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Recurrent neural networks 

and LSTM

Adapted from Raymond J. Mooney

University of Texas at Austin

Borrows significantly from:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Recurrent Neural Networks

(RNN)

• Add feedback loops where some units’ 

current outputs determine some future 

network inputs.

• RNNs can model dynamic finite-state 

machines, beyond the static combinatorial 

circuits modeled by feed-forward networks. 
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Simple Recurrent Network

(SRN)

• Initially developed by Jeff Elman (“Finding 

structure in time,” 1990).

• Additional input to hidden layer is the state 

of the hidden layer in the previous time 

step.
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Unrolled RNN

• Behavior of RNN is perhaps best viewed by 

“unrolling” the network over time.
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Vanishing/Exploding Gradient Problem

• Backpropagated errors multiply at each 

layer, resulting in exponential decay (if 

derivative is small) or growth (if derivative 

is large).

• Makes it very difficult train deep networks, 

or simple recurrent networks over many 

time steps.
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Long Distance Dependencies

• It is very difficult to train SRNs to retain 

information over many time steps

• This make is very difficult to learn SRNs 

that handle long-distance dependencies, 

such as subject-verb agreement.
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Long Short Term Memory

• LSTM networks, add additional gating units 

in each memory cell.

− Forget gate

− Input gate

− Output gate

• Prevents vanishing/exploding gradient 

problem and allows network to retain state 

information over longer periods of time.
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LSTM Network Architecture
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Cell State

• Maintains a vector Ct that is the same 

dimensionality as the hidden state, ht

• Information can be added or deleted from 

this state vector via the forget and input 

gates.
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Cell State Example

• Want to remember person & number of a 

subject noun so that it can be checked to 

agree with the person & number of verb 

when it is eventually encountered.

• Forget gate will remove existing 

information of a prior subject when a new 

one is encountered.

• Input gate "adds" in the information for the 

new subject.
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Forget Gate

• Forget gate computes a 0-1 value using a 

logistic sigmoid output function from the 

input, xt, and the current hidden state, ht:

• Multiplicatively combined with cell state, 

"forgetting" information where the gate 

outputs something close to 0.
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Hyperbolic Tangent Units

• Tanh can be used as an alternative nonlinear 

function to the sigmoid logistic (0-1) output 

function.

• Used to produce thresholded output 

between –1 and 1.
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Input Gate

• First, determine which entries in the cell state to 

update by computing 0-1 sigmoid output.

• Then determine what amount to add/subtract 

from these entries by computing a tanh output 

(valued –1 to 1) function of the input and hidden 

state.
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Updating the Cell State

• Cell state is updated by using component-

wise vector multiply to "forget" and vector 

addition to "input" new information.
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Output Gate

• Hidden state is updated based on a "filtered" 

version of the cell state, scaled to –1 to 1 using 

tanh.

• Output gate computes a sigmoid function of the 

input and current hidden state to determine which 

elements of the cell state to "output".
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Overall Network Architecture

• Single or multilayer networks can compute 

LSTM inputs from problem inputs and 

problem outputs from LSTM outputs.
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e.g. a word as a “one hot” vector

e.g. a word “embedding” with 

reduced dimensionality

e.g. a POS tag as a “one hot” vector



LSTM Training

• Trainable with backprop derivatives such as:

− Stochastic gradient descent (randomize order of 

examples in each epoch) with momentum (bias 

weight changes to continue in same direction as 

last update).

− ADAM optimizer (Kingma & Ma, 2015)

• Each cell has many parameters (Wf, Wi, WC, 

Wo)

− Generally requires lots of training data.

− Requires lots of compute time that exploits GPU 

clusters. 17



General Problems Solved with LSTMs

• Sequence labeling 

− Train with supervised output at each time step 

computed using a single or multilayer network that 

maps the hidden state (ht) to an output vector (Ot).

• Language modeling

− Train to predict next input (Ot =It+1)

• Sequence (e.g. text) classification

− Train a single or multilayer network that maps the 

final hidden state (hn) to an output vector (O).
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Sequence to Sequence 

Transduction (Mapping)

• Encoder/Decoder framework maps one 

sequence to a "deep vector" then another 

LSTM maps this vector to an output 

sequence.
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• Train model "end to end" on I/O pairs of 

sequences.



Summary of 

LSTM Application Architectures
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Image Captioning Video Activity Recog

Text Classification

Video Captioning

Machine Translation

POS Tagging

Language Modeling



Successful Applications of LSTMs

• Speech recognition: Language and acoustic modeling

• Sequence labeling

− POS Tagging 
https://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

− NER

− Phrase Chunking 

• Neural syntactic and semantic parsing

• Image captioning: CNN output vector to sequence

• Sequence to Sequence

− Machine Translation (Sustkever, Vinyals, & Le, 2014)

− Video Captioning (input sequence of CNN frame outputs)
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Bi-directional LSTM (Bi-LSTM)

• Separate LSTMs process sequence forward and 

backward and hidden layers at each time step are 

concatenated to form the cell output.
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Gated Recurrent Unit

(GRU)

• Alternative RNN to LSTM that uses fewer 

gates (Cho, et al., 2014)

− Combines forget and input gates into “update” 

gate.

− Eliminates cell state vector
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http://arxiv.org/pdf/1406.1078v3.pdf


GRU vs. LSTM

• GRU has significantly fewer parameters and 

trains faster.

• Experimental results comparing the two are 

still inconclusive, many problems they 

perform the same, but each has problems on 

which they work better.
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Conclusions

• By adding “gates” to an RNN, we can 

prevent the vanishing/exploding gradient 

problem.

• Trained LSTMs/GRUs can retain state 

information longer and handle long-distance 

dependencies.

• Recent impressive results on a range of 

challenging NLP problems.
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