Fig. 2. Example of user interaction with our model acquisition system:
(a) user places the structure in front of the sensor, and the virtual model
is partially initialized; (b)(c) user rotates the structure to fill complete the
model; (d) user adds a piece and then rotates the structure as (e) the
model is updated with additional piece (rendered in blue).

Finally, we note that some 3D acquisition systems use color im-
ages instead of (or in addition to) depth images [7, 18, 25]. Our sys-
tem uses only depth information to track and acquire the model since
our future vision involves an application of projected augmented real-
ity, in which the projected visible light would interfere with the color
imagery. However, we optionally utilize color imagery in the final
rendering step in order to display the correct color of the blocks (see
Section 5).

3 ASSUMPTIONS AND SCOPE

This paper considers building block structures on a tabletop surface,
which is a restricted subset of the general 3D model acquisition prob-
lem. Our algorithm takes advantage of these constraints in order to
achieve robustness to interference and occlusion from the user’s hands,
and to support dynamic models where pieces can be added or removed
(see Figure 2). Specifically, we consider building blocks arranged in a
3D point lattice where the smallest building block unit is the basis (see
Figure 3). The lattice can be written as {N1wx,N2wy,N3wz} where
N1,N2,N3 ∈ N and wx, wy, wz, are the dimensions of the smallest
building block unit. For example, Duplo blocks have unit dimensions
(wx,wy,wz) = (16mm,19.2mm,16mm). The physical interpretation of
this lattice is that it contains all the possible corner points of the block
structure. We assume that the block structure remains flat on the table,
but can be slid around and rotated. The tracking problem is there-
fore constrained to a two-dimensional surface and has three degrees
of freedom rather than six. Under these assumptions, points on the
surfaces of the blocks lie on orthogonal planes intersecting the lattice
and parallel to XY , Y Z, or XZ. Our algorithm is intended to be general
in respect to the shape and size of the building blocks used, however
we assume that the blocks have a natural ‘right-side-up’ orientation
and that the block unit width is the same in the X and Z axes (i.e.,
wx = wz). The Y axis is perpendicular to the table.

4 LATTICE-FIRST ALGORITHM

The Lattice-First algorithm first finds the transformation from physical
coordinates to model coordinates, in which the blocks comprising the
tracked object align with the coordinate system. This transformation
is represented as the product of several matrices:

Pmodel = (C)(T)(R)P (1)

where P is a 4xN matrix, N is the total number of points from the
depth camera, R is a rotation matrix, T is a translation matrix, and C
is a discrete correction (translation by a multiple of wx =wz or rotation
by a multiple of 90◦) that aligns the current frame to a previous model
estimate. After finding this transformation, the remaining goal is to
update the voxel grid, estimating which voxels are occupied and which
are vacant. The steps of the algorithm (see Figure 4) are summarized
as follows:

652 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 4, APRIL 2012

Fig. 3. Illustration of the smallest unit dimensions, wx, wy, and wz, for
the lattice-like building blocks discussed in this work. We assume that
these dimensions are known parameters of the system.

Previous Estimate

Pre-processing

Lattice
Alignment

Direct Binning
Space Carving

Feature Alignment

Back Projection
Model Update

New Frame

Fig. 4. High level flowchart of our proposed system. The processing
stages up to Feature Alignment are computed directly for each frame,
avoiding potential feedback loops with the dynamically updated model.
Note that solid lines indicate data, dashed lines indicate processes com-
puted directly for each frame, and dotted lines indicate processes that
use both the current frame and the previous estimate.

1. (Section 4.1) Take a new depth image from the sensor, computing
point positions P and surface normals n̂.

2. (Section 4.2) Use the surface normals n̂ to determine the lattice
orientation R and the oriented point samples.

3. (Section 4.3) Determine the lattice translation (i.e., T) and
aligned point samples.

4. (Section 4.4) Bin the point samples to determine occupancy es-
timates and vacancy estimates.

5. (Section 4.5) Use space carving to augment the vacancy esti-
mates.

6. (Section 4.6) Align the previous estimate to the current estimate
using feature matching in a finite search space (i.e., find C).

7. (Section 4.7) Backproject the union of the previous estimate and
current estimate into the depth image to validate updates to the
model.

4.1 Preprocessing
The input from the depth sensor is a Euclidean point cloud P, arranged
in a two-dimensional grid as a depth image. Calibration matrices that
produce Euclidean measurements from depth sensor raw data may be
provided by the manufacturer, or otherwise can be estimated experi-
mentally [11]. We assume that the camera has also been extrinsically
calibrated to the table surface so that the XZ plane of the measure-
ments is coplanar with the table. This extrinsic calibration is per-
formed by manually clicking four corner points in a depth image of
the empty table surface. These four points are also used to define a 3D
volume of interest, a prism extending upward from a quadrilateral on
the table as indicated by the four clicked points. The bounds of this
volume are used to segment the foreground (i.e., the user’s hands and
the block structure) from the background, without requiring the back-
ground to remain static. The depth image is smoothed using a uniform
kernel, and the surface normals are computed using the method de-
scribed in [13].

4.2 Lattice Orientation
The goal of this step of the algorithm is to determine the orientation
of the lattice that fits to the building block structure. Intuitively, this
amounts to finding the dominant orientation of the surface normals as
illustrated in Figure 5(c, g).

We discard the normal vectors that are not parallel to the table sur-
face, such that each remaining normal vector roughly lies on a unit
circle in the XZ plane (see Figure 5(d)) and can be represented as a
complex number qxz = (n̂x, n̂z). Normal vectors of points observed on
the surfaces of the rectangular building blocks will form four orthog-
onal clusters, corresponding to the possible surface orientations of the
blocks. We find these orthogonal clusters by winding the normal vec-
tors around the unit circle four times (i.e., computing (qxz)

4), which
causes the four clusters to collapse into a single larger cluster as illus-
trated in Figure 5(e). Then these quantities are averaged, normalized
to lie on the unit sphere, and taken to the fourth root to produce a basis
q′xz in the XZ plane:

q′xz = normalize

(
(

1
N ∑
∀qxz

(qxz)
4)

1
4

)
. (2)

The rotation matrix R is simply the matrix representation of the
rotation in the XZ plane by q′xz. This matrix can be used to compute
the oriented points and surface normals:

Poriented = (R)P, n̂oriented = (R)n̂. (3)

The points can now be labeled according to whether their surface
normals align with the X or the Z axes, as illustrated by the red and
blue shaded cones in Figure 5(f, g). The radius of the cones used to
determine this labeling is a threshold parameter that we have deter-
mined experimentally, θT =±0.3. We discard any outliers that do not
align with either axis (i.e., points that lie outside the shaded cones).
Discarding the outliers in this way eliminates many spurious measure-
ments that occur when the user’s hands are in the field of view.

4.3 Lattice Translation
We define (p1x, p1z) = Poriented

X and (p2x, p2z) = Poriented
Z to be the

points whose normal vectors align with the X and Z axes (i.e., the
red and blue points in Figure 5(h)). We solve for each of the lattice
translation parameters independently. Since the blocks lie flat on the
table surface, the Y component of translation is zero by assumption. In
this step, we only need to determine the alignment of the lattice (i.e.,
modulo the width of a block (wx)). In other words, we want to find the
translation components of the lattice, tX ∈ [0,wx) and tZ ∈ [0,wz), that
minimize the distance from each point to the nearest lattice plane, as
illustrated in Figure 5(h). By mapping the translation components of
each p1x and p2z to points on the complex unit circle,

qx = e
2πi
wx

p1x

qz = e
2πi
wz

p2z .
(4)

We can compute the translation parameters tX and tZ that optimally
align the lattice to the data in a least squares sense as

tX = arg(
1
N ∑
∀qx

qx) ·
wx

2π

tZ = arg(
1
N ∑
∀qz

qz) ·
wz

2π
,

(5)

where arg(q) is the angular component of a complex number q, in
the range [0,2π). The mean values will not generally lie on the unit
circle, however the translation parameters are computed only from the
arg component. The translation matrix T is constructed from these
components so that

Paligned = (T)(R)P. (6)

653MILLER ET AL: INTERACTIVE 3D MODEL ACQUISITION AND TRACKING OF BUILDING BLOCK STRUCTURES

(a) structure (b) point cloud P (c) surface normals n̂

(d) qxz (e) (qxz)
4 (f) q′xz +N π

2

(g) clustered n̂ (h) Poriented

(i) qx (j) qz

Fig. 5. Visualizations of the key data structures in the Lattice-First algo-
rithm. A building block structure (a) is observed by a depth sensor pro-
ducing the point cloud measurements P (b). The surface normals n̂ (c)
are projected on the in the XZ plane and represented as complex num-
bers (d). These values are raised to the power of 4 (causing the clusters
to merge (e)) and averaged to find the correct orthogonal clusters of the
normals (f,g) (see Section 4.2). The surface points can be labeled as
aligning with the X or Z axis (red or blue) or else discarded (black). The
oriented point cloud Poriented (h) is used to find the translation parame-
ters of the aligned lattice by averaging the X and Z coordinates of the
points (i,j), modulo the width of the unit block size (See Section 4.3).

CBA

Fig. 6. Illustration of the voxelization process. A solid object (thick black
outlines) is observed by a sensor with an indicated viewing frustum. Di-
rect binning (Section 4.4) uses surface points to labels voxels occupied
(A) or vacant (B). A simplified variant of space carving (Section 4.5) is
used to label additional voxels vacant (C).

The magnitude of the computed means from Equation 5 are used
to measure the confidence in the lattice alignment; a magnitude near 1
indicates an unambiguous estimate whereas a magnitude closer to the
origin indicates an ambiguous distribution. The voxel grid is only up-
dated when the lattice alignment is confidently estimated (Section 4.7).

4.4 Direct Binning

Once the aligned points Paligned are computed, a natural voxel grid
is established for the blocks. Each observed point corresponds to a
surface between two grid cells and can be considered evidence of the
occupancy of one voxel and the vacancy of another. The observed
points are binned to the nearest voxel surface and tallied. The tally for
each voxel is compared to a threshold TV = 30, which was experimen-
tally determined, to obtain binary values for occupancy and vacancy
of each voxel. These binary estimates are illustrated in Figure 6, where
the voxels labeled A are estimated occupied and voxels labeled B are
estimated vacant.

4.5 Space Carving

The direct binning step only produces estimates on or adjacent to the
occupied blocks, when in fact many more voxels can be marked vacant
using information from the depth image. We implement a variant of
space carving [18] in which the depth image is sampled once for each
voxel grid space. Space carving is typically used to solve a more dif-
ficult problem of building a voxel model from color images in which
the depth of each pixel is ambiguous. Our adaptation of this technique
is simpler: the centerpoint of each voxel is projected onto the depth
image and compared to the corresponding depth measurement. If the
depth measurement is farther from the camera than the projected cen-
terpoint, then the voxel is marked vacant. The voxels marked vacant
as a result of this step are illustrated in Figure 6 by voxels labeled C.

4.6 Feature-based Alignment

In order to align the current frame with the previous model, we only
need to consider translations by integer multiples of wx = wz, and ro-
tations by a multiple of 90◦. This is a discrete rather than a continuous
solution space. The voxel model of the current frame represents only
a partial view, with some pixels marked occupied or vacant but many
left unmarked or occluded. The previous model estimate may be com-
plete if the structure has already been rotated around 360 degrees, or
it may contain holes and incomplete information. We perform align-
ment between a pair of voxel models by minimizing a cost function
that rewards matching occupied voxels, penalizes disagreement (oc-
cupied in one model and vacant in the other), and ignores voxels that
are unmarked or occluded:

cost = ∑
v
(Ov ·V ′v)+(Vv ·O′v)−0.5(Ov ·O′v) (7)

where Ov and Vv are the previous binary occupancy and vacancy esti-
mates for each voxel v, and O′v and V ′v are the binary estimates for the
current frame.

Instead of evaluating this objective function for each possible trans-
lation and rotation, we select a subset of these possible alignments
based on sparse feature points computed for both models. The sparse
feature points we use are XZ corners (i.e., voxels marked occupied
that are adjacent to two vacant or unmarked neighbors). Each pairing
of feature points between the two images, (f , f ′) ∈ {F× F′}, indi-
cates a candidate solution (i.e., a rotation and translation in the XZ
plane). These candidate solutions are not unique; we rank the possible
feature alignments by the number of instances, and evaluate the objec-
tive function at only the NF = 40 highest ranking feature alignments,
where NF is a value experimentally found to work well.

The alignment that minimizes the objective function is used to con-
struct the lattice ambiguity correction matrix:

C =

[
RC TC
0 1

]
(8)

654 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 4, APRIL 2012

where Rc is a 3x3 rotation matrix about the Y axis by a multiple of
90◦, and TC is a translation in the XZ plane (i.e., TC = (tx,0, tz)). This
correction matrix is used to find the final model coordinates

Pmodel = (C)(T)(R)P. (9)

4.7 Backprojection and Model Update
The properly aligned voxel grids may still disagree between the pre-
vious estimate and the current frame. In the case where a voxel in the
previous estimate is unmarked or occluded, but in the current frame
it is vacant or occupied, then the new frame provides new informa-
tion and the model is easily updated. However in the cases where the
previous estimate and the current estimate disagree, it may be due to
the user’s hands occupying a previously vacant space or caused by an
added or removed piece. Our method for distinguishing between these
cases is to render with OpenGL the union of the occupied voxels in
both the previous and the current estimate, producing a backprojected
virtual depth image that can be compared with the observed depth im-
age. This approach is similar to one used in [41]. The color buffer is
used to store the index of each voxel so visible pixels are easily associ-
ated to corresponding voxels. Each virtual depth value is compared to
the observed depth value, and the absolute difference is thresholded.
The ratio of the number of pixels matching the rendered image for
each voxel, Nmatched

v to the expected number of visible pixels for each
voxel, Nexpected

v is used in the following decision:

accept(v) =

(
Nmatched

v

Nexpected
v

> αV

)
∧
(

Nexpected
v > TV

)
(10)

where TV is the same threshold used in Section 4.4 to indicate a sig-
nificant number of pixel observations, and αV = 0.9 is a parameter we
have experimentally found to work well.

5 PROTOTYPE IMPLEMENTATION

Our system uses a Microsoft Kinect depth camera arranged to point at
a table surface, as shown in Figure 1. The camera provides a 640x480
depth image, with 10 bits of resolution. Although our system uses only
depth information for tracking and acquisition, the Kinect additionally
provides RGB data aligned to the depth image which can be used to
determine the color of each voxel. Our treatment of color is simple:
using the mapping from pixels to voxels found in Section 4.7, we find
the average RGB values for each voxel and round to the nearest pri-
mary color in HSV space.

We implemented our algorithm using a number of software com-
ponents. The overall system is written in Python, along with several
routines written in C or Cython, and several others implemented on the
GPU using OpenCL/PyOpenCL. The software runs on a desktop com-
puter with an Intel i7-700 processor with an nVidia 590GTX GPU. Re-
altime visual feedback is provided to the user by means of an OpenGL
display in which the vitual block structure is rendered. We also dis-
play the block structures as an interactive HTML5 canvas, using the
Three.js library.

The proposed algorithm is essentially GPU-friendly because it in-
volves several computations over all pixels in a rectangular image and
a small number of reductions to compute the means of the circular
quantities. The surface normal computation, lattice orientation, lat-
tice translation, and direct binning stages were implemented using
OpenCL (see Sections 4.1 through 4.4). The full interactive system
runs at 25 frames per second, although the algorithm itself (exclud-
ing image capture and the interactive display) runs at 50 frames per
second.

The source code to our prototype implementation is provided as
supplemental material. Since our code relies on a number of libraries,
notably OpenCL, we have packaged up our system as an “Experiment
in a Box,” a virtual machine image with our code and necessary li-
braries configured and installed. This virtual machine image can be
downloaded on the Interactive Systems and User Experience website:
http://eecs.ucf.edu/isuelab/.

Fig. 7. Examples of building block models correctly acquired by our
system.

6 RESULTS

6.1 Examples of Acquired Models

Twenty examples of 3D building block structures acquired correctly
using our interactive system are shown in Figure 7. For each of these
structures, the user placed the completed block structure in front of
the sensor, initializing the virtual model with a partial view, and then
rotated the object on the table until the virtual model was fully recon-
structed. In some cases it was necessary to remove and later replace a
piece in order to reveal hidden structure, such as underneath the over-
hang in Figure 7 (bottom row, leftmost column). The visual feedback
was used to know where there were errors that needed to be corrected
or holes to be filled in, however the only user input was through ma-
nipulating the physical structure.

These structures primarily use Duplo blocks, however we show
some examples of structures made of other types of blocks that sat-
isfy our assumptions: Jenga blocks, which have a unit dimension
of (wx,wy,wz) = (20mm,15mm,20mm) (Figure 7, bottom row, first
and second from the right); and Lego blocks, which share the same
unit size as Duplo blocks when arranged in pairs (Figure 7, bottom
row, center). Building blocks with smaller dimensions are not reliably
tracked because of the limited resolution of our sensor.

655MILLER ET AL: INTERACTIVE 3D MODEL ACQUISITION AND TRACKING OF BUILDING BLOCK STRUCTURES

(a) (b) (c) (d) (e)

Fig. 8. Examples of ground truth and comparison with estimated results
in our experiment. Top row: ground truth, where blue indicates a block
that was added and purple indicates a block that was removed. Bottom
row: results of our algorithm, where yellow and red indicate errors (false
positives and false negatives); green blue and purple indicate correct
estimates.

Fig. 9. Results of an experiment in the absence of visual feedback.
Relative error is computed as number of incorrect voxels divided by the
number of voxels in ground truth, averaged across the four participants
used as a validation set.

6.2 Experiment in the Absence of Visual Feedback

In the previous section, we showed that a variety of structures can be
acquired using the interactive system. We also wanted to evaluate how
effective the system is in a more challenging scenario, in the absence
of visual feedback to the user. For interactive assembly tasks, users
will need to consume visual information in the form of instructions
and ideally would not require visual feedback or user intervention in
the acquisition process itself.

We asked five participants to manipulate a building block structure
while video was recorded; no visual feedback was provided, and our
algorithm was applied to the recorded data afterward. We provided
five block structures and asked the participants to perform three trials
for each shape, fifteen seconds per trial. In the first trial, the participant
would rotate the complete structure without modifying it; in the sec-
ond, the participant would add a single piece to the original structure;
in the third, a single piece was removed.

Participants were shown a short video clip demonstrating each ac-
tion and reminding them to rotate the object at least 360◦, but other-
wise were not directed to move the structure in a particular manner or
speed. One of the participants’ data was used as a tuning set during the
development of our algorithm, in particular to determine acceptable
values for the threshold parameters mentioned in Section 4. The algo-
rithm was applied to the remaining four data sets which were used for
validation. Ground truth files were created by hand, and the algorithm
was initialized with the correct ground truth so that the experiment re-
flects the use of the system after the virtual model has been initially
acquired for the original structure. The ground truth files contain one

Fig. 10. Our proof-of-concept application for collaborative guided as-
sembly. The user adds blocks layer by layer (left) while the system
highlights the next layer of blocks to add on the rendered virtual model
(right).

of three labels for each voxel: occupied, initially vacant but with a
piece added, initially occupied but with a piece removed. The final
frame of each trial is scored against ground truth. Several examples
are shown in Figure 8 (top row) with voxel labels indicated by a color
code.

The results of the experiment are summarized in Figure 9, where
relative error is calculated as the number of erroneous voxels (indi-
cated by red or yellow) divided by the number of occupied voxels in
the ground truth, and the relative errors are averaged across the four
validation participants. Although our system correctly estimates a ma-
jority of the voxels under these conditions, several errors do occur.
Some examples are illustrated in Figure 8 using a color code where
errors are indicated by red or yellow (false negatives and false posi-
tives) and correct estimates are indicated by green, blue (added piece),
or purple (removed piece). In Figure 8(b), the user’s hand is falsely
considered a voxel, while in Figure 8(c) only one corner of an added
piece is correctly detected. In Figure 8(d), a tracking misalignment
caused half of the voxels to be erroneously discarded; this may be due
to the fact that the participant spun the structure around very quickly,
like a top. Figure 8(e) shows a difficult case where an added piece
makes the structure become symmetrical and a tracking error caused
misalignment by 180◦. These results indicate that more robustness is
needed in the absence of visual feedback for an ideal system and is an
area of future work.

6.3 Collaborative Guided Assembly
We implemented a proof-of-concept application that interactively as-
sists the user in assembling a physical replica of a block structure pre-
viously acquired by our system. The user builds the model from the
table up, layer by layer, while the system highlights the next layer to
build on the virtual model (see Figure 10). Our realtime acquisition
system is used to determine when the user has completed building a
layer and is ready to move to the next layer. With this system, one user
can create a physical structure while another user at a remote location
is guided through constructing a replica.

6.4 Hole-in-the-Wall Game
We also implemented a proof-of-concept game in which our model
acquisition system is used as the input interface (see Figure 11). In our
game, the player must build a block structure that matches a silhouette
carved out of a wall that advances towards the virtual model. The
structure must be correctly assembled by the time the wall reaches it
so that it passes over without colliding. This gameplay is inspired by
the television gameshow Hole-in-the-Wall.

7 DISCUSSION

7.1 Comparison of Lattice-First with Other Algorithms
Unlike other realtime 3D model acquisition systems, the Lattice-First
method supports robust model acquisition while simultaneously allow-
ing natural user interaction with the object. In other words, Lattice-
First lets users add and remove pieces of a 3D model with their bare
hands as it is continuously acquired. KinectFusion [15, 26], on the

656 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 4, APRIL 2012

Fig. 11. An application of our system as a construction gameplay inter-
face. A silhouette is shown on the screen and the player must build a
matching physical model within a time limit. This application was imple-
mented as a modification to Minecraft.

other hand, supports realtime 3D model acquisition of a static scene,
followed by user interaction with parts of the previously-scanned
model. Therefore KinectFusion does not support the user-interaction
workflow that the Lattice-First method affords. Instead, KinectFu-
sion has a moving average parameter that can be adjusted to control
whether the model reconstruction converges after some time, after
which any motion in the scene is discarded as outliers, or whether
the model is continuously updated with new data. In the former case,
modifications to the structure after convergence would be discarded,
while in the latter, the user’s hands would be erroneously incorpo-
rated into the model along with the actual modifications. Lattice-First
addresses this problem by using a priori knowledge of the lattice-like
structure of the model to discard pixels from the user’s hands (see Sec-
tion 4.2) while tracking and acquiring the target object. Additionally,
the fact that KinectFusion assumes a stationary scene and a moving
camera during acquisition means that more datapoints are available to
support registration than in our scenario. To support our user interac-
tion workflow, our algorithm must track the model using far fewer data
points as well as coping with outliers during acquisition, as illustrated
in Figure 12.

The registration component of a model acquisition system typically
involves a linear least squares fit between the incoming range data and
the continuously updated model (e.g., the commonly used FastICP al-
gorithm) [15, 32, 33, 41]. Realtime model acquisition systems are typ-
ically susceptible to ‘drift’, a positive feedback loop that occurs when
slight registration errors cause errors to accumulate in the acquired
model, and vice versa. Our method computes a partial estimate of the
orientation and translation parameters (up to the symmetry of a lattice)
by fitting a lattice to each incoming frame directly, without compari-
son to the previous model estimate (see Sections 4.1 through 4.5). Our
method is thus able to tolerate the small tracking errors (caused by the
remaining outliers from the user’s hands) without accumulating error.
This is particularly important for supporting the addition and removal
of pieces, as a dynamic model is more susceptible to positive feed-
back. Note that while our algorithm is robust against the accumulation
of small tracking errors, larger errors in tracking may still result in
accumulated errors in the estimated model (see Figure 8).

An additional difficulty of our user interaction scenario that Lattice-
First addresses is that the block structures are degenerate shapes when
viewed from certain angles with respect to our registration algorithm.
When a block structure is rotated to face the sensor so that only one of
the XY or ZY planes is visible, then the registration tracking is unsuc-
cessful. It was demonstrated in Rusinkiewicz et al. [32] that FastICP
as well is also unable to correctly converge in the case of a single flat
planar surface. Thus, during user interaction, tracking will occasion-
ally be interrupted and must be restarted in some way. In Rusinkiewicz
et al. [32], the user is guided by online feedback to align the physical
object with a virtual “anchor frame,” explicitly requiring the user’s ac-
tive effort in order to regain tracking. Our system performs a global

(a) (b)

Fig. 12. Illustration of inliers and segmentation requirements for the
3D model acquisition problem under the assumptions of (a) KinectFu-
sion [15] and (b) our system (Lattice-First). Green-colored pixels are
inliers that support an accurate tracking estimate, grey pixels must be
discarded using a volume of interest (see Section 4.1), and red pix-
els must be distinguished from the target model and discarded. In (a),
the camera moves but the model is stationary, and therefore the entire
scene, including table and the chair in the background, supports the
tracking estimate. Our method, however, is able to robustly track the ob-
ject even when it moves relative to the background and the user’s hands
are in view (b).

alignment with each new frame, which allows tracking to resume au-
tomatically without the user’s attention.

7.2 Limitations of Lattice-First

Our algorithm is ultimately constructed to fully exploit the restricted
domain of building blocks. This decision represents a tradeoff between
generality in terms of the 3D models we can acquire and the ability to
have the user interact with the model as it is being constructed and
acquired. However, even with this limitation, our approach has several
potential uses (see Section 7.3).

The minimum size of the blocks (i.e., the voxel resolution) we can
accurately acquire is dependent on the resolution and precision of the
depth camera. Using the Kinect sensor, we find we are able to reliably
track blocks that are (16mm)3. However, we are unable to acquire
complex models built using smaller blocks because our algorithm re-
lies on a local-neighborhood normal vector computation. The low pre-
cision of the Kinect sensor requires us to filter the image, limiting the
smallest size of blocks we can detect. Our algorithm has no inherent
limitations regarding the maximum resolution, so using blocks with
larger dimensions would be possible. It is not necessary for the entire
block model to fit in the image at all times. Since our model repre-
sentation is a voxel grid, memory requirements grow linearly with the
volume we acquire. For example, using (16mm)3 blocks, we could
acquire a model, 8 meters on each side, requiring 5123 voxels and a
memory footprint of 512 megabytes.

The placement of the sensor relative to the table surface has an im-
pact on the quality of model acquisition. If the view from the camera
is parallel to the table, then the tops of blocks will not be visible, and
therefore some holes will not be filled in. Of course, if the camera
were mounted vertically looking down, then the sides of the blocks
would not be visible. In our experience, placing the camera about a
half meter off the table and facing down at 45 degrees works well.

7.3 Potential Uses

Our system has several potential uses in mixed or augmented reality.
Both our proof-of-concept applications rely on the ability to recognize
a ‘correct’ or ‘incorrect’ structure to give specific feedback. This feed-
back is reliable because of the relative unambiguity of the building
blocks, for example compared to modeling clay. Once assembled, the
tracked structure can also function as a positional input device. Our
guided assembly proof-of-concept demonstrates how our system can
apply to collaborative mixed-reality, where physical objects assembled
in one environment can be transmitted and replicated in another envi-
ronment.

657MILLER ET AL: INTERACTIVE 3D MODEL ACQUISITION AND TRACKING OF BUILDING BLOCK STRUCTURES

Research has suggested that users perform some assembly tasks
more effectively when guided by an augmented reality display [38].
Several other projects have involved augmented reality to assist in
physical tasks, including assembly and repairs [10, 28, 30], or as a
projected interactive tabletop [16, 29, 45]. These systems lack robust
realtime 3D model acquisition, and therefore do not support interac-
tive construction of new models. We believe that Lattice-First has the
ability to enhance these systems.

We believe our current work is also applicable to a number of
projects that use building block structures as tangible interfaces.
Building block models have been used as interactive aids in STEM
education, such as by modeling chemical structures or by simulating
protein synthesis [5, 39]. Even though building block structures can
only coarsely approximate arbitrary objects, their familiarity, tangi-
bility, and ease-of-use makes them appealing and versatile modeling
tools. Building block models also naturally support collaboration be-
tween multiple users. They have been used in this context as ther-
apy to improve the social competency of autistic children [20], and
as a roleplay-based simulation to train first year medical students in
patient-interview techniques [12]. By using Lattice-First to acquire
these models, we could enhance these systems with interactive user
feedback (e.g., intelligent tutoring).

8 FUTURE WORK

There are several ways in which we can improve on the Lattice-First
algorithm. For example, we would like to extend this algorithm to
work in the unconstrained case with 6 degrees of freedom. In such a
system, the user would be able to pick up the structure from the table
while it is continuously tracked and updated, holding the structure in
one hand while adding pieces with the other. It may be possible to
relax other constraints to support a wider variety of structures. It would
also be desirable to track and acquire more than one model at a time
in a scene.

We intend to use this block structure acquisition system as we work
towards the goals described in the introduction. Specifically, we want
to use an augmented reality display to provide visual feedback to the
user, superimposed directly on top of the physical blocks. This should
remove a cognitive step that is typically required when a user assem-
bles a physical object while referencing printed instructions. Regis-
tered projected imagery, as in [29], could apply color and texture that
appears fixed to the block structure as it moves.

The results of our preliminary experiment suggest that users must
identify errors in the rendered virtual model in order to correct for
acquisition errors. We would therefore like to improve our system in
order to achieve better results without burdening the user to correct for
errors.

9 CONCLUSION

We have presented a prototype system for acquiring and tracking 3D
physical models made up of building blocks. Users can interactively
construct the models using their hands while the system acquires addi-
tions or deletions to the model. The system makes use of the Lattice-
First algorithm, a novel approach that uses the orthogonal properties
of building blocks to estimate alignment parameters directly for each
frame. The algorithm makes use of a depth sensing camera and applies
a series of transformations to raw depth images to find the physical
model in an axis-aligned 3D grid. We have also discussed a proof-
of-concept application where users are provided instructions to build
a physical model that another user has designed, and a game where
users must construct a model that fits through a silhouette carving of a
wall. We believe our prototype lays a solid foundation for ubiquitous
augmented reality and natural interaction in guided assembly of 3D
physical models.

ACKNOWLEDGEMENTS

This work is supported in part by NSF CAREER award IIS-0845921
and NSF awards IIS-0856045 and CCF-1012056. We would also like
to thank the members of the ISUE lab for their support and the anony-
mous reviewers for their useful comments and feedback.

REFERENCES

[1] D. Anderson, J. Frankel, J. Marks, A. Agarwala, P. Beardsley, J. Hodgins,
D. Leigh, K. Ryall, E. Sullivan, and J. Yedidia. Tangible interaction+
graphical interpretation: a new approach to 3D modeling. In Proceed-
ings of the 27th annual conference on Computer graphics and interactive
techniques, pages 393–402, 2000.

[2] P. Baudisch, T. Becker, and F. Rudeck. Lumino: tangible blocks for
tabletop computers based on glass fiber bundles. In Proceedings of the
28th international conference on Human factors in computing systems,
CHI ’10, pages 1165–1174, New York, NY, USA, 2010. ACM.

[3] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes.
IEEE Trans. Pattern Anal. Mach. Intell., 14:239–256, February 1992.

[4] M. Bray, E. Koller-Meier, and L. J. V. Gool. Smart particle filtering for
high-dimensional tracking. Computer Vision and Image Understanding,
106(1):116–129, 2007.

[5] D. J. Campbell, J. D. Miller, S. J. Bannon, and L. M. Obermaier. An
Exploration of the Nanoworld with LEGO Bricks. Journal of Chemical
Education, pages 602–606, 2011.

[6] R. J. Campbell and P. J. Flynn. A survey of free-form object rep-
resentation and recognition techniques. Comput. Vis. Image Underst.,
81(2):166–210, February 2001.

[7] G. K. Cheung, S. Baker, and T. Kanade. Visual hull alignment and refine-
ment across time: A 3d reconstruction algorithm combining shape-from-
silhouette with stereo. Computer Vision and Pattern Recognition, 2:375,
2003.

[8] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques SIGGRAPH 96,
pages(Annual Conference Series):303–312, 1996.

[9] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and
M. Sagar. Acquiring the reflectance field of a human face. In Proceed-
ings of the 27th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’00, pages 145–156, New York, NY, USA, 2000.
ACM.

[10] S. Feiner, B. Macintyre, and D. Seligmann. Knowledge-based augmented
reality. Commun. ACM, 36:53–62, July 1993.

[11] S. Fuchs and G. Hirzinger. Extrinsic and depth calibration of tof-cameras.
In Computer Vision and Pattern Recognition, pages 1–6. IEEE, 2008.

[12] S. R. Harding and M. F. D’Eon. Using a LEGO-based communications
simulation to introduce medical students to patient-centered interviewing.
Teaching and Learning in Medicine, 13(2):130–135, 2001.

[13] B. K. P. Horn and J. G. Harris. Rigid body motion from range image
sequences. CVGIP: Image Underst., 53:1–13, January 1991.

[14] H. Ichida, Y. Itoh, Y. Kitamura, and F. Kishino. Interactive retrieval of 3d
shape models using physical objects. In Proceedings of the 12th annual
ACM international conference on Multimedia, MULTIMEDIA ’04, pages
692–699, New York, NY, USA, 2004. ACM.

[15] S. Izadi, A. Davison, A. Fitzgibbon, D. Kim, O. Hilliges, D. Molyneaux,
R. Newcombe, P. Kohli, J. Shotton, S. Hodges, and D. Freeman. Kinect-
Fusion: real-time 3D reconstruction and interaction using a moving depth
camera. In Proceedings of the 24th annual ACM symposium on User in-
terface software and technology - UIST ’11, pages 559–568, New York,
New York, USA, Oct. 2011. ACM Press.

[16] R. Jota and H. Benko. Constructing virtual 3d models with physical build-
ing blocks. In CHI 2011 Extended Abstracts, pages 2173–2178. ACM,
May 2011.

[17] S. B. Kang and K. Ikeuchi. The complex egi: A new representation for
3-d pose determination. IEEE Trans. Pattern Anal. Mach. Intell., 15:707–
721, July 1993.

[18] K. N. Kutulakos and S. M. Seitz. A theory of shape by space carving. Int.
J. Comput. Vision, 38:199–218, July 2000.

[19] J. Lee, Y. Kakehi, and T. Naemura. Bloxels: glowing blocks as volumetric
pixels. In ACM SIGGRAPH 2009 Emerging Technologies, SIGGRAPH
’09, pages 5:1–5:1, New York, NY, USA, 2009. ACM.

[20] D. B. LeGoff. Use of LEGO as a therapeutic medium for improving
social competence. Technical Report 5, Bancroft Neurosciences Institute,
Haddonfield, NJ 08034, USA. dlegoff@bnh.org, 2004.

[21] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital michelangelo project: 3d scanning of large statues. In Pro-
ceedings of the 27th annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH ’00, pages 131–144, New York, NY,

658 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 4, APRIL 2012

USA, 2000. ACM.
[22] X.-Y. Li, C.-H. Shen, S.-S. Huang, T. Ju, and S.-M. Hu. Popup: automatic

paper architectures from 3d models. In ACM SIGGRAPH 2010 papers,
SIGGRAPH ’10, pages 111:1–111:9, New York, NY, USA, 2010. ACM.

[23] M. R. Marner and B. H. Thomas. Augmented foam sculpting for captur-
ing 3d models. IEEE Symposium on 3D User Interfaces, pages 63–70,
April 2010.

[24] Y. Mori and T. Igarashi. Plushie: an interactive design system for plush
toys. ACM Trans. Graph., 26:45:1–45:8, July 2007.

[25] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense
tracking and mapping in real-time. IEEE International Conference on
Computer Vision, 1, 2011.

[26] R. A. Newcombe, D. Molyneaux, D. Kim, A. J. Davison, J. Shotton,
S. Hodges, and A. Fitzgibbon. KinectFusion: Real-Time Dense Surface
Mapping and Tracking. ISMAR, pages 127–136, 2011.

[27] H. Newton-Dunn, H. Nakano, and J. Gibson. Block jam: a tangible in-
terface for interactive music. In Proceedings of the 2003 conf. on New
interfaces for musical expression, NIME ’03, pages 170–177, Singapore,
Singapore, 2003. National University of Singapore.

[28] R. Raskar, P. Beardsley, P. Dietz, and J. van Baar. Photosensing wireless
tags for geometric procedures. Commun. ACM, 48:46–51, September
2005.

[29] R. Raskar, G. Welch, and W. chao Chen. Table-top spatially-augmented
reality: Bringing physical models to life with projected imagery. In In:
Proceedings of the 2nd IEEE and ACM international workshop on aug-
mented reality (IWAR99), pages 64–73. IEEE, 1999.

[30] S. Rosenthal, S. K. Kane, J. O. Wobbrock, and D. Avrahami. Augmenting
on-screen instructions with micro-projected guides: when it works, and
when it fails. In Proceedings of the 12th ACM international conference
on Ubiquitous computing, Ubicomp ’10, pages 203–212, New York, NY,
USA, 2010. ACM.

[31] F. Rottensteiner and C. Briese. A new method for building extraction
in urban areas from high-resolution lidar data. International Archives
of Photogrammetry Remote Sensing and Spatial Information Sciences,
34(3/A):295301, 2001.

[32] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d model acqui-
sition. ACM Trans. Graph., 21:438–446, July 2002.

[33] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In
3D Digital Imaging and Modeling, pages 145–152. IEEE, 2001.

[34] M. Schlattmann, F. Kahlesz, R. Sarlette, and R. Klein. Markerless 4
gestures 6 dof real-time visual tracking of the human hand with automatic
initialization. Comput. Graph. Forum, 26(3):467–476, 2007.

[35] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for point-cloud shape
detection. Computer Graphics Forum, 26(2):214–226, June 2007.

[36] E. Sharlin, Y. Itoh, B. Watson, Y. Kitamura, S. Sutphen, and L. Liu. Cog-
nitive cubes: a tangible user interface for cognitive assessment. In Pro-
ceedings of the SIGCHI conference on Human factors in computing sys-
tems: Changing our world, changing ourselves, CHI ’02, pages 347–354,
New York, NY, USA, 2002. ACM.

[37] J. Slaney and S. Thiébaux. Blocks world revisited. Artif. Intell., 125:119–
153, January 2001.

[38] A. Tang, C. Owen, F. Biocca, and W. Mou. Comparative effectiveness
of augmented reality in object assembly. In Proceedings of the SIGCHI
conference on Human factors in computing systems, CHI ’03, pages 73–
80, New York, NY, USA, 2003. ACM.

[39] M. A. Templin and M. K. Fetters. A Working Model of Protein Synthesis
Using LEGO. The American Biology Teacher, 64(9):673–678, 2002.

[40] R. Y. Wang and J. Popović. Real-time hand-tracking with a color glove.
ACM Trans. Graph., 28:63:1–63:8, July 2009.

[41] T. Weise, T. Wismer, B. Leibe, and L. J. V. Gool. Online loop closure
for real-time interactive 3d scanning. Computer Vision and Image Un-
derstanding, 115(5):635–648, 2011.

[42] G. Welch and E. Foxlin. Motion Tracking: No Silver Bullet, but a Re-
spectable Arsenal. IEEE Computer Graphics and Applications, 22(6):24–
38, 2002.

[43] M. P. Weller, E. Y.-L. Do, and M. D. Gross. Posey: instrumenting a
poseable hub and strut construction toy. In Proceedings of the 2nd in-
ternational conference on Tangible and embedded interaction, TEI ’08,
pages 39–46, New York, NY, USA, 2008. ACM.

[44] S. Wesugi and Y. Miwa. Brick-building interface support for cocreative
communication. Int. J. Hum. Comput. Interaction, 20(1):35–56, 2006.

[45] R. Ziola, S. Grampurohit, N. Landes, J. Fogarty, and B. Harrison. Oa-
sis: Examining a framework for interacting with general-purpose object

recognition. In Intel Labs Seattle Technical Report. Intel, 2010.

659MILLER ET AL: INTERACTIVE 3D MODEL ACQUISITION AND TRACKING OF BUILDING BLOCK STRUCTURES

