
1

Recurrent neural networks

and LSTM

Adapted from Raymond J. Mooney

University of Texas at Austin

Borrows significantly from:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks

(RNN)

• Add feedback loops where some units’

current outputs determine some future

network inputs.

• RNNs can model dynamic finite-state

machines, beyond the static combinatorial

circuits modeled by feed-forward networks.

2

Simple Recurrent Network

(SRN)

• Initially developed by Jeff Elman (“Finding

structure in time,” 1990).

• Additional input to hidden layer is the state

of the hidden layer in the previous time

step.

3
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled RNN

• Behavior of RNN is perhaps best viewed by

“unrolling” the network over time.

4

time

Vanishing/Exploding Gradient Problem

• Backpropagated errors multiply at each

layer, resulting in exponential decay (if

derivative is small) or growth (if derivative

is large).

• Makes it very difficult train deep networks,

or simple recurrent networks over many

time steps.

5

Long Distance Dependencies

• It is very difficult to train SRNs to retain

information over many time steps

• This make is very difficult to learn SRNs

that handle long-distance dependencies,

such as subject-verb agreement.

6

Long Short Term Memory

• LSTM networks, add additional gating units

in each memory cell.

− Forget gate

− Input gate

− Output gate

• Prevents vanishing/exploding gradient

problem and allows network to retain state

information over longer periods of time.

7

LSTM Network Architecture

8

Cell State

• Maintains a vector Ct that is the same

dimensionality as the hidden state, ht

• Information can be added or deleted from

this state vector via the forget and input

gates.

9

Cell State Example

• Want to remember person & number of a

subject noun so that it can be checked to

agree with the person & number of verb

when it is eventually encountered.

• Forget gate will remove existing

information of a prior subject when a new

one is encountered.

• Input gate "adds" in the information for the

new subject.

10

Forget Gate

• Forget gate computes a 0-1 value using a

logistic sigmoid output function from the

input, xt, and the current hidden state, ht:

• Multiplicatively combined with cell state,

"forgetting" information where the gate

outputs something close to 0.

11

Hyperbolic Tangent Units

• Tanh can be used as an alternative nonlinear

function to the sigmoid logistic (0-1) output

function.

• Used to produce thresholded output

between –1 and 1.

12

Input Gate

• First, determine which entries in the cell state to

update by computing 0-1 sigmoid output.

• Then determine what amount to add/subtract

from these entries by computing a tanh output

(valued –1 to 1) function of the input and hidden

state.

13

Updating the Cell State

• Cell state is updated by using component-

wise vector multiply to "forget" and vector

addition to "input" new information.

14

Output Gate

• Hidden state is updated based on a "filtered"

version of the cell state, scaled to –1 to 1 using

tanh.

• Output gate computes a sigmoid function of the

input and current hidden state to determine which

elements of the cell state to "output".

15

Overall Network Architecture

• Single or multilayer networks can compute

LSTM inputs from problem inputs and

problem outputs from LSTM outputs.

16
It

Ot

e.g. a word as a “one hot” vector

e.g. a word “embedding” with

reduced dimensionality

e.g. a POS tag as a “one hot” vector

LSTM Training

• Trainable with backprop derivatives such as:

− Stochastic gradient descent (randomize order of

examples in each epoch) with momentum (bias

weight changes to continue in same direction as

last update).

− ADAM optimizer (Kingma & Ma, 2015)

• Each cell has many parameters (Wf, Wi, WC,

Wo)

− Generally requires lots of training data.

− Requires lots of compute time that exploits GPU

clusters. 17

General Problems Solved with LSTMs

• Sequence labeling

− Train with supervised output at each time step

computed using a single or multilayer network that

maps the hidden state (ht) to an output vector (Ot).

• Language modeling

− Train to predict next input (Ot =It+1)

• Sequence (e.g. text) classification

− Train a single or multilayer network that maps the

final hidden state (hn) to an output vector (O).

18

Sequence to Sequence

Transduction (Mapping)

• Encoder/Decoder framework maps one

sequence to a "deep vector" then another

LSTM maps this vector to an output

sequence.

19

I1, I2,…,In
Encoder

LSTM
O1, O2,…,Om

hn
Decoder

LSTM

• Train model "end to end" on I/O pairs of

sequences.

Summary of

LSTM Application Architectures

20

Image Captioning Video Activity Recog

Text Classification

Video Captioning

Machine Translation

POS Tagging

Language Modeling

Successful Applications of LSTMs

• Speech recognition: Language and acoustic modeling

• Sequence labeling

− POS Tagging
https://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

− NER

− Phrase Chunking

• Neural syntactic and semantic parsing

• Image captioning: CNN output vector to sequence

• Sequence to Sequence

− Machine Translation (Sustkever, Vinyals, & Le, 2014)

− Video Captioning (input sequence of CNN frame outputs)

21

https://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

Bi-directional LSTM (Bi-LSTM)

• Separate LSTMs process sequence forward and

backward and hidden layers at each time step are

concatenated to form the cell output.

22

xt+1xtxt-1

ht-1 ht+1ht

Gated Recurrent Unit

(GRU)

• Alternative RNN to LSTM that uses fewer

gates (Cho, et al., 2014)

− Combines forget and input gates into “update”

gate.

− Eliminates cell state vector

23

http://arxiv.org/pdf/1406.1078v3.pdf

GRU vs. LSTM

• GRU has significantly fewer parameters and

trains faster.

• Experimental results comparing the two are

still inconclusive, many problems they

perform the same, but each has problems on

which they work better.

24

Conclusions

• By adding “gates” to an RNN, we can

prevent the vanishing/exploding gradient

problem.

• Trained LSTMs/GRUs can retain state

information longer and handle long-distance

dependencies.

• Recent impressive results on a range of

challenging NLP problems.

25

	Slide 1: Recurrent neural networks and LSTM
	Slide 2: Recurrent Neural Networks (RNN)
	Slide 3: Simple Recurrent Network (SRN)
	Slide 4: Unrolled RNN
	Slide 5: Vanishing/Exploding Gradient Problem
	Slide 6: Long Distance Dependencies
	Slide 7: Long Short Term Memory
	Slide 8: LSTM Network Architecture
	Slide 9: Cell State
	Slide 10: Cell State Example
	Slide 11: Forget Gate
	Slide 12: Hyperbolic Tangent Units
	Slide 13: Input Gate
	Slide 14: Updating the Cell State
	Slide 15: Output Gate
	Slide 16: Overall Network Architecture
	Slide 17: LSTM Training
	Slide 18: General Problems Solved with LSTMs
	Slide 19: Sequence to Sequence Transduction (Mapping)
	Slide 20: Summary of LSTM Application Architectures
	Slide 21: Successful Applications of LSTMs
	Slide 22: Bi-directional LSTM (Bi-LSTM)
	Slide 23: Gated Recurrent Unit (GRU)
	Slide 24: GRU vs. LSTM
	Slide 25: Conclusions

