
Uninformed search



Reflex vs. planning agents.

Reflex agents

Choose an action based on current observations (and maybe memory)

Do not consider the future consequences of actions

Can a reflex agent be rational?

Well chosen reflex agents can actually go very far in implementing useful
behaviors

Many animals might be reflex agents, humans have many reflexive behaviors.

How do you implement it?
Simplest: lookup table 

Function approximation: 



Planning agents

Plan a certain set of actions 

During execution time, just execute the actions, as listed in the plan

Planning:

Ask "what if" a certain action is done, make decisions based on the
(hypothesised consequences)

Must have a world model  which tells how the world evolves in

response to actions



Partial, complete and shortest paths

Partial plan: it does not reach the goal

Complete plan: goal is achieve at the end

Optimal plan: some kind of additional optimization criteria
Lowest number of actions

Lowest cost (cost associated with actions) - eg time, energy

Preferred states visited along the plan



Challenges of uncertainty

Even if the plan is perfect, it might not succeed

Uncertainty in actions (  probabilistic)

Other agents acting in the world

A possible solution: replanning

Redo the planning whenever situations diverge from what was expected

Contingency plans: create plans ahead of time for possible negative events

Model predictive control: Make a complete plan, but only perform first action,

replan at every step afterwards



The problem of searching for a plan

A problem of searching for a plan consists of
State space 

Successor function 

Start state 

Goal test 

Together, they imply a state space graph

Solution: a plan that transforms the start state to goal state

a list of actions 



Model state vs world state

The search problem is a given only in AI class homework and exam problems.

Otherwise: setting up the problem correctly is critical.

The search problem is a model: a mathematical object that captures those aspects of

the world that are useful for the solution or the problem and ignores the rest

We need to distinguish between the world state which is always very large and

complex and the model state which we try to tailor to the problem.



Modeling exercise 1 (Goat-wolf-cabbage)

Representation of states, count

Representation of actions

Human understandable vs computer efficient

state: {GC | HW}, action



Modeling exercise 2 (Harry Potter)

Harry Potter (HP), Albus Dumbledore (AD), Horcrux HX1, HX2...

Map: Hogwards (hw), Hogsmeade (hm), Gringotts (gr) and London (ln)

hw-hm, hm-gr, hm-ln, ln-gr

P1: path planning

P2: one horcrux HX in total

P3: each location might have a horcrux



State space considerations

Exponential explosion of number of states
Every time a feature might or might not be present, it doubles the state space

Building the state space graph explicitly is often impossible

In some cases, states and transitions are only revealed during the search
e.g. fog of war in games

In other times, we generate them as we go



Planning with a search tree

Root node: labeled with the start state 

Downward edges from nodes: actions

Nodes: labeled with the state

A state can appear multiple times in the search tree!

As this is a tree, for each node, there is a unique path from the root

The edges of that path is the plan that gets us to this state!



Search tree considerations

Can get very large, unlikely that we can build it completely.

It can get infinitely large, if there is a loop in the state graph

For the Harry Potter example: hw - hm - gr - ln - gr - ln ...



Tree search algorithm

Consider nodes as partial plans

Start from the root

Moving from a note to its children is called expanding a node

Maintain a collection datastructure called the fringe: nodes that we know that we

need to expand

Stop when we found a complete plan: the node we are expanding is in the goal set.



General tree search algorithm for planning

function TREE_SEARCH({S, T, s_0, G}, strategy):
    fringe = {s_0}
    loop
        if fringe == {} return failure
        choose node n from fringe according to strategy
        if G(n) return solution  
        remove n from fringe
        create successor nodes of n based on T(n) and add them to fringe



Understanding the general tree search algorithm

Amazing algorithm, works for any problem!

Critical part: strategy

How to pick the next node from the fringe

The fringe, as a datastructure, should support the strategy

Determines:

Whether we find a solution

Whether we find the optimal solution

How long do we search until we find a solution

Which solution we find first



Properties of a search
algorithm

Completeness: guaranteed to

find a solution if one exists?

Optimal: least cost plan?

Time complexity?

Space complexity?

 branching factor

 maximum depth

Total nodes?



Depth-first tree search

Strategy: expand a deepest node first
Practically, this means expand the nodes you just put in

Last in first out

Fringe: stack



Properties of DFS

What does DFT expand?
Some left prefix of the tree

Could process the whole tree

Space complexity: fringe only has

the siblings of the current path to
root 

Complete: no, if m is infinite!

Optimal: no, it finds the leftmost
solution



Breadth first search

Strategy: expand a shallowest node first
Practically, this means that expand the oldest nodes in the fringe

First in, first out

Fringe: queue



Properties of BFS

What nodes are expanded?

All nodes above the
shallowest solution, which is

at depth 

Search time 

Space complexity: fringe can have

the last tier, so 

Complete: yes, when it reaches

the depth , it will find it

Optimal: it will find the shallowest
solution



Depth first vs. breadth first search

When will BFS outperform DFS?

Solutions are few, but relatively near

BFS will find it for sure

DFS can get lost, or even stuck in a loop

When will DFS outperform BFS?
Many solutions, but not nearby: finding the ocean from a desert island

Important is to keep going, in any direction!



Iterative deepening

DFS has the advantage of a low spatial complexity. Can we get this advantage with

the BFS's shallow-solution advantages?

Iterative deepening

Run a DFS with depth limit 1 - time cost . If no solution...

Run a DFS with depth limit 2 - time cost . If no solution...

....

What do we gain: the low space complexity of DFS

What do we loose: repeated traversal of the upper parts of the tree
But for most , most of the work happens in the last layer.



Cost-based search

Breadth first search finds the shortest plan in terms of number of actions.

But in many situations different actions have different costs:

Road segments have different length - find the shortest plan.

Some road segments have length + toll - find the cheapest plan.

Some actions take a different amount of time - find the fastest plan.

Very often we are searching for a plan which has the lowest cost, where the costs are
added up along the actions in the plan.

Other possibilities exist



Uniform cost search (UCS)

A variant of general tree search

Assume actions have cost 

For each node , keep the cumulative cost of actions from the root 

Sort the fringe by 

Practically: implement the fringe as a priority queue

Partial plans will be investigated in the order of their cost!



Properties of uniform cost search

Let us say the cheapest solution has cost . How deep can that solution be?

If you have actions with zero cost, it can be infinitely deep!

Assume each action has a cost of at least 

Then the deepest it can be is  - we call this the effective depth of the tree

Time complexity

Process all partial plans with cost less than the cheapest solution

Time, exponential like in breadth first search, but this time with effective depth



Properties of uniform cost search (cont'd)

Space complexity
The width of the last tier: 

Is it complete?

With some easy assumptions, yes.

Assumptions:  and  finite

Is it optimal?

Yes.



What do we think about UCS?

Complete and optimal!

Space complexity problematic

Can be applied to anything, it doesn't use any information about the goal.

Often we know something about the goal:

Defeat all the monsters

Collect all horcruxes

Go to San Francisco with flowers in your hair

Can we take advantage of what we know about the goal


