
1

Minimax Example

12 8 5 23 2 144 6

32

2

Minimax Pruning

12 8 5 23 2 14

33

3

Alpha-Beta Pruning

 General configuration (MIN version)
 We’re computing the MIN-VALUE at some node n

 We’re looping over n’s children

 n’s estimate of the childrens’ min is dropping
 Who cares about n’s value? MAX

 Let a be the best value that MAX can get at any choice
point along the current path from the root

 If n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad
enough that it won’t be played)

 MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

34

4

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α,
β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α,
β))

if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

35

5

Alpha-Beta Pruning Properties

 This pruning has no effect on minimax value computed for the root!

 Values of intermediate nodes might be wrong
 Important: children of the root may have the wrong value
 So the most naïve version won’t let you do action selection

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)
 Doubles solvable depth!
 Full search of, e.g. chess, is still hopeless…

 This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

36

6

Alpha-Beta Quiz

37

7

Alpha-Beta Quiz 2

38

