Markov Decision Processes






Grid world

e Agent lives in a grid, walls block the path

e Transition function T'(s, a, s’) can be stochastic:
o Agent chooses "North"
= 80% chance move north

= 10% chance move west
= 10% chance move east
= if there is a wall in the direction, agent does not move

e Rewards at each time step R(-)
o Typically:
= Small living reward at each time step (often negative i.e. living cost)
= | arge rewards at terminal states



What do we think about this setting?

e Can be deterministic or stochastic, in two ways:
o Stochastic transition function
s NOTE LB: I prefer to say that the transition function is stochastic, not the
actions!

o Stochastic reward

e Can we solve it with our existing techniques?
o If itis deterministic, the T and R known, we can perform planning!

o Ifitis stochastic, and T and R known, we can do expectimax!

e The only difference here is that we get some rewards on the way (not very
significant)



What will be new here?

e Markov Decision Processes
o If T and R is known, we can find techniques that are much more efficient
than expectimax to find a policy.

e Reinforcement learning
o Even if we don't know the T or R, we can find techniques that can find a
policy from the reward received after we perform an action.

o Insight: there is still an MDP there, just now known



Markov decision process

e Setof statess € S
e Set of actionsa € A
e Transition function T'(s, a, s’) € [0, 1]
o Basically: the probability that taking action a from s lands us in s/, i.e.
P(s'|s,a) or P(si1]st,a4)
o Sometimes called world model, or system dynamics
e Reward function R(s,a, s')
o Sometimes R(s,a) or R(s) or R(s’)
e Start state s

e (Sometimes) a set of terminal states



Markov?

e Russian mathematician Andrey Markov (1856-1922)

e Whenever we say that a system is Markovian it means something along the
lines of the future does not depend of the past given the present

e If it would not be Markovian, the next state would depend on the past states
and actions:

P(St—|—1‘3t7 Aty St—1,At—1,St-2,A¢t-2 . - - 50)
e Asitis Markovian, the state is simply:
P(st11|5¢, at)

e What this means in practice is that s; contains all the relevant information
about the past.



Policies

e Apolicyis a functionm: S — A, with (s) — a
o Optimal policy ™ is one that, if followed, will give you maximum expected
utility
e Didn't we calculate policies before?
o We mention them, but we did not explicitly calculate them.

o Planning: we returned a proposed set of actions a1, ...ay
= If one of the actions landed you in the wrong state, the plan fails!

o Game play: we created a procedure to calculate the specific value of the
policy for one state 7(Scyrrent ). We won't know the full 7r. When we land
in a new state, we have to run expectimax again.



Optimal policies in an MDP

e Solving an MDP means finding an optimal policy which maximizes expected
utility when followed
o Expected? Transition function is random, so you cannot be sure, only in
expectation.

e An explicit policy defines a reflect agent
o You can compute the whole policy, and then during execution time
7(s) — ais just a lookup table

o This is not what we did with minmax, expectimax etc. - whenever you
reached a state, you started the calculation from there...



=-0.03

R(s)

=-0.01

R(s)

=-2.0

R(s)

=-0.4

R(s)



Utilities of sequences

e In games, we usually have to express preferences over final outcomes
o We had shown that we can assign a utility value to the final outcome to
express our preferences.

e Here we have rewards that are given after every action
o We need to discuss over preferences over sequences of rewards

o Not quite that simple as add them up!



Sequences of rewards

e What do we prefer?
o [1,2,3,4]o0r[4,3,2,1]?

o [1,0,0,0]0r[0,0,0,1]7
o [1]or]O0,0,0,0, 17]?
o [9]or|[0,0,0,..,0,10]
e Definition: a preference is stationary iff

[al,az,...] ~— [bl,bg,...] <~ [r,a,l,a,g,...] ~— [T, bl,bz,...]

e We quite often want our preferences to be stationary.



Discounting

e We often want to express the fact that we prefer rewards earlier.
e To achieve this, we discount rewards as they are further in time.
e If we want our utilities to be both discounted and stationary there is only
one way to define them:
U([ro,r1,...]) =ro 4+ yr1 + y°ro+
with v < 1. If v = 1, we have additive utilities.



Infinite utilities

What if the game lasts forever? Additive utility can lead to infinite utility, is this ok?
Some solutions:

e Absorbing state: set up the game such that for every policy a terminal state
will be eventually reached

e Finite horizon search: terminate episodes after fixed T steps
o Will give non-stationary policies: 7 will depend on the time left

e Discounting withy < 1

rmam
U([rg,.. -Teo]) = Zytm <




Utility quiz here



Quantities

e state s

e g-state s, a - describes the state of affairs after we committed to an action,
but not yet performed it

o V*(s) expected utility if we started from s and performed optimally in the
future

e Q*(s,a) expected utility if we started from g-state s, a (that is, we
committed to an a) and performed optimally in the future

e *s optimal policy - the optimal action from state s



S —— S S A State

(s,a,s’) called a transition
T(s,a,s') = P(s']|s,a)
R(s,a,s’)



Relationships between the values

e This looks very much like an expectimax tree:
o Take the maximum in the states

o Take the expectation in the g-state



The Bellman equations
V*(s) = maxQ*(s,a)

Q*(s,a) =Y T(s,a,s') (R(s,a,s") +V*(s)))

V*(s) = mC?XZT(s, a,s') (R(s,a,s") +~V*(s))



Can we just solve this?

V*(s) = mC?XZT(s, a,s') (R(s, a,s') + ’}’V*(S,))

e n states, n equations, can we just solve this?
e unfortunately, this is not a linear system of equations: the problem is the max

e \We need a different idea.



Time limited values

. Vk(s) the optimal value if we start from s and follow the optimal strategy for
k steps.

e This is what depth-k expectimax would give.



Value iteration

Vir1(s) < mj\,xz T(s,a,s") (R(s,a,s") +vVi(s'))

e Let us call this a "Bellman update"

e Repeat until convergence
o We can prove that it does converge to the optimal values

e Complexity of each iteration O(S%A)
o Itis not that simple to find out how many iterations we need until no

change

e Itis away to solve the Bellman equation with a fixed-point technique



Convergence of value iteration

e If the tree is actually limited in depth eg M, then V) is the final value.

o If the tree is infinite, v < 1, and max reward is R, 4.
o Vii1and Vy is at most Rz in the last step, discounted with *

o The difference ¥* R ez — 0 when k — oo
o So the values will converge

e However:
o The max of the state rarely changes!

o Very often the policy converges before the values!



Policy extraction from the V values

e We usually don't care that much about the V' *(s) value.
e We want to act in the world, we need the policy 7*(s).

e Not quite that simple! We need to do one step of expectimax:

T (s) = argznaXZT(s, a,s') (R(s,a,s") +~V*(s"))



Policy extraction from the Q values

" (s) = argmax Q" (s, a)

e Actions are easier to select from g-values



Policy evalution

e We are given a fixed policy 7, not necessarily optimal.
e We want to find the associated V'™ and Q™ values.
o Defined as what if I follow this policy from now on, etc.

e Policy evaluation is easier than finding V' * and (Q* because we don't have the
max - just do what the policy tells you to do!



Do the optimal action Do what &t says to do
S S

a 7t(s)




Policy evaluation

e The Bellman equation for a fixed policy.
V=) T(s,n(s),s") (R(s,m(s),s") +4V"(s")

e Recursive, one step look ahead.

e Can we just solve it?
o This time, yes! The max went away!

o Itis n equations, n variables, linear in the unknowns which are the V7 (s)
values.

o Pick your favorite linear solver



Policy evaluation, solved iteratively

e We can also do the same trick as in value iteration:
Voﬁ(s) =0
Vi (s) < Y T(s,m(s),s') (R(s,m(s),s") + V()

e It converges, for the same reason as value iteration

e Efficiency O(s?) per iteration



Policy iteration

e Start with a random policy 7

e Until no change in policy repeat
o Evaluate 7t to values V ™*

o Create a new policy 71 using one-step look-ahead with V' ™* as future
values

7*1(s) = argmax Y T(s,a, ') (R(s, a,5") + 7V ™(s"))

e [tis still converges, and to the optimal policy

e Very often, it converges much faster



Comparing policy iteration with value iteration

e Value iteration
o Every iteration updates the value and implicitly, the policy O(S2A)

o We don't track the policy explicitly, only extract it once at the end

e Policy iteration
o We do several passes that update utilities with fixed policy O(S?)

o After the policy is evaluated, choose a new one O(S?A)



Some of the things we did

e Policy extraction
V*=n*
Q* :> 7T*
e Policy evaluation
T= V"
™= Q"
e Value iteration
MDP = V' * (by doing V, V7 ...)
e Policy iteration
MDP = V* (by doing g, V™0, w1, V™ . ..)



