Game play and adversarial search

State of the art in game play

e Checkers: 1994. First computer champion. 2007: Checkers solved!

e Chess: 1997 Deep Blue defeated human champion Gary Kasparov. Very
sophisticated evaluation techniques, and significant computing power. These
days: trivial computing power can defeat any human.

e Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.

e Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

Games

e Deterministic or stochastic?
o Is there randomness involved? Shuffled cards, dice?

e Complete or partial information game?
o Is a part of the information hidden?

e One, two or more players?

e /erosum?
o If yes, the game is fully adversarial

e General games
o Qutcome values might be more complex, they don't add up to zero

o Eg. monopoly, settles of Catan

o Players relative strategy can be of cooperation, indifference, competition,
alliances, cliques, contracts etc.

Deterministic games

e States S = {sg,...}
e Players P = {1... N}, take turns
e Actions A. Not all actions might be available for every player at every state.

e Transition function T'(s,a) — ¢’
o The fact that this is not probabilistic, makes this a deterministic game

e Terminal test: completed(s) — {true, false}
o EQg: checkmate!

o EQ: golden snitch was catched!
e (Terminal) utilities: U(s,p) € R

Game playing in Al

e Agent view of AL: the Al is one of the players.
e Let us assume players A and B who take actions successively.
So —7> QA1 — 81 —~ap] — S2 —> A 49 — S3

e Usually, we cannot search for a plan, because the agents' actions are
interleaved with the actions of the opponent!

e We will search for a policy instead: w(s) — a

Single player, deterministic, complete
information game

e Take actions, such that you maximize the value of the terminal state you

reach!

e What is value of the intermediate states?
o Depends on where you go from there...

o But you should go in the direction you will eventually get better value
o A perfect player at any choice would choose the one with the maximum

value

N
Value of a state: Non-Terminal States:
The best achievable V(s

outcome (utility)
\ from that state Y /“x
_ -!

ZZZ

max V(s')
s’echildren(s)

Terminal States:
V (s) = known

The V value

 The V value of a state s, in many Al contexts, is the value you can achieve
starting from s and acting perfectly from now on

e In the case of a one player game: just calculate it recursively by max. It gets
harder later.

e For a terminal state: V(s) = known

e For a non-terminal state

V(s)= max V()

s'€successors(s)

Example tic-tic-tic game

e Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
e m=3, average b =8

e How do we calculate the v values?

How to act in a single player deterministic,
complete information game

e Your policy should be: take the action for which the successor has the largest
value.

7(s) = argmax V(T(s,a))

a
e [s this now gameplay or planning?

e Actually, both! You can calculate a list of actions to the end of the game.

Zero-sum games

e Agents have opposite utilities: for each terminal state they add up to zero:

U(Sapl) — _U(87p2)

o Eg. chess, go, etc.
e We can think of a single value that one of the agents maximizes and the other
minimizes.

e Purely adversarial

States Under Agent’s Control: States Under Opponent’s Control:
Vi(s) = max V(s Vi(s') = min V(s)

s’ esuccessors(s) sesuccessors(s’)

Terminal States:
V(s) = known

Adversarial search (Minimax)

e Assume deterministic, zero sum games

e Player one maximizes the result, the other one minimizes it
o We call it a maximizing player A and minimizing player V

e Minimax search tree
o State-space search tree, with a V value

o Players alternate turns, correspond to vertical layers in the tree

Minmax algorithm

def maxvalue(s)
if s terminal return val(s)
V = -0
for s' in succ(s)
v = max (v, minvalue(s'))
return v

def maxvalue(s)
i1f s terminal return val(s)
V = o
for s' 1in succ(s)
v = min (v, maxvalue(s'))
return v

Minmax example

e Tic-tac-toe - what is the value of this position?

Performance of minmax

e Similar to exhaustive DFS
o Time O(b™)
o Space O(bm)

e [t can solve any adversarial game, just not very efficiently
o Chess: b ~ 35, m ~ 100 — 351%

o Go:b~ 250, m ~ 210 — 250%%

Game style of minmax

e It works perfectly against a perfect player.

e It also works perfectly against a non-perfect opponent
o But this means that sometimes is too cautious

Resource limited search for minimax

e In practice, you can only search to a limited depth (plies) - 1 ply == 1 move by
one of the players
o EQ. 4 plies ahead in chess

o More plies, better performance

e When you reach the limit, you still have to return something, without
searching further.
o Return the value of an evaluation function

o Itis a way to evaluate the current state of the game without rolling out a
search, for instance, by adding up the strenghts of the piece.

Evaluation functions and depth

e An evaluation function is always imperfect
o If we can made an efficient and perfect evaluation function for a game, it
is not much of a game.

e We can sometimes make evaluation functions better by expending more
computation.

o Cheap evaluation function in chess: add up the nominal piece values

(queen 9pts, rook 5 pts, bishop and knight 3 pts, pawn 1pt) and return the
difference.

= Cheap, not necessarily perfect
o More expensive one: calculate the positional values of the pieces.

o Very expensive one: look up the positions in a library of famous games

Evaluation functions and depth

e It turns out that the deeper in the tree the evaluation function is, the less its
quality matters.

e Tradeoff:
o Cheap but weak evaluation function, go 8 plies deep?

o Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?

e Ideal function: actual minimax value.
e A convenient way to think about it: weighted linear sum of features
eval(s) = w1 f1(s) + -+ wyfr(s)

 f() - hand engineered features
o Eq. is the black king checked?

e w - weights, that can be manually set, or learned

Alpha-beta pruning

