
LogicPad: A Pen-Based Application for Visualization and
Verification of Boolean Algebra

Bo Kang
Interactive Systems and User Experience Lab

University of Central Florida
Orlando, Florida 32816

bkang@cs.ucf.edu

Joseph J. LaViola Jr.
Interactive Systems and User Experience Lab

University of Central Florida
Orlando, Florida 32816

jjl@eecs.ucf.edu

ABSTRACT

We present LogicPad, a pen-based application for boolean al-
gebra visualization that lets users manipulate boolean func-
tion representations through handwritten symbol and gesture
recognition coupled with a drag-and-drop interface. We dis-
cuss LogicPad’s user interface and the general algorithm used
for verifying the equivalence of three different boolean func-
tion representations: boolean expressions, truth tables, and lo-
gic gate diagrams. We also conducted a short, informal user
study evaluating LogicPad’s user interface, visualization tech-
niques, and overall performance. Results show that visualiza-
tions were generally well-liked and verification results mat-
ched user expectations.

Author Keywords

Pen-based User Interface, Sketch Understanding, Boolean Al-
gebra, Logic Verification

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: User Interfa-
ces—Interaction Styles; G.4 Mathematics of Computing: Ma-
thematical Software—User Interfaces

General Terms

Design, Human Factors

INTRODUCTION

Boolean Algebra [8] is a fundamental concept in computer
science and digital system design. Many problems in digital
logic design and testing, artificial intelligence, and combina-
torics can be expressed as a sequence of boolean operations
and boolean variables. A boolean function can be represen-
ted as an expression, truth table, or logic gate diagram; the
three different representations of the same boolean function
are considered equivalent.

Traditional complex computer-aided design applications are
important tools for designing logic circuits. Nevertheless, for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’12, February 14–17, 2012, Lisbon, Portugal.

Copyright 2012 ACM 978-1-4503-1048-2/12/02...$10.00.

Figure 1. LogicPad’s main window with three boolean function repre-

sentations.

novices, such as students who are learning the fundamentals
of boolean algebra, simple and quick prototyping is import-
ant. Most students still find using pen and paper to quickly
sketch out boolean expressions, truth tables, and logic gate
diagrams to be useful. Therefore, we made LogicPad (see Fi-
gure 1), a new pen-based application that combines the ease-
of-use of pen and paper with the automation of computer-
aided design applications. LogicPad focuses on the relation-
ship between three different representations of boolean func-
tions. Users can quickly sketch a boolean function and vi-
sualize the function in each representation simultaneously. In
addition, we provide a general method for verifying the equi-
valence of two boolean functions.

RELATED WORK

Computer aided design applications for undestanding logic
circuits have been previously developed, such as LogicAid,
which lets users develop boolean functions using representa-
tions such as truth tables, state tables, and state graphs [9].
LogicAid is similar in spirit to our work, but LogicAid does
not make use of a pen-based interface.

Logic gate diagrams are well-suited for pen-based sketching
environments. SketchREAD describes a multi-domain sketch
recognition engine capable of recognizing hand-drawn dia-
gram sketches [1]. Wais’ user study explored critical sketch
recognition user interface issues with logic gate diagrams [10].
Alvarado also analyzed how students created freely-drawn

Poster Presentation IUI'12, February 14-17, 2012, Lisbon, Portugal

265

logic gate diagrams in class over the course of a full seme-
ster [2]. However, these works use user interfaces that are
entirely sketch-based, while our work uses a combination of
sketching and a drag-and-drop interface.

Besides sketching diagrams, research in the recognition, eva-
luation, and visualization of mathematical expressions has al-
so been conducted previously. MathPad2 is a mathematical
sketching tool for solving mathematics problems [5]. Math-
Brush is a mathematics recognition tool that supports mathe-
matical transformations and problem solving through the use
of a back-end Computer Algebra System [4]. Our work ex-
pands upon the notion of mathematical sketching, extending
it by combining mathematical expressions and logic gate dia-
grams.

USER INTERFACE

LogicPad provides a sketching area for the user to write on
as they normally would using pen and paper. Instead of sket-
ching the various boolean function representations on a sin-
gle canvas, a separate widget with its own canvas is created
for each representation, which can be added to the sketching
area.

Users write gestures on the sketching area in order to crea-
te widgets. For instance, drawing an ‘E’ will create a boolean
expression widget. Truth table widgets and logic gate diagram
widgets are created using ‘T’ and ‘D’, respectively. A scrib-
ble erase gesture is used to erase both ink and user interface
elements, because it mimics natural erasing.

CONCEPTUAL MODEL

As previously discussed, boolean functions have three basic
representations: truth tables, boolean expressions, and logic
gate diagrams. The three representations in LogicPad provi-
de visualization cues to help the user understand the boolean
function they are working with.

Logic Gate Diagram Widget

With a sketching interface, the user needs to know the shape
of each type of logic gate, which can be a cognitive burden for
students who are still learning about boolean algebra. There-
fore, we try to ease the burden by using a drag-and-drop radial
menu [3] showing the different types of logic gates. Figure 2
shows a logic gate diagram widget with a radial menu sho-
wing the six basic logic gates.

Users can hold down the stylus on the tablet screen for 3
seconds in order to trigger the radial menu and drop a gate
from it on the sketching area. Gates can also be freely moved
around the sketching area. We provide a sketching interface
for this widget; after gates are dragged and dropped on the
canvas, a user can sketch a line to connect any two gates. If a
stroke starts at one gate and ends at another, it is recognized
as a wire and the stroke is removed and replaced with a wire.

A user can sketch a label near each gate. Label association
is decided by checking whether an ink stroke falls within a
threshold distance from a gate. Any strokes that fall within
the threshold are analyzed by the Microsoft Ink Analyzer as
typeset notations underneath strokes and used as the gate’s

Figure 2. A logic gate diagram widget with a radial menu open showing

the six kinds of logic gates: AND, OR, NOT, XOR, Input, and Output.

Handwritten
Symbol

Boolean Operator Example

+ OR A+B

· AND A ·B or AB

′ NOT A
′

⊕ XOR A⊕B

Table 1. Mapping between handwritten symbols and boolean operators.

label. In addition, after the user connects two gates with a
wire, the widget animates current flowing through the wire.

Boolean Expression Widget

Since sketching mathematics is natural, LogicPad’s boolean
expression widget is a canvas that interprets the user’s hand-
written math and converts it to a typeset notation. After reco-
gnizing alphabetical letters, numbers and numerical operators
using StarPad [11], four handwritten boolean operators can be
interpreted by LogicPad, which are summarized in Table 1.

During expression construction, a user can circle strokes and
select alternate recognition options from an alternates bar in
case the default recognition does not match the user’s expec-
tation. In addition, expressions can be selected and moved
around the widget.

Truth Table Widget

The truth table widget presents a table for the user to fill out
with the expected output of the boolean function they are wor-
king with. The user can change the number of variables; each
variable can be renamed by erasing the old name and writing
a new one, then the handwritten symbol is analyzed by the
Microsoft Ink Analyzer as the typeset notation underneath it.
In comparison to pen and paper, LogicPad helps the user by
creating a table with variables and the factorial combinations
of their input values, which can be an onerous step when wor-
king with many variables. Thus, the user can concentrate on
working out the output values for the truth table.

MAPPING

LogicPad can determine the boolean function each widget re-
presents and minimize the function. The other two function
representations can also be created from any type of widget.

Poster Presentation IUI'12, February 14-17, 2012, Lisbon, Portugal

266

Figure 3. Process for converting a widget in order to determine whether

two widgets represent the same boolean function.

Verifying the equivalence of two boolean functions is essen-
tial to LogicPad, because it lets users compare the different
representations, which can help them to understand boolean
algebra and boolean function representations.

Each kind of widget stores data in a different format; when the
user wants to see the widget’s function in another represen-
tation, the widget converts its data to a parse tree that stores
a variable name or boolean operator at each node. Logic gate
diagram widgets use XML to represent the gates and wires,
expression widgets use a binary tree to represent the mathe-
matics, and truth table widgets use a tabular array to store the
input values, output values, and variable names.

Looking at two boolean functions, it can be ambiguous whe-
ther they are equivalent. For instance, F = X+0 and F = X

are equivalent, as are F = XY
′ +XY and F = X . In order

to determine the equivalence of two boolean functions, we
apply the steps shown in Figure 3.

The tree rewriting phase always changes the structure of the
parse tree. It includes five sub-steps. First, boolean identity
laws are checked. For instance, the parse tree that represents
X + 0 is reduced to X . Second, the XOR operator is sub-
stituted for its equivalent form. For example, the parse tree
that represents A⊕B is converted to AB

′ +A
′
B. Third, the

parser will make sure that all NOT operator nodes are loca-
ted as deep in the tree as possible. Fourth, boolean functions
are formulated as a sum-of-products expansion. Fifth, boo-
lean complement laws are checked.

The goal of the tree segmentation phase is to convert the par-
se tree to an ordered array of 0-1 bitstrings. In this phase,
the parse tree changes each sum-of-products expansion to an
array-of-products expansion, and variable names are analy-
zed as a one or zero depending on the presence of a NOT
operator parent node.The final phase is to minimize the boo-
lean function. We use the Quine-McCluskey algorithm [6] to
simplify the ordered array of bitstrings.

FEEDBACK

We use two approaches to verify the user’s logic construction,
both of which can be seen in Figure 1. Our first approach is an
explicit feedback mechanism. When a user designs a boolean
function using one type of representation, the other two can
be generated from the representation menu.

Our second approach is a gesture-based mechanism which
can be seen as an implicit feedback mechanism. A user can
draw an equals sign on the sketching area between two wid-
gets. When the equals sign is recognized, LogicPad will check
if there is a widget on either side of the equals sign. If there is
no widget on one side, then a rectangle will be drawn on the
sketching area to give the user a hint to drag a widget to that
area. Finally, LogicPad parses the two widgets and tells the

user whether the boolean functions represented by the wid-
gets are equivalent using a pop-up window.

INFORMAL USER STUDY

To gain insight into the perceived utility of LogicPad for do-
main users, we conducted an informal user study.

We recruited 6 participants (1 female and 5 males, aged 18-
25, 2 left-handed) from the undergraduate electrical enginee-
ring department at the University of Central Florida. Partici-
pants all had basic knowledge of boolean algebra. The study
was conducted in the lab, using an HP Compaq tc4400 12.1
inch tablet PC. We informed participants of minor bugs when
possible, as our goal was to evaluate system design rather than
implementation and recognition issues.

Users were asked to practice a set of tasks in order to get fa-
miliar with the system. The practice tasks consisted of crea-
ting and manipulating boolean expressions, truth tables and
logic gate diagrams. Finally, users were asked to design two
boolean functions and to verify the equivalence between cor-
responding representations.

After the practice phase, participants were required to sol-
ve a list of tasks using LogicPad. Pen and paper were also
provided in case the participant needed to write down their
thinking process. The tasks were divided into two categories.
In the first category, one boolean function representation was
provided and participants were then asked to sketch one of the
other two corresponding representations of the same function
and to verify their equivalence using LogicPad. In the second
category, two boolean function representations were provided
and participants were then required to manually determine if
the representations were logically equivalent before using Lo-
gicPad to verify the result.

At the completion of the study (which lasted approximately
50 minutes), participants completed a questionnaire inquiring
if the tool was useful for boolean function verification and if
it was helpful for logic problem solving.

Observations

Triggering Widgets

Five out of six participants preferred our gestural method to
add widgets. One participant argued that it would be better
to give a option to select the widget from a menu. Two users
were frustrated by the difficulty of triggering widgets by wri-
ting gestures due to incorrect handwriting recognition results
obtained from the recognizer.

Diagram User Widget

All participants preferred the method for triggering the radial
menu, noting that it reduced the learning time and augmented
the retention time in drawing logic gates. Only one participant
said that it would be better to make the radial menu visible
longer than the given time interval.

All became accustomed to the drag-and-drop interface of ap-
plying the gate to the canvas. One participant suggested that
it may be better to simply tap each gate on the radial menu

Poster Presentation IUI'12, February 14-17, 2012, Lisbon, Portugal

267

to make the gate visible in the widget. From our observati-
ons, we believed that other participants would have the same
preference. After participants triggered the radial menu, their
first instinct was to use the stylus to target one specific gate
and wait for response from the system. We also found one
mode-switching issue. For instance, some users would unin-
tentionally trigger the radial menu when trying to change the
position of logic gates already present in the sketching area.
We conjecture that using a mode inference approach [7] could
reduce this ambiguity.

Expression User Widget

Four out of six participants found it easy to manipulate. Ho-
wever, one participant reported being frustrated by wrong re-
cognition results when writing expressions. For example, when
he wrote apostrophes as negation operators, they were always
falsely recognized as another notation, requiring him to se-
lect an alternative recognition result. He recommended to use
a hat symbol as the negation operator.

Truth Table User Widget

All of the participants appreciated not having to draw the en-
tire truth table. One participant said, “I like how I could add
variables easily with the menu at the bottom.” Another par-
ticipant commented that it would be better to initialize all of
the output values to zero first and then scribble out non-zero
values, replacing them with ones.

Feedback

All participants preferred our two approaches, as both of them
provided intuitive ways to visualize and comprehend boolean
functions.

Overall, every participant preferred having separate widgets,
and one of them commented that it was a natural way to repre-
sent boolean functions. Another user commented “I did like
LogicPad but I think you should be able to have the choice
on if you want separate widgets or not.” All participants who
used LogicPad thought that it was a good verification tool for
problem solving, but two commented that it would be better
if LogicPad was faster and more reliable.

CONCLUSION AND FUTURE WORK

We have presented LogicPad, a pen-based tool that support
boolean function visualization and verification. It provides
different sketching areas to write boolean function represen-
tations and parses user’s logic representations in order to ge-
nerate other boolean function representations. In the logic ga-
te diagram widget, we illustrated one mixed sketch-drag-and-
drop approach. We also conducted an informal study, where
we found that our boolean function knowledge representation
approach was well liked by the participants. We also found
that participants wanted tools to help them to verify their pro-
blem solving results in general. In the future, we plan to con-
tinue to explore under what circumstances should a sketching
interface or drag-and-drop interface be chosen, how LogicPad
could be used to aid students, and understanding LogicPad’s
pedegogical implications.

ACKNOWLEDGMENTS

This work is supported in part by NSF CAREER award IIS-
0845921 and NSF awards IIS-0856045 and CCF-1012056.
We would also like to thank the members of the ISUE lab for
their support and the anonymous reviewers for their useful
comments and feedback.

REFERENCES

1. Alvarado, C., and Davis, R. Sketchread: A multi-domain
sketch recognition engine. In Proc. of the 17th annual
ACM symposium on User interface software and
technology (Santa Fe, New Mexico, USA, 2004), 23–32.

2. Alvarado, C., and Lazzareschi, M. Properties of
real-world digital logic diagrams. In Proceedings of the
First International Workshop on Pen-Based Learning
Technologies, PLT ’07, IEEE Computer Society
(Washington, DC, USA, 2007), 1–6.

3. Callahan, J., Hopkins, D., Weiser, M., and Shneiderman,
B. An empirical comparison of pie vs. linear menus. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’88, ACM (New
York, NY, USA, 1988), 95–100.

4. Labahn, G., Lank, E., MacLean, S., Marzouk, M., and
Tausky, D. Mathbrush: A system for doing math on
pen-based devices. In Document Analysis Systems,
2008. DAS ’08. The Eighth IAPR International
Workshop on (sept. 2008), 599 –606.

5. LaViola, Jr., J. J., and Zeleznik, R. C. Mathpad2: a
system for the creation and exploration of mathematical
sketches. In ACM SIGGRAPH 2004 Papers,
SIGGRAPH ’04, ACM (New York, NY, USA, 2004),
432–440.

6. McCluskey, E. J., and Schorr, H. Minimization of
boolean functions. Bell System Technical Journal 35, 5
(November 1956), 1417–1444.

7. Negulescu, M., Ruiz, J., and Lank, E. Exploring
usability and learnability of mode inferencing in
pen/tablet interfaces. In Proceedings of the Seventh
Sketch-Based Interfaces and Modeling Symposium,
SBIM ’10, Eurographics Association (Aire-la-Ville,
Switzerland, Switzerland, 2010), 87–94.

8. Nelson, V. P., Nagle, H. T., Carroll, B. D., and Irwin,
J. D. Digital logic circuit analysis and design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.

9. Roth, C. Logicaid, CAD Software for Logic Design,
Version 3.0 for Windows: Users Guide and Reference
Manual. Cengage Learning, 1995.

10. Wais, P., Wolin, A., and Alvarado, C. Designing a sketch
recognition front-end: User perception of interface
elements. In SBM, M. van de Panne and E. Saund, Eds.,
Eurographics Association (2007), 99–106.

11. Zeleznik, R., Miller, T., Li, C., and Laviola, Jr., J. J.
Mathpaper: Mathematical sketching with fluid support
for interactive computation. In Proceedings of the 9th
international symposium on Smart Graphics, SG ’08,
Springer-Verlag (Berlin, Heidelberg, 2008), 20–32.

Poster Presentation IUI'12, February 14-17, 2012, Lisbon, Portugal

268

