
Roadmap

Feedforward neural networks

Convolutional networks

Sequence models

Unsupervised learning

Final remarks

CS221 / Spring 2020 / Finn & Anari 10

Review: linear predictors

x1

x2

x3

fθ(x)

w

Output:

fθ(x) = w · x

Parameters: θ = w

CS221 / Spring 2020 / Finn & Anari 11

Review: neural networks

σ

σ

x1

x2

x3

h1

h2

V
w

fθ(x)

Intermediate hidden units:

hj(x) = σ(vj · x) σ(z) = (1 + e−z)−1

Output:

fθ(x) = w · h(x)

Parameters: θ = (V,w)

CS221 / Spring 2020 / Finn & Anari 12

Deep neural networks

1-layer neural network:

score =
w>

x

2-layer neural network:

score =
w>

σ(

V
x

)

3-layer neural network:

score =
w>

σ(

U

σ(

V
x

))

...
CS221 / Spring 2020 / Finn & Anari 13

Depth
x

h h′ h′′ h′′′

fθ(x)

Intuitions:

• Hierarchical feature representations

• Can simulate a bounded computation logic circuit (original moti-
vation from McCulloch/Pitts, 1943)

• Learn this computation (and potentially more because networks
are real-valued)

• Formal theory/understanding is still incomplete

• Some hypotheses emerging: double descent, lottery ticket hypoth-
esis

CS221 / Spring 2020 / Finn & Anari 14

What’s learned?
[figure from Honglak Lee]

CS221 / Spring 2020 / Finn & Anari 15

Review: optimization

Regression:

Loss(x, y, θ) = (fθ(x)− y)2

Key idea: minimize training loss

TrainLoss(θ) =
1

|Dtrain|
∑

(x,y)∈Dtrain

Loss(x, y, θ)

min
θ∈Rd

TrainLoss(θ)

Algorithm: stochastic gradient descent

For t = 1, . . . , T :

For (x, y) ∈ Dtrain:

θ ← θ − ηt∇θLoss(x, y, θ)

CS221 / Spring 2020 / Finn & Anari 16

Training

• Non-convex optimization

• No theoretical guarantees that it works

• Before 2000s, empirically very difficult to get working

CS221 / Spring 2020 / Finn & Anari 17

What’s different today

Computation (time/memory) Information (data)

CS221 / Spring 2020 / Finn & Anari 18

How to make it work

• More hidden units (over-parameterization)

• Adaptive step sizes (AdaGrad, Adam)

• Dropout to guard against overfitting

• Careful initialization (pre-training)

• Batch normalization

Model and optimization are tightly coupled
CS221 / Spring 2020 / Finn & Anari 19

Summary

• Deep networks learn hierarchical representations of data

• Train via SGD, use backpropagation to compute gradients

• Non-convex optimization, but works empirically given enough com-
pute and data

CS221 / Spring 2020 / Finn & Anari 20

