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Recurrent Neural Networks

(RNN)

e Add feedback loops where some units’
current outputs determine some future
network inputs.

e RNNSs can model dynamic finite-state
machines, beyond the static combinatorial
circuits modeled by feed-forward networks.



Simple Recurrent Network
SRN

e Initially developed by Jeff Elman (“Finding
structure in time,” 1990).

o Additional input to hidden layer is the state
of the hidden layer in the previous time
step.
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Unrolled RNN

e Behavior of RNN Iis perhaps best viewed by
“unrolling” the network over time.
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Vanishing/Exploding Gradient Problem

e Backpropagated errors multiply at each
layer, resulting in exponential decay (if
derivative Is small) or growth (if derivative
IS large).

o Makes It very difficult train deep networks,
or simple recurrent networks over many
time steps.



Long Distance Dependencies

o |t is very difficult to train SRNs to retain
Information over many time steps

e This make Is very difficult to learn SRNs
that handle long-distance dependencies,
such as subject-verb agreement.
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Long Short Term Memory

e LSTM networks, add additional gating units
In each memory cell.
— Forget gate
— Input gate
— Qutput gate
e Prevents vanishing/exploding gradient

problem and allows network to retain state
Information over longer periods of time.



LSTM Network Architecture
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Cell State

o Maintains a vector C, that Is the same
dimensionality as the hidden state, h,

e Information can be added or deleted from
this state vector via the forget and input
gates.
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Cell State Example

e \Want to remember person & number of a
subject noun so that it can be checked to
agree with the person & number of verb
when It iIs eventually encountered.

e Forget gate will remove existing
Information of a prior subject when a new
one Is encountered.

o Input gate "adds" in the information for the
new subject.
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Forget Gate

e Forget gate computes a 0-1 value using a
logistic sigmoid output function from the
Input, X;, and the current hidden state, h,:

o Multiplicatively combined with cell state,
"forgetting™ information where the gate
outputs something close to 0.

fo=0Wy-hi—1,2¢] + by)
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Hyperbolic Tangent Units

e Tanh can be used as an alternative nonlinear
function to the sigmoid logistic (0-1) output
function.

e Used to produce thresholded output
between —1 and 1.
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Input Gate

e First, determine which entries in the cell state to
update by computing 0-1 sigmoid output.
e Then determine what amount to add/subtract

from these entries by computing a tanh output
(valued —1 to 1) function of the input and hidden

state.

. it =0 (Wilhe—1, 2] + by)
, ét :taﬂh(WC'[ht_l,ZUt] -+ bc)
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Updating the Cell State

o Cell state Is updated by using component-
wise vector multiply to "forget" and vector
addition to "input" new information.
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Output Gate

e Hidden state Is updated based on a "filtered"

version of the cell state, scaled to —1 to 1 using
tanh.

e QOutput gate computes a sigmoid function of the
Input and current hidden state to determine which
elements of the cell state to "output".

Y '\
(%b O =0 (Wo [ht—hajt] + bo)
- X . hy = oy * tanh (C)
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Overall Network Architecture

e Single or multilayer networks can compute
LSTM inputs from problem inputs and
problem outputs from LSTM outputs.

’ e.g. a POS tag as a “one hot” vector
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e.g.a Word “embedding” with
reduced dimensionality
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LSTM Training

e Trainable with backprop derivatives such as:

— Stochastic gradient descent (randomize order of
examples in each epoch) with momentum (bias
weight changes to continue in same direction as
last update).

— ADAM optimizer (Kingma & Ma, 2015)
o Each cell has many parameters (W, W;, W,
Wo)
— Generally requires lots of training data.

— Requires lots of compute time that exploits GPU
clusters.
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General Problems Solved with LSTMs

e Sequence labeling

— Train with supervised output at each time step
computed using a single or multilayer network that
maps the hidden state (h,) to an output vector (O,).

e Language modeling
— Train to predict next input (O, =l,,)
e Sequence (e.g. text) classification

— Train a single or multilayer network that maps the
final hidden state (h,) to an output vector (O).
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Seqguence to Sequence

Transduction gI\/IaEEingz

e Encoder/Decoder framework maps one
sequence to a "deep vector" then another
LSTM maps this vector to an output

sequence.

Encoder
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Decoder
LSTM

= O,,0,,..,0,

e Train model "end to end" on 1/O pairs of

sequences.
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Summary of

LSTM AEEIication Architectures

one to many many to one many to many many to many
Pt ¢ I Pttt t t 1
f ot bt RN
Image Captioning Video Activity Recog Video Captioning POS Tagging

Text Classification Machine Translation  Language Modeling
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Successful Applications of LSTMS

e Speech recognition: Language and acoustic modeling

e Sequence labeling
— POS Tagging

https://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of the_art)

— NER
— Phrase Chunking

e Neural syntactic and semantic parsing
e |mage captioning: CNN output vector to sequence

e Seguence to Sequence
— Machine Translation (Sustkever, Vinyals, & Le, 2014)
— Video Captioning (input sequence of CNN frame outputs)

21


https://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

Bi-directional LSTM (BI-LSTM)

e Separate LSTMs process sequence forward and
backward and hidden layers at each time step are
concatenated to form the cell output.
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Gated Recurrent Unit
GRU

e Alternative RNN to LSTM that uses fewer
gates (Cho, etal., 2014)

— Combines forget and input gates into “update”
gate.

— Eliminates cell state vector

Rt = O (Wz . [ht—laxt])
Tt = U(Wr ' [ht—laxt])
h; = tanh (W - [re x hy_1,24])

htz(l—zt)*ht_l—i—zt*/;t
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http://arxiv.org/pdf/1406.1078v3.pdf

GRU vs. LSTM

o GRU has significantly fewer parameters and
trains faster.

o Experimental results comparing the two are
still inconclusive, many problems they
perform the same, but each has problems on
which they work better.
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Conclusions

e By adding “gates” to an RNN, we can
prevent the vanishing/exploding gradient
problem.

e Trained LSTMs/GRUSs can retain state
Information longer and handle long-distance
dependencies.

o Recent impressive results on a range of
challenging NLP problems.
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