Laboratory Manual

EEL 3801

Lab #5

Laboratory Assignment #5

EEL 3801 Introduction to Computer Engineering

Topic: Objects and Classes.

Turn in: .CPP files with screen output.

Objects and Classes

Objects and classes are what really make C++ different from C. They form the basis for object-oriented programming. Classes and objects provide features that are unknown to C programmers, and provide significant power and flexibility, even if they are not used in object-oriented programming. This assignment introduces you to this powerful paradigm.

1.
Structures in C++:
Classes in C++ are similar in many ways (but not all) to structures in C, and are declared in the same way as structures - by simply replacing the word struct with the word class. Take the following structure and re-declare it as a class with name date1.

 struct date

 {

 int day;
// Day of the Month

 int month;
// Month of the year

 int year;
// Year

 };

2.
Objects:
Objects are nothing more than variables, which, in turn, are nothing more than instances of a class. The class is the template, and the object is an instance of the class, or in other words, a copy of the template that has its own identity.

Perform the following tasks.

1. Make objects today and tomorrow of type class date1 in a main () program.

2. Instantiate a C data type using the C structure date shown above, and call this variable yesterday.

3. Compile this new configuration and print out the .CPP file for step #2.

4. TURN IN: .CPP file.

3.
Data Hiding in classes:
Setting the values of members in C++ classes is one difference between classes and structures. For the purpose of hiding data in classes, C++ differentiates between private and public members of a class. Public members of a class are equivalent to those of structures. That is, they can be accessed and changed by external functions in the program (the "." operator for variable, and the "->" operators for pointers). Private members, however, cannot be so changed. By default, all members of a class instance are considered private.

Perform the following tasks:

1. Try setting the values of the today or tomorrow objects within the main() program done in exercise #2 above through the following statements: (Use a print statement (cout) to see what the results of the statements are).

 today.day = 28;

 today.month = 11;

 today.year = 1995;

2. Do the same thing to the C structure yesterday that you created in exercise #2. You should be able to do it successfully for yesterday, but not for today or tomorrow.

3. Compile the new main procedure.

4. TURN IN: .CPP file with errors documented.

4)
Public Access Specifier:
One way to get around this obstacle is to purposely declare the members of a class to be public.

Perform the following tasks:

1. Replace the definition for the class date1 with the following:

 class date1

{

public:

 int day;
// Day of the Month

 int month;
// Month of the Year

 int year;

};

2. Re-instantiate objects today and tomorrow.

3. Set their values using the same procedure as in exercise #3 above. You will find that it can now be done successfully.

4. Rerun the application.

5. TURN IN: .CPP file with screen output.

5.
Member Functions:
Your question at this point surely is "How do I get to the private members' values?” This is the point where classes and structures start looking very, very different. C++ allows classes to have member functions, which are functions that are members of a class. While structures only allow data members, classes allow function members. Member functions allow the outside world to access these private data members. Furthermore, these member functions allow objects in C++ to manipulate themselves, and this is the essence of object-oriented programming. Instead of being a passive data structure, classes contain all that is necessary to carry out some task. Member functions are also declared in the class definition, and are typically (although not always as we will soon see) declared as public.

Perform the following tasks:

1. Code the following short program that includes the member function declaration and function definition. Note the there are four member functions: get_day(), get_month(), get_year(), and set(const int d, const int m, const int y), and they are considered public. Also note how they are defined and used.

class Date

 {

 public:

 int bonus_flag;
// public data member

 int get_day(void) const
// public member function

 {

 return (day);

 }

 int get_month(void) const
// public member function

 {

 return (month);

 }

 int get_year(void) const
// public member function

 {

 return (year);

 }

 void set(const int d, const int m, const int y)

 {

 day = d;
// public member function

 month = m;
// assigns all values

 year = y;
// to private data members

 return;

 }

private:

 int day;
// private data member

 int month;
// private data member

 int year;
// private data member

 };
// always end classes with semicolons

void main()

 {

 Date date1, date2;
// instantiate 2 Date objects

 date1.set(4,7,1996);
// sets 1st variable's members

 date2.set(31,12,1996);
// sets 2nd variable's members

// print out the dates

 cout << "Independence Day is on: ";

 cout << date1.get_month() << "/" << date1.get_day();

 cout << "/" << date1.get_year() << "\n";

 cout << "New Year parties begin on ";

 cout << date2.get_month() << "/" << date2.get_day();

 cout << "/" << date2.get_year() << "\n";

 }

2. Compile and run the application.

3. TURN IN: .CPP file with screen output.

6.
The Scope Resolution Operator:
But the above class definition for Date is rather messy, since all the code is included in the class definition itself. If the functions were to be more numerous and/or more complex, then it would be very cumbersome to define the classes. C++ makes it possible to only place the prototypes inside the class declaration, and the function definition itself can be placed outside the class declaration. This is done through the "::" operator. This is referred to as the scope resolution operator. The “::” operator allows the definition of member functions outside the class definition. This is done as follows:

<data type returned> <name of class>::function-name()

 {

 code body

 }

For example, for the get_day() function, it would be done as follows:

int Date1::get_day(void) const // public member function

 {

 return (day);

 }

Perform the following tasks:

1. Rewrite the Date class definition with the function definitions coded outside the class declaration.

2. Run the same main () program. Note that the class member function definitions have to follow the class declaration, or be linked to the class code.

3. TURN IN: .CPP file and screen output.

7.
Private Functions:
Some member functions can be considered private. These are functions that a user has no need to use, and are to be kept hidden within the class itself. One example in our sample code could be to check for errors in data entry. This further tends to make the objects as self-sufficient as possible, which is one of the main objectives of object-oriented programming.

Perform the following tasks:

1. Write three functions that check the data being entered through the set () function.

a. Write a private Test_Day function that verifies that the day entered is valid for the month entered. The function should return a true if the day is valid or a false if the day is invalid.

b. Write a similar function that verifies that the month entered is between 1 and 12. The function should return a true if the data is valid, otherwise it should return a false.

c. Write a similar function that verifies that the year entered if between 1990 and 2000. The function should return a true if the data is valid, otherwise it should return a false.

d. Modify the set() function so that it will return false (and not carry out the data setting) if at least one of these three new functions does not return a true.

e. Run the main() function with dates 02/30/2000, 01/31/1989, 06/30/1999 and 13/01/2000 to see whether it works properly.

f. TURN IN: .CPP file(s) and the screen output.

PAGE
1

