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Review: linear predictors
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i Review: neural networks
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Intermediate hidden units:
hifw) = olv; @) o(z) = (1+e)
Output:
fo(x) = w - h(z)
Parameters: 6 = (V,w)
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Deep neural networks

1-layer neural network:
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e Hierarchical feature representations
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Intuitions:

e Can simulate a bounded computation logic circuit (original moti-
vation from McCulloch/Pitts, 1943)

e Learn this computation (and potentially more because networks
are real-valued)

e Formal theory/understanding is still incomplete

e Some hypotheses emerging: double descent, lottery ticket hypoth-
esls

CS221 / Spring 2020 / Finn & Anari

14



[figure from Honglak Lee]
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What's learned?

3rd layer
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Review: optimization

Regression:

Loss(z,y,0) = (fo(x) — y)?

L4
—‘Q Key idea: minimize training loss
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- Algorithm: stochastic gradient descent
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For (z,vy) € Dyain:
0 < 60 —nVoloss(x,y,0)
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Training

e Non-convex optimization
e No theoretical guarantees that it works

e Before 2000s, empirically very difficult to get working
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What's different today

Computation (time/memory)
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Information (data)
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How to make it work

More hidden units (over-parameterization)
Adaptive step sizes (AdaGrad, Adam)
Dropout to guard against overfitting
Careful initialization (pre-training)

Batch normalization

Model and optimization are tightly coupled
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7 Summary

e Deep networks learn hierarchical representations of data

e Train via SGD, use backpropagation to compute gradients

e Non-convex optimization, but works empirically given enough com-
pute and data
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