Laboratory Manual

EEL 3801

Lab #6

Laboratory Assignment #6

EEL 3801 Introduction to Computer Engineering

Topic: Constructors, Destructors and Friend Functions.

Turn in: .CPP file with screen output.

Constructors, Destructors and Friend Functions

Constructors and destructors are special class member functions used in C++ to initialize and clean up objects instantiated from classes. Constructors serve to initialize the object and destructors serve to free memory when an object is deleted. While these are member functions, unlike other member functions, however, they follow strict naming rules. Constructor functions must be given the same name as the class itself (case-sensitive), while destructor functions have the same name as the class, but with a tilde (~) in front. These functions should never return anything, and they should never have the void return type. While constructors are allowed to have arguments, destructors are not.

1.
Constructor / Destructors Function Calls:
C++ calls the constructors without the programmer invoking them. Destructors are used to free memory when an object is deleted. This is not necessary when classes include built-in data types, as they will simply go out of scope and the compiler will release their memory automatically. However, if a class or one of its members points to dynamically allocated memory, then its memory must be released when we are finished with it. A destructor function allows the object to clean up after itself. To illustrate both of these concepts, compile and run the following code:

#include <iostream.h>

#include <string.h>

use std::cout;

class Message {

public:

Message(char*); // the constructor declaration

~Message(); // the destructor declaration

void print_it(void);

private:

char *s; // a pointer to the message contents

};

Message::Message(char* msg) {

cout << "The Message constructor has been called! \n";

s = new char[strlen(msg)+1];

strcpy (s, msg);

}

Message::~Message() {

cout << "The Message destructor has been called! \n";

delete s;

}

Message::print_it() {

cout << s;

}

void main() {

Message Msg (“This is a test.\n”);
// Object Instantiation

Msg.print_it();

// calls for the member function

 };

TURN IN: .CPP File and the screen output.

2.
Friend Functions:
C++ offers a way that private members of a class can be accessed by functions that are not even members of that class. Your question surely is: "Why does C++ do this? This does away with the virtues of data hiding which is one of the advantages of OOP and is so painstakingly implemented in classes." The reason is that in many cases, various classes work closely together and need access to each other's private data members, which are not accessible to outside functions. This feature is called the friend feature, where classes and/or functions are designated as friends of another class and have access to its private data that no one else has. A friend function, in effect, looks as if it is a member of more than one class, although in reality, it is a member of none.

class Customer {

public:

customer(); // constructor function

private:

char
name[30];

int

c_num;

float
ytd_balance;

};

class Account {

public:

Account(); // constructor

private:

char
acctcode[5];

float
ac_balance;

};

void main() {

Customer person; // would have to be done as part of main()

Account ledger;

 }

Perform the following tasks:

1. Write the constructor function for both classes to initialize the values of the private variables.

2. Write a function, outside of either class, that prints private data members from both objects. This function should print the name, ytd_balance and c_num from person, and the acctcode and ac_balance from ledger. Make this function a friend of each class. HINT: You will need to pass parameters of type Account and Customer to the function.
3. Add a call to this function in the main procedure.

4. Run the program.

5. TURN IN: .CPP file and screen output.

3.
Member scope:
Static scope can be applied to data members of classes. That means that if the member is shared by more than one object of a class, the data is the same one, and keeps its data. For the following code snippet:

class People

{

char
name[30];

int
age;

public:

static int total; // static across all objects

People(); // constructor

void getit();

};

We want to keep track of how many employees we have hired in the company. Therefore, every time we instantiate a new object variable, the count of total is increased by one. Write a main() program in which employees are added to the company as object instances of People, with the count being increased by one for every new hire. After six or eight of these have been instantiated (hired), print out the number of employees (i.e., the value of total). Initialize the count through the constructor at total = 0.

TURN IN: .CPP file(s) and the screen output.

4.
Scope of Entire Objects:
Objects instances of classes can also be declared as static, although this is not common, and can be dangerous. The interesting thing is that if a static object is instantiated, the constructor and destructor functions will execute even if main() does nothing. Note that the main() function does nothing at all. Yet, the constructor and destructor functions of the static and global variables executed.

// Filename: Static variables

#include <stdio.h>

class Staticobj {

int i;

public:

Staticobj();

~Staticobj();

 };

Staticobj::Staticobj() {

printf("\nConstructor being called.\n");

printf("What do you want i to be?");

scanf("%d", &i);

 };

Staticobj::~Staticobj() {

printf("\ni was %d before it gets destroyed.\n", i);

i = 0;

printf("Destructor just called\n");

 };

Staticobj

o1; // global with external linkage

static Staticobj
o2;

// global with internal linkage only

void main() {

 }

1. Write, compile, and run this program.

2. TURN IN: .CPP file(s) and screen output.

PAGE
4

