Informed search for plans



Goal information

e The algorithms we discussed until now (depth first, breadth first, uniform cost

search) assumed that the only information we have about the goal is a binary
G(-) function

e We know that we found the goal, when we get there.



Goal information (cont'd)

e How do we go from Orlando to San Francisco?
o Itis to the west from us.

o So we probably have to go mostly to west
o But taking every action "to west" does not take you there

e In practice, we might have more information about the goal
o But this information can be vague, incomplete, uncertain, probabilistic or
wrong

e Challenge: how do we integrate additional information about the goal into
our



Heuristics

e Afunction that provides an estimate for how far is a state from the goal h(s)
e Itis away to encapsulate knowledge about the goal

e Examples:
o The "as-the-crow-flies" distance to San Francisco

o The number of horcruxes remaining



Greedy search

e Strategy: expand the node with the lowest heuristic value
o Make the fringe a priority queue ordered by h(s)

o Pick the smallest
e Sometimes also called as best-first search

e How good it is? Depends on the quality of the heuristics
o If the heuristics gets the ordering right (not necessarily the values) - you
go straight to the solution!

o If the heuristic is wrong, you can end up like in DFS

e The quality of the heuristics reflects our understanding of the problem.



Greedy search (cont'd)

e Optimal: no, the heuristics might lead you on a non-optimal path or to the
non-optimal goal.

e Space and time complexity: can range anything between BFS and DFS.
e Insight: DFS and BFS are heuristic search with a particular type of heuristic

e Canyou get stuck?
o No, if you are following the standard tree search algorithm - you will
explore the other ones later.

o But you can end up endlessly deep, like in DFS.



A* search

e Combines UCS and Greedy
o Uniform cost orders by path cost g(n) aka backward cost

o Greedy orders by goal proximity h(n) aka forward cost
o A* orders by sum f(n) = g(n) + h(n)









When should A* terminate

e Don't stop when we add the goal to the fringe!
o The fringe is not FIFO - it is possible that the goal we added is not the one
that will come out first!

e Only stop when we take out a node labeled with a goal from the fringe



Is A* optimal?

e Not in this case!
e The heuristic misled us!

e Butif we need a perfect
heuristic, why do we bother
with A*

e Turns out we don't need the

heuristic to be perfect, we only
need it to be optimistic




Admissible heuristics

e Inadmissible (pessimistic) heuristics break optimality by trapping good plans
far down on the fringe

e Admissible (optimistic) heuristics never overweigh true costs:
0 < h(n) < h*(n)

e where h*(n) is the true cost to a nearest goal.



A* properties

e Uniform cost expands equally in all directions
e Greedy expands sharply towards what it thinks is the goal

e A* expands mainly towards the goal but also other directions



Uniform-Cost A*




A* applications

Very extensive set of applications

e Pathing, routing problems
e Resource planning problems
e Video games

e Robot motion planning
Previously also used for

e Language analysis
e Machine translation

e Speech recognition



Creating admissible heuristics

e The critical challenge in making A* work for you is to come up with a good
admissible heuristic

e Trivial admissible heuristic: h(n) = 0
o Reverts A* to uniform cost search
e Perfect heuristic h(n) = h*(n)
o @Go straight to the goal
e There is a partial ordering between admissible heuristics (dominance)

e The max of admissible heuristics is admissible

h(n) = mazx(hy,(n), hp(n))



Relaxed problems

e How do we get good admissible heuristics?

e One way: try to solve a relaxed problem
o A problem which is in some way easier than the original one

e One easy way to create a relaxed problem: add new actions
o Imagine that the agent is a superhero!!!

o Eq. ability to fly - Euclidean distance
o Eq. ability to pass through walls - Manhattan distance

o Eq. ability to destroy horcruxes from distance - horcrux count



Extra work in tree search

e Until now, all the algorithms were variations of tree search
o You can have many plans in the tree labeled with the same node

o Can lead to (exponentially more) extra work



Graph search

e Idea: never expand a state twice

e Augment the tree search algorithm with a closed set the set of expanded
states

e Before expanding a node, check if the state was expanded before
o Yes: skip it

o No: expand it and add it to the closed set

e The closed set only used for membership check: implement as a hashset.



Graph search properties

e Any tree search algorithms can be converted to graph search
e Graph search obviously avoids some expansions

e Does it change the properties?
o Space complexity: increased, due to the closed set

o Completeness: whatever states had been expanded before, they will be
expanded now as well, so the algorithm retains completeness

o Optimality?



A* g ra p h Sea rc h State space graph Search tree
optimality

S (0+2)
A (1+4) B (1+1)
e Admissible heuristic not ! !
. . C(2+1 C(3+1
sufficient (f ) (l+ )
e Heuristics also needs to be G (5+0) G (6+0)

consistent



Consistent heuristics

e Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

e Consistence: heuristic "arc" cost < actual cost for each arc
h(A) — h(C) < cost(A to Q)
e Consequences of consistency:
o The f value along a path never decreases
o A* graph search is optimal

e How do we find consistent heuristics?
o Relaxed problems will be consistent



