
Markov Decision Processes





Grid world
Agent lives in a grid, walls block the path
Transition function  can be stochastic:

Agent chooses "North"
80% chance move north
10% chance move west
10% chance move east
if there is a wall in the direction, agent does not move

Rewards at each time step 
Typically:

Small living reward at each time step (often negative i.e. living cost)
Large rewards at terminal states



What do we think about this setting?
Can be deterministic or stochastic, in two ways:

Stochastic transition function
NOTE LB: I prefer to say that the transition function is stochastic, not the
actions!

Stochastic reward
Can we solve it with our existing techniques?

If it is deterministic, the T and R known, we can perform planning!
If it is stochastic, and T and R known, we can do expectimax!

The only difference here is that we get some rewards on the way (not very
significant)



What will be new here?
Markov Decision Processes

If T and R is known, we can find techniques that are much more efficient
than expectimax to find a policy.

Reinforcement learning
Even if we don't know the T or R, we can find techniques that can find a
policy from the reward received after we perform an action.
Insight: there is still an MDP there, just now known



Markov decision process
Set of states 
Set of actions 
Transition function 

Basically: the probability that taking action  from  lands us in , i.e.
 or 

Sometimes called world model, or system dynamics
Reward function 

Sometimes  or  or 
Start state 
(Sometimes) a set of terminal states



Markov?
Russian mathematician Andrey Markov (1856-1922)
Whenever we say that a system is Markovian it means something along the
lines of the future does not depend of the past given the present
If it would not be Markovian, the next state would depend on the past states
and actions:

As it is Markovian, the state is simply:

What this means in practice is that  contains all the relevant information
about the past.



Policies
A policy is a function , with 

Optimal policy  is one that, if followed, will give you maximum expected
utility

Didn't we calculate policies before?
We mention them, but we did not explicitly calculate them.
Planning: we returned a proposed set of actions 

If one of the actions landed you in the wrong state, the plan fails!
Game play: we created a procedure to calculate the specific value of the
policy for one state . We won't know the full . When we land
in a new state, we have to run expectimax again.



Optimal policies in an MDP
Solving an MDP means finding an optimal policy which maximizes expected
utility when followed

Expected? Transition function is random, so you cannot be sure, only in
expectation.

An explicit policy defines a reflect agent
You can compute the whole policy, and then during execution time

 is just a lookup table
This is not what we did with minmax, expectimax etc. - whenever you
reached a state, you started the calculation from there...





Utilities of sequences
In games, we usually have to express preferences over final outcomes

We had shown that we can assign a utility value to the final outcome to
express our preferences.

Here we have rewards that are given after every action
We need to discuss over preferences over sequences of rewards
Not quite that simple as add them up!



Sequences of rewards
What do we prefer?

[1, 2, 3, 4] or [4, 3, 2, 1] ?
[1, 0, 0, 0] or [0, 0, 0, 1] ?
[1] or [0, 0, 0, 0, 1]?
[9] or [0, 0, 0, ..., 0, 10]

Definition: a preference is stationary iff

We quite often want our preferences to be stationary.



Discounting
We often want to express the fact that we prefer rewards earlier.
To achieve this, we discount rewards as they are further in time.
If we want our utilities to be both discounted and stationary there is only
one way to define them:

with . If , we have additive utilities.



Infinite utilities
What if the game lasts forever? Additive utility can lead to infinite utility, is this ok?
Some solutions:

Absorbing state: set up the game such that for every policy a terminal state
will be eventually reached
Finite horizon search: terminate episodes after fixed T steps

Will give non-stationary policies:  will depend on the time left
Discounting with 



Utility quiz here



Quantities
state 
q-state  - describes the state of affairs after we committed to an action,
but not yet performed it

 expected utility if we started from  and performed optimally in the
future

 expected utility if we started from q-state  (that is, we
committed to an ) and performed optimally in the future

 optimal policy - the optimal action from state 





Relationships between the values
This looks very much like an expectimax tree:

Take the maximum in the states
Take the expectation in the q-state



The Bellman equations



Can we just solve this?

n states, n equations, can we just solve this?
unfortunately, this is not a linear system of equations: the problem is the max
We need a different idea.



Time limited values
 the optimal value if we start from  and follow the optimal strategy for

 steps.
This is what depth-k expectimax would give.



Value iteration

Let us call this a "Bellman update"
Repeat until convergence

We can prove that it does converge to the optimal values
Complexity of each iteration 

It is not that simple to find out how many iterations we need until no
change

It is a way to solve the Bellman equation with a fixed-point technique



Convergence of value iteration
If the tree is actually limited in depth eg , then  is the final value.
If the tree is infinite, , and max reward is 

 and  is at most  in the last step, discounted with 
The difference  when 
So the values will converge

However:
The max of the state rarely changes!
Very often the policy converges before the values!



Policy extraction from the V values
We usually don't care that much about the  value.
We want to act in the world, we need the policy .
Not quite that simple! We need to do one step of expectimax:



Policy extraction from the Q values

Actions are easier to select from q-values



Policy evalution
We are given a fixed policy , not necessarily optimal.
We want to find the associated  and  values.

Defined as what if I follow this policy from now on, etc.
Policy evaluation is easier than finding  and  because we don't have the
max - just do what the policy tells you to do!





Policy evaluation
The Bellman equation for a fixed policy.

Recursive, one step look ahead.
Can we just solve it?

This time, yes! The max went away!
It is n equations, n variables, linear in the unknowns which are the 
values.
Pick your favorite linear solver



Policy evaluation, solved iteratively
We can also do the same trick as in value iteration:

It converges, for the same reason as value iteration
Efficiency  per iteration



Policy iteration
Start with a random policy 
Until no change in policy repeat

Evaluate  to values 
Create a new policy  using one-step look-ahead with  as future
values

It is still converges, and to the optimal policy
Very often, it converges much faster



Comparing policy iteration with value iteration
Value iteration

Every iteration updates the value and implicitly, the policy 
We don't track the policy explicitly, only extract it once at the end

Policy iteration
We do several passes that update utilities with fixed policy 
After the policy is evaluated, choose a new one 



Some of the things we did
Policy extraction

  
  

Policy evaluation
  
  

Value iteration
MDP   (by doing  )
Policy iteration
MDP   (by doing  )


