Laboratory Manual

EEL 3801

Lab #7

Laboratory Assignment #7

EEL 3801 Introduction to Computer Engineering

Topic: Pointers, Dynamic Memory, Pass by Reference, and Arrays.

Turn in: .CPP file with screen output.

Pointers, Dynamic Memory, Pass by Reference, and Arrays

A pointer variable has the capability of holding an address. A pointer is the same thing as an address you have already seen in assembly language. It refers to the number of bytes the data is offset from the beginning of the segment. It may also refer to the segment as well as the offset. It depends on the model that you are using. Using an *, the dereference operator, in front of a pointer means that you are referring to the contents pointed to by the pointer and not the pointer itself. The &, called the address operator, in front of a variable means that you are referring to the address of the variable not it's contents. This is much like the offset and seg directives in assembly language.

Example

int X, *P;
// X is declared as an integer and P as a pointer

// capable of holding the address of an integer.

P = &X;
// P points to X or it contains the address of X

X = 5;

// X gets 5.

*P = 6;

// X gets 6. P stays with the address of X

P = 7;

// P gets 7. X stays with 6

Pointers are used for a variety of functions. The next three sections are common examples of the many uses of pointers.

1. Dynamic Memory

Some of the more popular computer platforms support dynamic memory allocation. This is where the program asks the operating system for a block of memory during execution. The following line of code allocates sufficient memory to implement an integer. Note the new function returns the address of the newly allocated memory so it must be received by a pointer variable.

int * Pnt = new int;

To give the memory back to the operating system you use the delete function. The following returns the memory back to the operating system.

delete Pnt;

a. To check this out, dynamically allocate an array of 10 characters.

b. Fill the array with the letters A, B, C and so on.

c. Finally print the contents of the array and delete the array.

d. Turn in the .CPP file and screen output.

2.
Passing arguments to functions.

When passing arguments to functions there are two options. Perform the following tasks to exercise these two options.

a. Pass by value: Enter the following code into a file. A copy of the contents of the variable is sent. The function cannot modify the variable. What is passed to bill is a copy of the data stored in x, in this case, 5.

Example 1:

void bill (int k)

{

printf ("The value passed to bill is %d\n",k);

k = 10;

printf ("The value passed to bill after being modified is %d\n",k);

}

void main ()

{

int x = 5;

printf ("The value of x before bill is %d\n",x);

bill (x);

printf ("The value of x after bill is %d\n",x);

}

The output is:

The value of x before bill is 5

The value passed to bill is 5

The value passed to bill after being modified is 10

The value of x after bill is 5

TURN IN: .CPP file and screen output.

b. Pass by reference: The address (pointer) of the variable is passed. The function can modify the variable. Any changes to the variable inside of bill will be reflected in the calling code. In this case the address of x is passed not the value 5. Note to pass the address we must put an & in front of the variable being passed. &x means the address of x. Also the function is going to receive the address of the argument not its value so we put a * in front of the argument. *k refers to what k points to, not k itself.

Example 2:

void bill(int *k) {

printf("The value passed to bill is %d\n",*k);

*k = 10;

printf("The value passed to bill after being modified is %d\n",*k);

};

void main() {

int x = 5;

printf ("The value of x before bill is %d\n",x);

bill (&x);

printf ("The value of x after bill is %d\n",x);

}

The output is:

The value of x before bill is 5

The value passed to bill is 5

The value passed to bill after being modified is 10

The value of x after bill is 10

TURN IN: .CPP file and screen output.

Your task is to copy the program in example 3 and run it and explain the results in the comments of the program. The function bill will print the contents of x and y of which the contents of y is the address of x so use %X instead of %d.

Example 3:

void bill(int x, int *y)

{

printf ("The arguments passed to bill are x = %d y = %X\n",x,y);

x = x + 5;

*y = *y + 5;

printf ("The arguments after being modified are x = %d y = %x\n",x,y);

printf ("What got modified is x = %d *y = %d\n",x,*y);

}

void main()

{

int
a = 5;

int
b = 10;

printf ("The values before bill are a = %d b = %d\n",a,b);

bill (a,&b);

printf ("The values after bill are a = %d b = %d\n",a,b);

}

TURN IN: .CPP file and screen output.

PAGE
4

