Recurrent neural networks and LSTM

Adapted from Raymond J. Mooney

University of Texas at Austin Borrows significantly from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

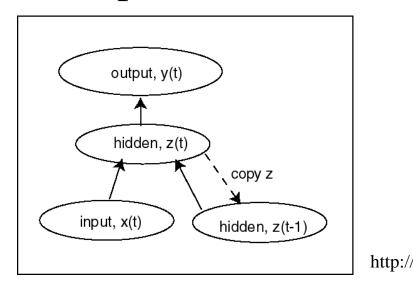
1

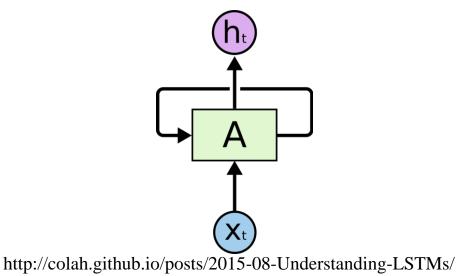
Recurrent Neural Networks (RNN)

- Add feedback loops where some units' current outputs determine some future network inputs.
- RNNs can model dynamic finite-state machines, beyond the static combinatorial circuits modeled by feed-forward networks.

Simple Recurrent Network (SRN)

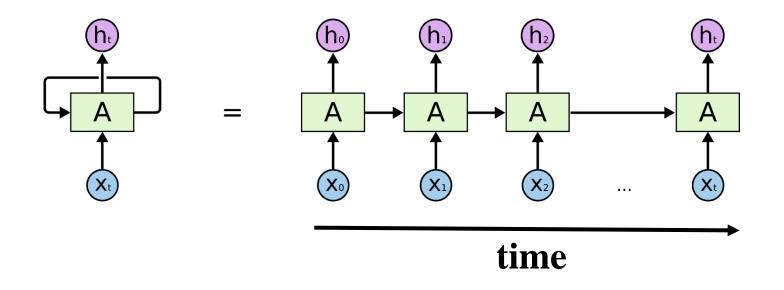
- Initially developed by Jeff Elman ("*Finding structure in time*," 1990).
- Additional input to hidden layer is the state of the hidden layer in the previous time step.





Unrolled RNN

• Behavior of RNN is perhaps best viewed by "unrolling" the network over time.

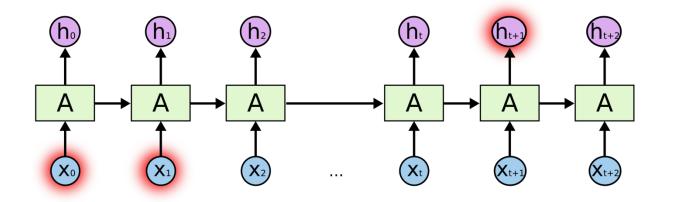


Vanishing/Exploding Gradient Problem

- Backpropagated errors multiply at each layer, resulting in exponential decay (if derivative is small) or growth (if derivative is large).
- Makes it very difficult train deep networks, or simple recurrent networks over many time steps.

Long Distance Dependencies

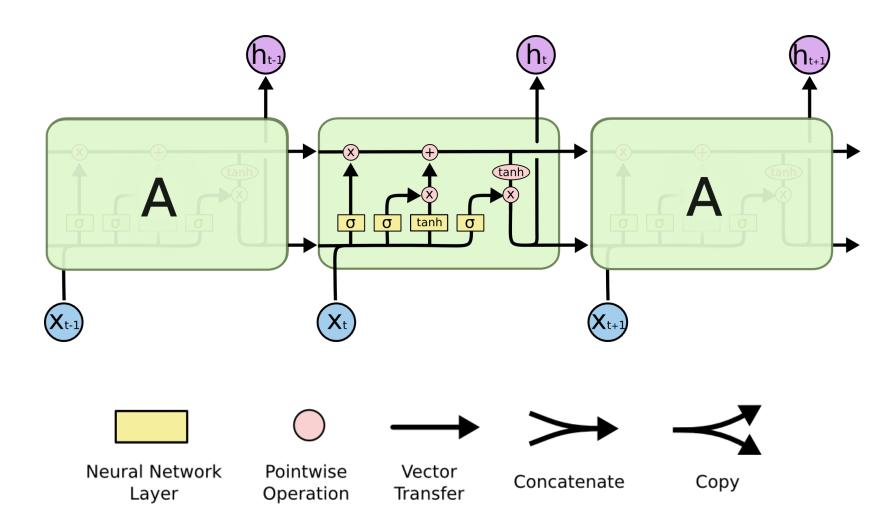
- It is very difficult to train SRNs to retain information over many time steps
- This make is very difficult to learn SRNs that handle long-distance dependencies, such as subject-verb agreement.



Long Short Term Memory

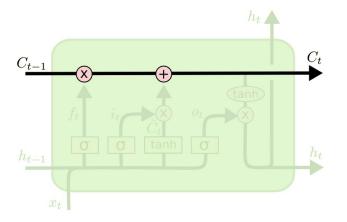
- LSTM networks, add additional gating units in each memory cell.
 - Forget gate
 - Input gate
 - Output gate
- Prevents vanishing/exploding gradient problem and allows network to retain state information over longer periods of time.

LSTM Network Architecture



Cell State

- Maintains a vector C_t that is the same dimensionality as the hidden state, h_t
- Information can be added or deleted from this state vector via the forget and input gates.

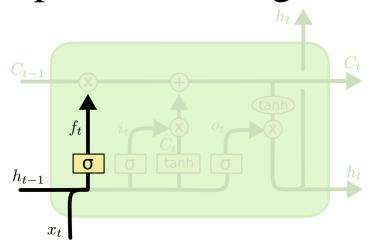


Cell State Example

- Want to remember person & number of a subject noun so that it can be checked to agree with the person & number of verb when it is eventually encountered.
- Forget gate will remove existing information of a prior subject when a new one is encountered.
- Input gate "adds" in the information for the new subject.

Forget Gate

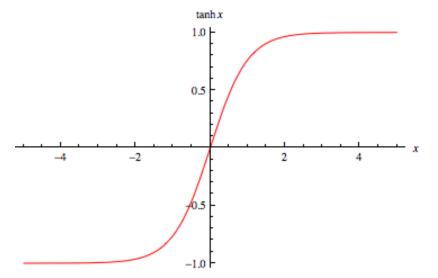
- Forget gate computes a 0-1 value using a logistic sigmoid output function from the input, x_t, and the current hidden state, h_t:
- Multiplicatively combined with cell state, "forgetting" information where the gate outputs something close to 0.



$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

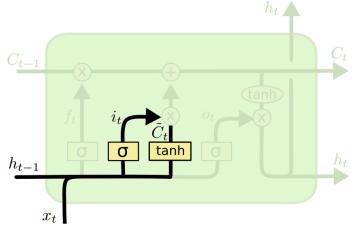
Hyperbolic Tangent Units

- Tanh can be used as an alternative nonlinear function to the sigmoid logistic (0-1) output function.
- Used to produce thresholded output between -1 and 1.



Input Gate

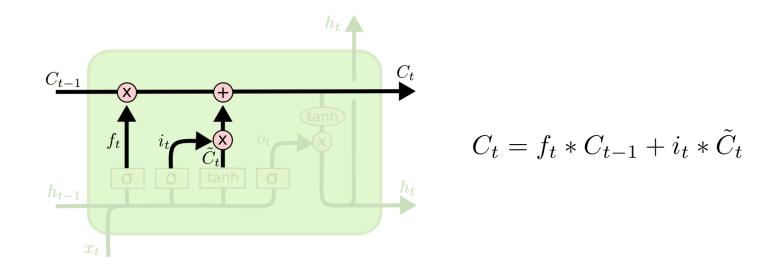
- First, determine which entries in the cell state to update by computing 0-1 sigmoid output.
- Then determine what amount to add/subtract from these entries by computing a tanh output (valued –1 to 1) function of the input and hidden state.



 $i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$ $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$

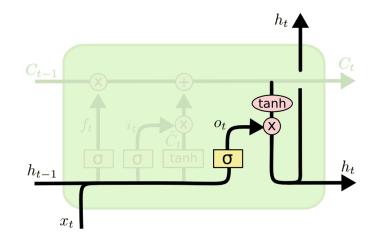
Updating the Cell State

• Cell state is updated by using componentwise vector multiply to "forget" and vector addition to "input" new information.



Output Gate

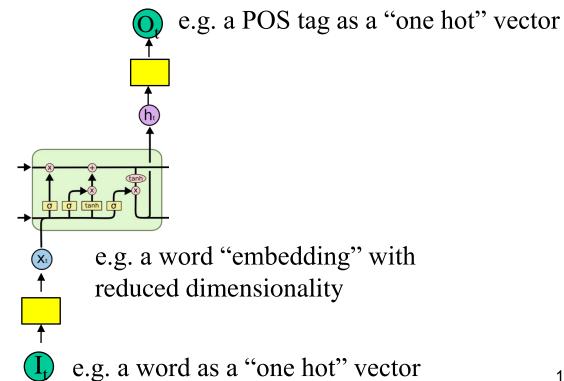
- Hidden state is updated based on a "filtered" version of the cell state, scaled to -1 to 1 using tanh.
- Output gate computes a sigmoid function of the input and current hidden state to determine which elements of the cell state to "output".



$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

Overall Network Architecture

• Single or multilayer networks can compute LSTM inputs from problem inputs and problem outputs from LSTM outputs.



LSTM Training

- Trainable with backprop derivatives such as:
 - Stochastic gradient descent (randomize order of examples in each epoch) with momentum (bias weight changes to continue in same direction as last update).
 - ADAM optimizer (Kingma & Ma, 2015)
- Each cell has many parameters (W_f, W_i, W_c, W_o)
 - Generally requires lots of training data.
 - Requires lots of compute time that exploits GPU clusters.

General Problems Solved with LSTMs

- Sequence labeling
 - Train with supervised output at each time step computed using a single or multilayer network that maps the hidden state (h_t) to an output vector (O_t) .
- Language modeling
 - Train to predict next input $(O_t = I_{t+1})$
- Sequence (e.g. text) classification
 - Train a single or multilayer network that maps the final hidden state (h_n) to an output vector (O).

Sequence to Sequence Transduction (Mapping)

 Encoder/Decoder framework maps one sequence to a "deep vector" then another LSTM maps this vector to an output sequence.

$$I_1, I_2, ..., I_n \longrightarrow \underbrace{\text{Encoder}}_{\text{LSTM}} \longrightarrow h_n \longrightarrow \underbrace{\text{Decoder}}_{\text{LSTM}} \longrightarrow O_1, O_2, ..., O_m$$

• Train model "end to end" on I/O pairs of sequences.

Summary of LSTM Application Architectures

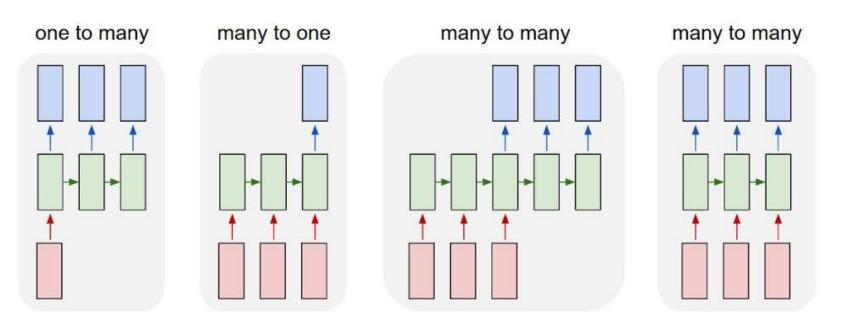


Image Captioning Video Activity Recog Text Classification

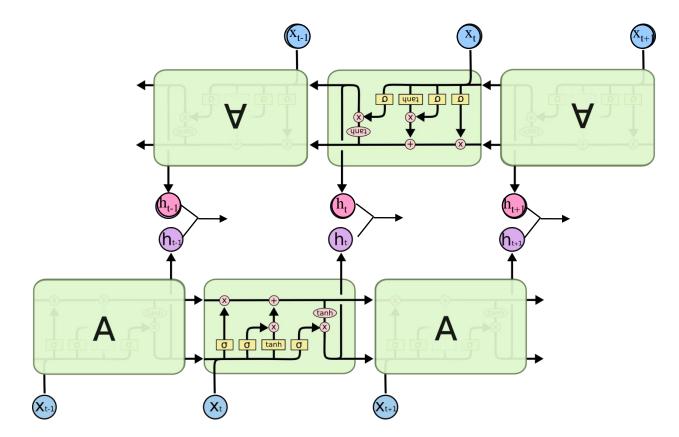
Video Captioning Machine Translation POS Tagging Language Modeling

Successful Applications of LSTMs

- Speech recognition: Language and acoustic modeling
- Sequence labeling
 - POS Tagging <u>https://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)</u>
 - NER
 - Phrase Chunking
- Neural syntactic and semantic parsing
- Image captioning: CNN output vector to sequence
- Sequence to Sequence
 - Machine Translation (Sustkever, Vinyals, & Le, 2014)
 - Video Captioning (input sequence of CNN frame outputs)

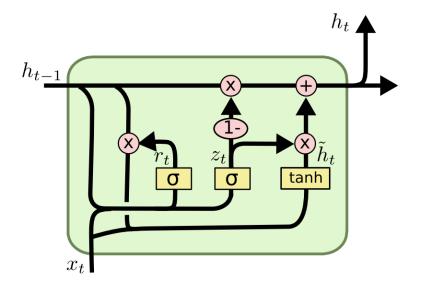
Bi-directional LSTM (Bi-LSTM)

• Separate LSTMs process sequence forward and backward and hidden layers at each time step are concatenated to form the cell output.



Gated Recurrent Unit (GRU)

- Alternative RNN to LSTM that uses fewer gates (<u>Cho, et al., 2014</u>)
 - Combines forget and input gates into "update" gate.
 - Eliminates cell state vector



$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$

$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

GRU vs. LSTM

- GRU has significantly fewer parameters and trains faster.
- Experimental results comparing the two are still inconclusive, many problems they perform the same, but each has problems on which they work better.

Conclusions

- By adding "gates" to an RNN, we can prevent the vanishing/exploding gradient problem.
- Trained LSTMs/GRUs can retain state information longer and handle long-distance dependencies.
- Recent impressive results on a range of challenging NLP problems.