Game play and adversarial search

Some figures are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley, available at http://ai.berkeley.edu.

http://ai.berkeley.edu/

Comparison to planning and reflex agents

e We are still in the agent view of Al - we have a goal!

e But the transition function does not depend only on our actions
o There are other agents who take actions as well

o Usually, in opposition to our goals

e Planning all actions ahead of time will not work, we need to react to the
actions of the other agents.

e Paradoxically: a reflex agent, with a lookup table for every state might work
(but would be very inefficient)

State of the art in game play

e Checkers: 1994: First computer champion. 2007: Checkers solved!

e Chess: 1997 Deep Blue defeated human champion Gary Kasparov. Very
sophisticated evaluation techniques, and significant computing power. These
days: trivial computing power can defeat any human.

e Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.
e Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

What does it mean for a game to be solved: informally, that we found a strategy
(not a plan) that is the best possible.

Types of games

e Deterministic or stochastic?
o Is there randomness involved? Shuffled cards, dice?

e Complete or partial information game?
o Is a part of the information hidden?

e One, two or more players?

e /erosum?
o If yes, the game is fully adversarial

e General games
o Qutcome values might be more complex, they don't add up to zero

o Eg. Monopoly, Settlers of Catan

o The player's strategy might include cooperation, indifference,
competition, alliances, cliques, contracts etc.

Deterministic games

e States S = {sg,...}
e Players P = {1... N}, take turns
e Actions A. Not all actions might be available for every player at every state.

e Transition function T'(s,a) — s’
o The fact that this is not probabilistic, makes this a deterministic game

e Terminal test: completed(s) — {true, false}
o EQg: checkmate!

o EQ: golden snitch was catched!
e (Terminal) utilities: U(s,p) € R

Game playing in Al

e Agent view of Al: the Al is one of the players.
e Let us assume players A and B who take actions successively.
So —7> QA1 — S1 —~ ap] — S2 —7> A 49 — S3

e Usually, we cannot search for a plan, because the agent's actions are
interleaved with the actions of the opponent!

e We will search for a policy instead: 7w(s) — a

Single player, deterministic, complete
information game

e Take actions to maximize the utility of the terminal state you reach!

e What is value of the intermediate states?
o Depends on where you go from there...
o But you should go in the direction where you will eventually get better
value
o A perfect player at any choice would choose the one with the maximum

value

N
Value of a state: Non-Terminal States:
The best achievable V(s

outcome (utility)
\ from that state Y /“x
_ -!

ZZZ

max V(s')
s’echildren(s)

Terminal States:
V (s) = known

The V value

 The V value of a state s, in many Al contexts, is the value you can achieve
starting from s and acting perfectly from now on

e In the case of a one player game: just calculate it recursively by max.
o ..it gets harder later...

e For a terminal state: V(s) = known

e For a non-terminal state

V(s)= maz V(s

s'€successors(s)

Example: tic-tic-tic game

e Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
e m=3, average b =8

e How do we calculate the V values?

How to act in a single player, deterministic,
complete information game?

e Your policy should be: take the action for which the successor has the largest
value.

7(s) = argmazx V (T'(s,a))

a
e [s this now gameplay or planning?

e Actually, both! You can calculate a list of actions to the end of the game.

Two player, deterministic, zero-sum games

e Agents have opposite utilities: for each terminal state they add up to zero:
U(Sapl) — _U(37p2)

o Eg. chess, go, etc.

e We can think of a single value that one of the agents maximizes and the other
minimizes.

e Purely adversarial

Zero sum game

States Under Agent’s Control: States Under Opponent’s Control:
Vi(s) = max V(s Vi(s') = min V{(s)
s Esuccessors(s) sEsuccessors(s’)

Terminal States:
V(s) = known

Adversarial search (minimax)

e Assume deterministic, zero sum games

e Player one maximizes the result, the other one minimizes it
o We call it a maximizing player A and minimizing player V

e Minimax search tree
o State-space search tree, with a V value

o Players alternate turns, correspond to vertical layers in the tree

Minimax algorithm

def maxvalue(s)
if s terminal return val(s)
V = -0
for s' in succ(s)
v = max (v, minvalue(s'))
return v

def minvalue(s)
1f s terminal return val(s)
V = o
for s' 1in succ(s)
v = min (v, maxvalue(s'))
return v

Minimax example

e Tic-tac-toe - what is the value of this position?

Performance of minimax

e Similar to exhaustive DFS
o Time O(b™)
o Space O(bm)

e [t can solve any adversarial game, just not very efficiently
o Chess: b~ 35, m ~ 100 — 35'%

o Go: b~ 250, m ~ 210 — 25020

Game style of minimax

e It works perfectly against a perfect player.

e It also works perfectly against a non-perfect opponent
o But this means that sometimes is too cautious

Alpha-beta pruning

e Can we improve on the performance of minimax?

e For instance, do we always need to search the whole tree, down to all the
leaves?

e It helps us to know that the other player is our adversary:

o If we find that in a branch there is at least one very bad outcome, we can
stop searching it.

o Even if there are better outcomes in that branch, the opponent will not
choose it!

Alpha-beta pruning: full minimax tree

e There are situations when Max already knows that it will not choose a node!

Alpha-beta pruning: pruned tree

4
2/

14

Alpha-beta pruning

e MIN version

®)

©)

©)

We are computing the min-value at n

We are looping over n's children

n's estimate of the children's min is dropping
Who cares about n's value? MAX

Let o be the best value that MAX can get at
any choice point along the current path from
the root

If n becomes worse than a, MAX will avoid it,
SO we can stop considering n's other children

e MAX version: symmetric, with 3 substituted for o

MAX

MIN

MAX

MIN

Alpha-beta implementation

def maxvalue(s, alpha, beta)

if s terminal return val(s)

V = -0

for s' 1in succ(s)
v = max (v, minvalue(s', alpha, beta))
if v >= beta return v
alpha = max(alpha, v)

return v

def minvalue(s)

if s terminal return val(s)

V = 4

for s' 1in succ(s)
v = min (v, maxvalue(s', alpha, beta))
1f v <= alpha return v
beta = min(beta, V)

return v

Understanding alpha-beta pruning

e The min or max value of the root does not change.
o But the values of nodes further down can change.

o Even at the first level! Which is not good, because those values are the
ones used for the action selection
o Solution: start alpha-beta at the children of the top node.
e How much we prune depends on the order in which we investigate the

children
o You want to get the bad news to come soon, because then you can prune

the rest.
o Rich area for heuristics

What can be achieved with alpha-beta pruning

e If the ordering is perfect, time complexity drops from O(b™) to O(b™/?)

e Doubles the solvable depth!
o From looking ahead 4 moves to looking ahead 8...

e Complexity remains exponential, complete search of chess or go are still
hopeless

Resource limited search for minimax

e In practice, you can only search to a limited depth (plies)
o one ply == one move by one of the players

o EQ. 4 plies ahead in chess
o More plies, better performance

e Evaluation function
o This is what you return when you hit the limit, cannot search further.

o Itis an informed guess of the V value of the current state

Evaluation functions and cost

e The ideal evaluation function is the actual minimax value

e An evaluation function is always imperfect
o If we can made an efficient and perfect evaluation function for a game, it
is not much of a game.

e We can sometimes make evaluation functions better by expending more
computation.
o Cheap evaluation function in chess: add up the nominal piece values and
return the difference between the white and black pieces

o More expensive one: calculate the positional values of the pieces.

o Very expensive one: look up the position in a library of famous games

Evaluation functions and depth

e It turns out that the deeper in the tree the evaluation function is, the less its
quality matters.

e Tradeoff:
o Cheap but weak evaluation function, go 8 plies deep?

o Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?

e You can use just about any function eval(S) — R

e Historically: ask an expert for a formula that explains the evaluation of a game
state

e Example evalution function for chess:
Evaluation = (9x Queens) + (5x Rooks) + (3x Bishops and Knights) + (1x Pawns) + Positional Adjustments

e This process is called knowledge elicitation
o Very work-intensive, expensive and prone to major errors

Feature-based evaluation function

e New idea: don't ask the expert for a formula, just important features.

e Afeature f(s) € {0,1} or f(s) € |0, 1] is a property of a state which might
or might not hold
o f(s) =is the black king checked?

o f(s) = damage incurred by a unit
e We assume that the evaluation is a weighted linear sum of features

eval(s) = w1 - f1(s) + -+ wy - fu(s)

Feature-based evaluation function (cont'd)

e What did we gain:
o Easier for the expert to list features that matter, rather than provide a
formula

o Once we are done with the features, we can ask the expert for the
weights
= Can be positive or negative, small or large in absolute value

Learning feature weights

e We can learn the weights!
o The features are the input @ of a machine learning system

o The real V(s) value is the output y

e Itis not exactly trivial to get the real V(s):

o we can try to run the search to completion... expensive in computer time,
cannot be done for chess or go

o ask the expert to evaluate the board... expensive in human time

o use library of games by expert players... not a bad idea, for games where
such records exist, like chess and go

o we can try to play the game to the end... players might not be optimal

Monte Carlo Tree Search (MCTS)

e The technique used by the most recent game playing programs for complex
games like Go and Chess.

o The evaluation combines tree search and random sampling.

o random playout: play to the end of the game with both players taking
random moves (or very simple, cheap strategies)

It involves four steps:
e Selection: Traverse the tree using a selection policy like UCB1 (upper
confidence bound 1) until reaching a leaf node.
e Expansion: Add one or more child nodes representing possible moves.
e Simulation: Run random simulations from the new node to a terminal state.

e Backpropagation: Update the nodes with the results of the simulation.

More about features

e The idea of features had been / is very influential in Al

o We will meet them again in reinforcement learning.

o They had been very important in computer vision, speech recognition etc.
e General consensus circa 2010: engineer f, learn w

e Since 2012: learn f, learn w

e It is sometimes not easy to find the f in a large neural network, even if we
know they should be there.

e Explainable AI: one way to explain what a system does is to know what
features it takes into account

o Sometimes, we don't want some features to matter: eg. race, gender,
Immigration status

Adversarial games are not only played on boards!

CHESS

POKER

FIGHTER COMBAT
GUERRILLA ENGAGEMENT
DESERT m

mm

THEATERWIDE
THERTERKIDE BIOTOXIC AND CHEMICAL WARFARE

GLOBAL THERMONUCLEAR WAR
1

CHALL HE PLAY A GANER

