Markov Decision Processes

Grid world

- Agent lives in a grid, walls block the path
- Transition function T(s, a, s') can be stochastic:
 - Agent chooses "North"
 - 80% chance move north
 - 10% chance move west
 - 10% chance move east
 - if there is a wall in the direction, agent does not move
- Rewards at each time step $R(\cdot)$
 - Typically:
 - Small living reward at each time step (often negative i.e. living cost)
 - Large rewards at terminal states

What do we think about this setting?

- Can be deterministic or stochastic, in two ways:
 - $\circ~$ Stochastic transition function
 - NOTE LB: I prefer to say that the transition function is stochastic, not the actions!
 - Stochastic reward
- Can we solve it with our existing techniques?
 - If it is deterministic, the T and R known, we can perform planning!
 - If it is stochastic, and T and R known, we can do expectimax!
- The only difference here is that we get some rewards on the way (not very significant)

What will be new here?

• Markov Decision Processes

• If T and R is known, we can find techniques that are much more efficient than expectimax to find a policy.

• Reinforcement learning

- Even if we don't know the T or R, we can find techniques that can find a policy from the reward received after we perform an action.
- Insight: there is still an MDP there, just now known

Markov decision process

- Set of states $s\in S$
- Set of actions $a\in A$
- Transition function $T(s,a,s')\in [0,1]$
 - $\circ\,$ Basically: the probability that taking action a from s lands us in s', i.e. P(s'|s,a) or $P(s_{t+1}|s_t,a_t)$
 - Sometimes called **world model**, or **system dynamics**
- Reward function $R(s,a,s^\prime)$
 - $\circ\;$ Sometimes R(s,a) or R(s) or R(s')
- Start state s_0
- (Sometimes) a set of **terminal states**

Markov?

- Russian mathematician Andrey Markov (1856-1922)
- Whenever we say that a system is Markovian it means something along the lines of **the future does not depend of the past given the present**
- If it would **not** be Markovian, the next state would depend on the past states and actions:

$$P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, s_{t-2}, a_{t-2} \dots s_0)$$

• As it is Markovian, the state is simply:

 $P(s_{t+1}|s_t,a_t)$

• What this means in practice is that s_t contains all the relevant information about the past.

Policies

- A **policy** is a function $\pi:S o A$, with $\pi(s) o a$
 - $\,\circ\,$ Optimal policy π^* is one that, if followed, will give you maximum expected utility
- Didn't we calculate policies before?
 - We mention them, but we did not explicitly calculate them.
 - \circ **Planning**: we returned a proposed set of actions $a_1, \ldots a_n$
 - If one of the actions landed you in the wrong state, the plan fails!
 - **Game play**: we created a procedure to calculate the specific value of the policy for one state $\pi(s_{current})$. We won't know the full π . When we land in a new state, we have to run expectimax again.

Optimal policies in an MDP

- Solving an MDP means finding an **optimal policy** which maximizes **expected utility** when followed
 - Expected? Transition function is random, so you cannot be sure, only in expectation.
- An explicit policy defines a **reflect agent**
 - $\circ~$ You can compute the whole policy, and then during execution time $\pi(s) o a$ is just a lookup table
 - This is not what we did with minmax, expectimax etc. whenever you reached a state, you started the calculation from there...

R(s) = -0.01

R(s) = -0.4

R(s) = -0.03

R(s) = -2.0

Utilities of sequences

- In games, we usually have to express preferences over final outcomes
 - We had shown that we can assign a utility value to the final outcome to express our preferences.
- Here we have **rewards** that are given after every action
 - We need to discuss over preferences over **sequences of rewards**
 - Not quite that simple as add them up!

Sequences of rewards

- What do we prefer?
 - [1, 2, 3, 4] or [4, 3, 2, 1]?
 - [1, 0, 0, 0] or [0, 0, 0, 1]?
 - [1] or [0, 0, 0, 0, 1]?
 - $^{\circ}\,$ [9] or [0, 0, 0, ..., 0, 10]
- Definition: a preference is **stationary** iff

 $[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots] \Leftrightarrow [r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$

• We quite often want our preferences to be stationary.

Discounting

- We often want to express the fact that we prefer rewards earlier.
- To achieve this, we **discount** rewards as they are further in time.
- If we want our utilities to be both **discounted** and **stationary** there is only one way to define them:

$$U([r_0,r_1,\ldots])=r_0+\gamma r_1+\gamma^2 r_2+$$

with $\gamma \leq 1$. If $\gamma = 1$, we have **additive** utilities.

Infinite utilities

What if the game lasts forever? Additive utility can lead to infinite utility, is this ok? Some solutions:

- Absorbing state: set up the game such that for every policy a terminal state will be eventually reached
- Finite horizon search: terminate episodes after fixed T steps
 - \circ Will give non-stationary policies: π will depend on the time left
- Discounting with $\gamma < 1$

$$U([r_0,\ldots r_\infty]) = \sum_{t=0}^\infty \gamma^t r_t \leq rac{r_{max}}{1-\gamma}$$

Utility quiz here

Quantities

- state *s*
- q-state s, a describes the state of affairs after we committed to an action, but not yet performed it
- $V^*(s)$ expected utility if we started from s and performed optimally in the future
- Q*(s, a) expected utility if we started from q-state s, a (that is, we committed to an a) and performed optimally in the future
- π^*s optimal policy the optimal action from state s

Relationships between the values

- This looks very much like an expectimax tree:
 - Take the maximum in the states
 - Take the expectation in the q-state

The Bellman equations

$$V^*(s) = \max_a Q^*(s,a)
onumber \ Q^*(s,a) = \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma V^*(s')
ight)
onumber \ V^*(s) = \max_a \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma V^*(s')
ight)$$

Can we just solve this?

$$V^*(s) = \max_a \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma V^*(s')
ight)$$

- n states, n equations, can we just solve this?
- unfortunately, this is not a linear system of equations: the problem is the **max**
- We need a different idea.

Time limited values

- $V_k(s)$ the optimal value if we start from s and follow the optimal strategy for k steps.
- This is what depth-k expectimax would give.

Value iteration

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma V_k(s')
ight)$$

- Let us call this a "Bellman update"
- Repeat until convergence
 - We can prove that it does converge to the optimal values
- Complexity of each iteration $O(S^2A)$
 - It is not that simple to find out how many iterations we need until no change
- It is a way to solve the Bellman equation with a fixed-point technique

Convergence of value iteration

- If the tree is actually limited in depth eg M, then V_M is the final value.
- If the tree is infinite, $\gamma < 1$, and max reward is R_{max}
 - $\circ \,\, V_{k+1}$ and V_k is at most R_{max} in the last step, discounted with γ^k
 - $\circ\,$ The difference $\gamma^k R_{max}
 ightarrow 0$ when $k
 ightarrow \infty$
 - $\circ~$ So the values will converge
- However:
 - The max of the state rarely changes!
 - Very often the policy converges before the values!

Policy extraction from the V values

- We usually don't care that much about the $V^st(s)$ value.
- We want to act in the world, we need the policy $\pi^*(s)$.
- Not quite that simple! We need to do one step of expectimax:

$$\pi^*(s) = rgmax_a \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma V^*(s')
ight)$$

Policy extraction from the Q values

$$\pi^*(s) = rgmax_a Q^*(s,a)$$

• Actions are easier to select from q-values

Policy evalution

- We are given a fixed policy π , not necessarily optimal.
- We want to find the associated V^{π} and Q^{π} values.
 - Defined as what if I follow this policy from now on, etc.
- Policy evaluation is easier than finding V^* and Q^* because we don't have the max just do what the policy tells you to do!

Policy evaluation

• The Bellman equation for a fixed policy.

$$V^{\pi} = \sum_{s'} T(s,\pi(s),s') \left(R(s,\pi(s),s')+\gamma V^{\pi}(s')
ight)$$

- Recursive, one step look ahead.
- Can we just solve it?
 - This time, yes! The max went away!
 - $\circ\,$ It is n equations, n variables, linear in the unknowns which are the $V^{\pi}(s)$ values.
 - Pick your favorite linear solver

Policy evaluation, solved iteratively

• We can also do the same trick as in value iteration:

$$V_0^{\pi}(s) = 0 \ V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left(R(s, \pi(s), s') + \gamma V_k^{\pi}(s')
ight)$$

- It converges, for the same reason as value iteration
- Efficiency $O(s^2)$ per iteration

Policy iteration

- Start with a random policy π_0
- Until no change in policy repeat
 - $\circ~$ Evaluate π_k to values V^{π_k}
 - $\circ\,$ Create a new policy π_{k+1} using one-step look-ahead with V^{π_k} as future values

$$\pi^{k+1}(s) = rgmax_a \sum_{s'} T(s,a,s') \left(R(s,a,s') + \gamma V^{\pi_k}(s')
ight)$$

- It is still converges, and to the optimal policy
- Very often, it converges much faster

Comparing policy iteration with value iteration

- Value iteration
 - $\,\circ\,$ Every iteration updates the value and implicitly, the policy $O(S^2A)$
 - We don't track the policy explicitly, only extract it once at the end
- Policy iteration
 - $\,\circ\,$ We do several passes that update utilities with fixed policy $O(S^2)$
 - $\circ\,$ After the policy is evaluated, choose a new one $O(S^2A)$

Some of the things we did

- Policy extraction
 - $V^* \Rightarrow \pi^* \ Q^* \Rightarrow \pi^*$
- Policy evaluation
 - $\pi \Rightarrow V^{\pi}$ $\pi \Rightarrow Q^{\pi}$
- Value iteration

 $\mathsf{MDP} \Rightarrow V^*$ (by doing $V_0, V_1 \dots$)

• Policy iteration

 $\mathsf{MDP} \Rightarrow V^*$ (by doing $\pi_0, V^{\pi_0}, \pi_1, V^{\pi_1} \dots$)