
Game play and adversarial search

Some figures are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, available at http://ai.berkeley.edu.

http://ai.berkeley.edu/

Comparison to planning and reflex agents
We are still in the agent view of AI - we have a goal!
But the transition function does not depend only on our actions

There are other agents who take actions as well
Usually, in opposition to our goals

Planning all actions ahead of time will not work, we need to react to the
actions of the other agents.
Paradoxically: a reflex agent, with a lookup table for every state might work
(but would be very inefficient)

State of the art in game play
Checkers: 1994: First computer champion. 2007: Checkers solved!
Chess: 1997 Deep Blue defeated human champion Gary Kasparov. Very
sophisticated evaluation techniques, and significant computing power. These
days: trivial computing power can defeat any human.
Go: 2016, DeepMind AlphaGo defeats Lee Sedol, top Go player.
Poker: Some variants were solved (eg. heads-up limit Texas hold'em).

What does it mean for a game to be solved: informally, that we found a strategy
(not a plan) that is the best possible.

Types of games
Deterministic or stochastic?

Is there randomness involved? Shuffled cards, dice?
Complete or partial information game?

Is a part of the information hidden?
One, two or more players?
Zero sum?

If yes, the game is fully adversarial
General games

Outcome values might be more complex, they don't add up to zero
Eg. Monopoly, Settlers of Catan
The player's strategy might include cooperation, indifference,
competition, alliances, cliques, contracts etc.

Deterministic games
States
Players , take turns
Actions . Not all actions might be available for every player at every state.
Transition function

The fact that this is not probabilistic, makes this a deterministic game
Terminal test:

Eg: checkmate!
Eg: golden snitch was catched!

(Terminal) utilities:

Game playing in AI
Agent view of AI: the AI is one of the players.
Let us assume players A and B who take actions successively.

Usually, we cannot search for a plan, because the agent's actions are
interleaved with the actions of the opponent!
We will search for a policy instead:

Single player, deterministic, complete
information game

Take actions to maximize the utility of the terminal state you reach!
What is value of the intermediate states?

Depends on where you go from there...
But you should go in the direction where you will eventually get better
value
A perfect player at any choice would choose the one with the maximum
value

The V value
The value of a state , in many AI contexts, is the value you can achieve
starting from and acting perfectly from now on
In the case of a one player game: just calculate it recursively by max.

...it gets harder later...
For a terminal state:
For a non-terminal state

Example: tic-tic-tic game
Tic-tic-tic is one person tic-tac-toe, with limit of 3 moves
m = 3, average b = 8
How do we calculate the V values?

How to act in a single player, deterministic,
complete information game?

Your policy should be: take the action for which the successor has the largest
value.

Is this now gameplay or planning?
Actually, both! You can calculate a list of actions to the end of the game.

Two player, deterministic, zero-sum games
Agents have opposite utilities: for each terminal state they add up to zero:

Eg. chess, go, etc.
We can think of a single value that one of the agents maximizes and the other
minimizes.
Purely adversarial

Zero sum game

Adversarial search (minimax)
Assume deterministic, zero sum games
Player one maximizes the result, the other one minimizes it

We call it a maximizing player and minimizing player
Minimax search tree

State-space search tree, with a V value
Players alternate turns, correspond to vertical layers in the tree

Minimax algorithm
def maxvalue(s)
 if s terminal return val(s)
 v = -∞
 for s' in succ(s)
 v = max (v, minvalue(s'))
 return v

def minvalue(s)
 if s terminal return val(s)
 v = ∞
 for s' in succ(s)
 v = min (v, maxvalue(s'))
 return v

Minimax example
Tic-tac-toe - what is the value of this position?

 | x | o

o
x | x | o

Performance of minimax
Similar to exhaustive DFS

Time
Space

It can solve any adversarial game, just not very efficiently
Chess: ,
Go: ,

Game style of minimax
It works perfectly against a perfect player.
It also works perfectly against a non-perfect opponent

But this means that sometimes is too cautious

Alpha-beta pruning
Can we improve on the performance of minimax?
For instance, do we always need to search the whole tree, down to all the
leaves?
It helps us to know that the other player is our adversary:

If we find that in a branch there is at least one very bad outcome, we can
stop searching it.
Even if there are better outcomes in that branch, the opponent will not
choose it!

Alpha-beta pruning: full minimax tree

There are situations when Max already knows that it will not choose a node!

Alpha-beta pruning: pruned tree

Alpha-beta pruning
MIN version

We are computing the min-value at n
We are looping over n's children
n's estimate of the children's min is dropping
Who cares about n's value? MAX
Let be the best value that MAX can get at
any choice point along the current path from
the root
If n becomes worse than , MAX will avoid it,
so we can stop considering n's other children

MAX version: symmetric, with substituted for

Alpha-beta implementation
def maxvalue(s, alpha, beta)
 if s terminal return val(s)
 v = -∞
 for s' in succ(s)
 v = max (v, minvalue(s', alpha, beta))
 if v >= beta return v
 alpha = max(alpha, v)
 return v

def minvalue(s)
 if s terminal return val(s)
 v = +∞
 for s' in succ(s)
 v = min (v, maxvalue(s', alpha, beta))
 if v <= alpha return v
 beta = min(beta, v)
 return v

Understanding alpha-beta pruning
The min or max value of the root does not change.

But the values of nodes further down can change.
Even at the first level! Which is not good, because those values are the
ones used for the action selection
Solution: start alpha-beta at the children of the top node.

How much we prune depends on the order in which we investigate the
children

You want to get the bad news to come soon, because then you can prune
the rest.
Rich area for heuristics

What can be achieved with alpha-beta pruning
If the ordering is perfect, time complexity drops from to
Doubles the solvable depth!

From looking ahead 4 moves to looking ahead 8...
Complexity remains exponential, complete search of chess or go are still
hopeless

Resource limited search for minimax
In practice, you can only search to a limited depth (plies)

one ply == one move by one of the players
Eg. 4 plies ahead in chess
More plies, better performance

Evaluation function
This is what you return when you hit the limit, cannot search further.
It is an informed guess of the V value of the current state

Evaluation functions and cost
The ideal evaluation function is the actual minimax value
An evaluation function is always imperfect

If we can made an efficient and perfect evaluation function for a game, it
is not much of a game.

We can sometimes make evaluation functions better by expending more
computation.

Cheap evaluation function in chess: add up the nominal piece values and
return the difference between the white and black pieces
More expensive one: calculate the positional values of the pieces.
Very expensive one: look up the position in a library of famous games

Evaluation functions and depth
It turns out that the deeper in the tree the evaluation function is, the less its
quality matters.
Tradeoff:

Cheap but weak evaluation function, go 8 plies deep?
Expensive but good evaluation function, go 2 plies deep?

How to build an evaluation function?
You can use just about any function
Historically: ask an expert for a formula that explains the evaluation of a game
state
Example evalution function for chess:

This process is called knowledge elicitation
Very work-intensive, expensive and prone to major errors

Feature-based evaluation function
New idea: don't ask the expert for a formula, just important features.
A feature or is a property of a state which might
or might not hold

 = is the black king checked?
 = damage incurred by a unit

We assume that the evaluation is a weighted linear sum of features

Feature-based evaluation function (cont'd)
What did we gain:

Easier for the expert to list features that matter, rather than provide a
formula
Once we are done with the features, we can ask the expert for the
weights

Can be positive or negative, small or large in absolute value

Learning feature weights
We can learn the weights!

The features are the input of a machine learning system
The real V(s) value is the output

It is not exactly trivial to get the real V(s):
we can try to run the search to completion... expensive in computer time,
cannot be done for chess or go
ask the expert to evaluate the board... expensive in human time
use library of games by expert players... not a bad idea, for games where
such records exist, like chess and go
we can try to play the game to the end... players might not be optimal

Monte Carlo Tree Search (MCTS)
The technique used by the most recent game playing programs for complex
games like Go and Chess.

The evaluation combines tree search and random sampling.
random playout: play to the end of the game with both players taking
random moves (or very simple, cheap strategies)

It involves four steps:

Selection: Traverse the tree using a selection policy like UCB1 (upper
confidence bound 1) until reaching a leaf node.
Expansion: Add one or more child nodes representing possible moves.
Simulation: Run random simulations from the new node to a terminal state.
Backpropagation: Update the nodes with the results of the simulation.

More about features
The idea of features had been / is very influential in AI.

We will meet them again in reinforcement learning.
They had been very important in computer vision, speech recognition etc.

General consensus circa 2010: engineer , learn
Since 2012: learn , learn
It is sometimes not easy to find the in a large neural network, even if we
know they should be there.
Explainable AI: one way to explain what a system does is to know what
features it takes into account

Sometimes, we don't want some features to matter: eg. race, gender,
immigration status

Adversarial games are not only played on boards!

