MAPREDUCE

Lecture C



PROGRAMMING MAPREDUCE

Externally: For user

1.
2.
3.

Write a Map program (short), write a Reduce program (short)
Submit job; wait for result

Need to know nothing about parallel/distributed programming!

Internally: For the Paradigm and Scheduler

1.

2
3.
4

Parallelize Map
Transfer data from Map to Reduce
Parallelize Reduce

Implement Storage for Map input, Map output, Reduce input, and
Reduce output

(Ensure that no Reduce starts before all Maps are finished. That is, ensure the
barrier between the Map phase and Reduce phase)



INSIDE MAPREDUCE

For the cloud:
1. Parallelize Map: easy! each map task is independent of the other!
» All Map output records with same key assigned to same Reduce
2. Transfer data from Map to Reduce:
. AllkMap output records with same key assigned to same Reduce
tas
. Use partitioning function, e.g., hash(key)%number of reducers
3. Parallelize Reduce: easy! Each reduce task is independent of the other!
4, Implement Storage for Map input, Map output, Reduce input, and
Reduce output
. Map input: from distributed file system
. Map output: to local disk (at Map node); uses
. Reduce input: from (multiple) remote disks; uses local file
systems
. Reduce output: to distributed file system

= Linux FS§, etc.

distributed file system = GFS (Google File System), HDFS (Hadoop
Distributed File System)



INTERNAL WORKINGS OF MAPREDUCE

Map tasks Reduce tasks Output files

into DFS
L A Atr—
2
S 1
4 B B+— |
6
7 S C Ct+ . m
Blocks Servers Servers
from DFS (Locai write, remote read)

Resource Manager (assigns maps and reduces to serve}s)




THE YARN SCHEDULER

e Used In Hadoop 2.x +
 YARN = Yet Another Resource Negotiator
« Treats each server as a collection of containers
« Container = some CPU + some memory
e Has 3 main components
* Global Resource Manager (RM)
« Scheduling
* Per-server Node Manager (NM)
« Daemon and server-specific functions
« Per-application (job) Application Master (AM)
« Container negotiation with RM and NMs
 Detecting task failures of that job



YARN: How A JOB GETS A CONTAINER

In this figure
2 servers (A, B)
2 jobs (1, 2)

Resource Manager

Capacity Scheduler °

/

\

1. Need / .
container 3. Container on Node B 2. Container Completed
— AN
Node A Node B
Node Manager Node Manager
B
/ / ——
Application // Application | Task (App2) :
Master 1 4. Start task, please! Master 2 | I
_— I |
. |
' |
' |




