Uninformed search



Reflex vs. planning agents.

o Reflex agents
o Choose an action based on current observations (and maybe memory)

o Do not consider the future consequences of actions

e Can areflex agent be rational?
o Well chosen reflex agents can actually go very far in implementing useful
behaviors

o Many animals might be reflex agents, humans have many reflexive behaviors.

e How do you implement it?
o Simplest: lookup table a < lookup|obs]

o Function approximation: a < f(obs)



Planning agents

e Plan a certain set of actions plan = {a1, as, ...}
e During execution time, just execute the actions, as listed in the plan

e Planning:
o Ask "what if" a certain action is done, make decisions based on the
(hypothesised consequences)

o Must have a world model T'(s, a) — s’ which tells how the world evolves in
response to actions



Partial, complete and shortest paths

e Partial plan: it does not reach the goal
o Complete plan: goal is achieve at the end

e Optimal plan: some kind of additional optimization criteria
o Lowest number of actions

o Lowest cost (cost associated with actions) - eg time, energy

o Preferred states visited along the plan



Challenges of uncertainty

e Even if the plan is perfect, it might not succeed
o Uncertainty in actions (1" probabilistic)

o Other agents acting in the world

e A possible solution: replanning
o Redo the planning whenever situations diverge from what was expected

o Contingency plans: create plans ahead of time for possible negative events

o Model predictive control: Make a complete plan, but only perform first action,
replan at every step afterwards



The problem of searching for a plan

o A problem of searching for a plan consists of
o State space S = {s1, S2,...}
o Successor function T'(s,a) — s’
o Start state s
o Goaltest G(s) — {true, false}
e Together, they imply a state space graph

e Solution: a plan that transforms the start state to goal state
o alist of actions {@p1, ..., Qpm}



Model state vs world state

e The search problem is a given only in Al class homework and exam problems.
e Otherwise: setting up the problem correctly is critical.

e The search problem is a model: a mathematical object that captures those aspects of
the world that are useful for the solution or the problem and ignores the rest

o \We need to distinguish between the world state which is always very large and
complex and the model state which we try to tailor to the problem.



Modeling exercise 1 (Goat-wolf-cabbage)

o Representation of states, count
e Representation of actions

e Human understandable vs computer efficient
o state: {GC | HW}, action



Modeling exercise 2 (Harry Potter)

e Harry Potter (HP), Alous Dumbledore (AD), Horcrux HX1, HX2...
e Map: Hogwards (hw), Hogsmeade (hm), Gringotts (gr) and London (In)

¢ hw-hm, hm-gr, hm-In, In-gr

P1: path planning

P2: one horcrux HX in total

e P3: each location might have a horcrux



State space considerations

o Exponential explosion of number of states
o Every time a feature might or might not be present, it doubles the state space

e Building the state space graph explicitly is often impossible

e |n some cases, states and transitions are only revealed during the search
o e.g.fog of war in games

e |[n other times, we generate them as we go



Planning with a search tree

Root node: labeled with the start state sg
e Downward edges from nodes: actions

o Nodes: labeled with the state
o A state can appear multiple times in the search tree!

As this is a tree, for each node, there is a unique path from the root
o The edges of that path is the plan that gets us to this state!



Search tree considerations

o Can get very large, unlikely that we can build it completely.
o [t can get infinitely large, if there is a loop in the state graph

e For the Harry Potter example:hw -hm-gr-In-gr-iIn...



Tree search algorithm

e Consider nodes as partial plans
e Start from the root

e Moving from a note to its children is called expanding a node

Maintain a collection datastructure called the fringe: nodes that we know that we
need to expand

Stop when we found a complete plan: the node we are expanding is in the goal set.



General tree search algorithm for planning

function TREE_SEARCH({S, T, s_0, G}, strategy):
fringe = {s_0}
loop
if fringe == {} return failure

choose node n from fringe according to strategy
if G(n) return solution
remove n from fringe

create successor nodes of n based on T(n) and add them to fringe



Understanding the general tree search algorithm

e Amazing algorithm, works for any problem!

e Critical part: strategy
o How to pick the next node from the fringe

o The fringe, as a datastructure, should support the strategy

e Determines:
o Whether we find a solution

o Whether we find the optimal solution
o How long do we search until we find a solution

o Which solution we find first



Properties of a search

algorithm
p
e Completeness: guaranteed to 1 node
find a solution if one exists? b nodes
. bz nodes
e Optimal: least cost plan? _
m tiers <
o Time complexity?
e Space complexity?
b™ nodes

e b branching factor N

e M maximum depth

e TJotal nodes?
1+b+b2+...+0™=0(")



Depth-first tree search

o Strategy: expand a deepest node first
o Practically, this means expand the nodes you just put in

o Lastin first out

e Fringe: stack



Properties of DFS

e What does DFT expand?

o Some left prefix of the tree 1 node

o Could process the whole tree b nodes

O(brm)

e Space complexity: fringe only has

b2 nodes
m tiers <

the siblings of the current path to

root O(bm)

e Complete: no, if mis infinite!

b™ nodes

e Optimal: no, it finds the leftmost
solution



Breadth first search

o Strategy: expand a shallowest node first
o Practically, this means that expand the oldest nodes in the fringe

o Firstin, first out

e Fringe: queue



Properties of BFS

What nodes are expanded?
o All nodes above the
shallowest solution, which is
at depth s

o Search time O(b®)

Space complexity: fringe can have
the last tier, so O(b*)

Complete: yes, when it reaches
the depth s, it will find it

Optimal: it will find the shallowest
solution

s tiers

<

Q

1 node
b nodes

b2 nodes

bs nodes

b™ nodes



Depth first vs. breadth first search

e \When will BFS outperform DFS?
o Solutions are few, but relatively near

o BFS will find it for sure
o DFS can get lost, or even stuck in a loop

e When will DES outperform BFS?
o Many solutions, but not nearby: finding the ocean from a desert island

o Important is to keep going, in any direction!



Iterative deepening

DFS has the advantage of a low spatial complexity. Can we get this advantage with
the BFS's shallow-solution advantages?

lterative deepening
o Run a DFS with depth limit 1 - time cost O(b). If no solution...

o Run a DFS with depth limit 2 - time cost O(b?). If no solution...

O eeee

What do we gain: the low space complexity of DFS

What do we loose: repeated traversal of the upper parts of the tree
o But for most b, most of the work happens in the last layer.



Cost-based search

e Breadth first search finds the shortest plan in terms of number of actions.

e But in many situations different actions have different costs:
o Road segments have different length - find the shortest plan.

o Some road segments have length + toll - find the cheapest plan.
o Some actions take a different amount of time - find the fastest plan.

o \ery often we are searching for a plan which has the lowest cost, where the costs are
added up along the actions in the plan.
o Other possibilities exist



Uniform cost search (UCS)

o A variant of general tree search
 Assume actions have cost c(a)

e For each node n, keep the cumulative cost of actions from the root g(n)

Sort the fringe by g(+)
o Practically: implement the fringe as a priority queue

Partial plans will be investigated in the order of their cost!



Properties of uniform cost search

e Let us say the cheapest solution has cost C'*. How deep can that solution be?
o If you have actions with zero cost, it can be infinitely deep!

o Assume each action has a cost of at least
o Then the deepest it can be is C'* /e - we call this the effective depth of the tree

e Time complexity
o Process all partial plans with cost less than the cheapest solution

o Time, exponential like in breadth first search, but this time with effective depth

O(bC*/a)



Properties of uniform cost search (cont'd)

e Space complexity
o The width of the last tier: O(b®"/¢)

e |sit complete?
o With some easy assumptions, yes.

o Assumptions: € > 0 and C* finite

e |sit optimal?
o Yes.



What do we think about UCS?

o Complete and optimal!
e Space complexity problematic
o Can be applied to anything, it doesn't use any information about the goal.

o Often we know something about the goal:
o Defeat all the monsters

o Collect all horcruxes
o Go to San Francisco with flowers in your hair

e Can we take advantage of what we know about the goal



