Laboratory Manual

EEL 3801

Lab #9

Laboratory Assignment #9

EEL 3801 Introduction to Computer Engineering

Topic: Inheritance and Constructor Functions.

Turn in: .CPP file with screen output.

Inheritance and Constructor Functions

In the previous laboratory assignment, we purposely stayed away from dealing with constructor and destructor functions and how they act under inheritance circumstances. This was done on purpose so as not to confuse you any more than you probably already were. The fact is, however, that constructors and destructors are not inherited in C++. This is true regardless of the access specification for the base class as well as for the functions themselves. However, their role is important, as the constructor for the derived class must call the constructors for the base class, or else, the derived class will not be properly instantiated. In this Lab assignment, we will learn how to deal with this issue. We will also discuss other issues such as constructor initialization lists, overriding individual members inherited access, and multiple inheritance.

1.
Initialization lists:

C++ uses an alternative way of defining and executing constructor functions, through the so-called initialization lists. Constructor functions can be defined in two ways. Perform the following tasks:

a. To see one method of defining a constructor, we define the following class:

class Store

{

int

num;

double sales;

public:

Store (int n, double s)

{

num=n,

sales=s

};

~Store()

{

}; // implemented elsewhere

void print(); // also not important

};

b. The constructor Store (int ...) can be defined alternatively through the use of initialization lists as follows:

 class Store

{

int
num;

double sales;

public:

Store(int n, double s) : num(n), sales(s) { };

~Store()

{

}; // implemented elsewhere

void print(); // also not important

};

Note that there is no longer a need for a body in the constructor function (hence, {}). However, a body can be defined if something other than initialization is desired. Initialization lists are generally the preferred way of initializing the class members because:

1. A constructor function should be used to initialize, not assign. There is the danger that a constructor function could be used to assign in addition to initialization.

2. Const and reference members cannot be assigned values. They can only be initialized.

3. When inheritance is implemented, initialization lists provide a much smoother transition to base class construction.

c. Generate the class Store defined in (b) above.

d. Create two instance objects of that class called Conway and Oviedo.

e. Initialize each from the main() function through the use of the constructor function.

f. Turn in the .CPP file.

2.
Inheritance with constructors:

When instance objects of derived classes are instantiated, the programmer needs to remember that that object is not simply an instance of a class, but rather, one of a number of other classes tied together through the powers of inheritance. So, when construction of an instance of a derived class is to be done, it also must take into account the construction of its parent class. In order to introduce some resemblance of order into the situation, each class is required to "take care" of its parent class only. If each class takes care of its respective parent class, then it does not matter how long the inheritance "chain" is, as order will be enforced. Construction of a parent class can be accomplished by including an argument list in the derived class constructor. The C++ compiler will use this argument to initialize the base (parent) class constructor. For example, for a base class called Base, and a derived class (from Base) called Derived, the constructor function for the Derived class would be as follows:

Derived::Derived (int i, float x) : Base (char * c, int j);

Where Base (...) is the constructor function for the Base class. When the constructor for derived is called, the list of arguments must include the arguments for the Base class constructor as well. To investigate this, perform the following tasks.

a. Enter the following classes into files. If you use the C++ development environment, it will separate the class prototype and class implementation into two different files.

#include <iostream.h>

#include <iomanip.h>

#include <string.h>

//

// base class definition

//

class Inventory

{

 private:

int

quant; // number on hand

 int

reorder; // reorder quantity

 double price; // price per unit

 char*
descrip;
// description of item

public:

Inventory (int q, int r, double p, char* d)

: quant(q), reorder(r), price(p)

{

descrip = new char[strlen(d)+1];

strcpy (descrip, d);

}

 ~Inventory()

{

delete descrip;
// Some C++ may require delete [] descrip;

}

 void print();

{

cout <<"Description: " << descrip << endl;

}

 int get_quant();

{

return quant;

}

 int get_reorder();

{

return reorder;

}

 double get_price();

{

return price;

}

};

//

// first derived class

//

class Auto : public Inventory

{

char * manufacturer;

public:

Auto (int q, int r, double p, char * d, char * man) :

Inventory(q, r, p, d) // calls base constructor

{

manufacturer = new char [strlen (man)+1];

strcpy (manufacturer, man);

}

~Auto()

{

delete manufacturer;
// May use delete [] manufacturer

}

void print()

{

cout << setiosflags (ios::fixed);

 cout << "Manufacturer: " << manufacturer << endl;

}

char * get_manufacturer()

{

return manufacturer;

}

};

//

// Second derived class

//

class Transmission : public Inventory

{

char * vendor;

public:

Transmission (int q, int r, double p, char * d, char * ven) : Inventory(q, r, p, d)

{

vendor = new char [strlen (ven)+1];

strcpy (vendor, ven);

}

~ Transmission ()

{

delete vendor;
// May require delete [] vendor

}

void print()

{

cout << setiosflags(ios::fixed);

cout << "Vendor: " << vendor << endl;

}

char * get_vendor() const

{

return vendor;

}

};

b. Write a main () function that creates an instance object of Auto called Car, which has the following initial data: there is a quantity of five(5) on inventory, and two(2) on reorder; the price per unit is $15,545.91, and the description is that of a four-wheel drive truck, obtained from the GM. Initialize the object Car, and print out all its vital facts.

c. A Transmission is purchased from Aztec Inc., and must be inventoried. There are 25 of them, with 10 more on reorder. Their price is $1789.98. Instantiate and initialize an object for Transmission (called, interestingly enough, Transmissions), and provide the same information.

d. Please note that the print() functions has been overwritten in the derived class, so if the print() for the base class is desired, it must be specified. Precede all printouts with a line describing what it is we are looking at.

e. Turn in the .CPP file and the screen output.

3.
Overriding inherited access:

A programmer for specific members can override the private-protected-public combinations of inheritance. Let's suppose that we use a protected access for an inherited class. This means that all the members of the base class will be inherited in the same form as they were in the base class, except for public, which revert to protected in the derived class. To investigate the overriding concept, perform the following tasks.

a. Use the following classes for your lab.

class BaseAbc

{

int
i;

protected:

char * name;

public:

float stuff;

void print()

{

}

BaseAbc get_vals();

BaseAbc()

{

}

~BaseAbc()

{

}

};

class DerivedXyz : protected BaseAbc

{

float
additional;

public:

DerivedXyz ()

{

}

~DerivedXyz()

{

}

};

Let's say we wanted print () to remain public in DerivedXyz, but otherwise keep get_vals () as protected for some weird reason, we could override the inheritance rules by simply stating the DerivedXyz class definition as follows:

class BaseAbc

{ // same as above

.

.

.

};

class DerivedXyz : protected BaseAbc

{

float additional;

 public:

BaseAbc::print(); // this is now public

 DerivedXyz()

{

}

 ~DerivedXyz()

{

}

};

b. Write a main() function that creates an instance object of DerivedXyz called thing whose print() function is inherited as public. Include some printing statements that verify the above.

c. Rewrite the DerivedXyz class so that the stuff member is inherited as private. Modify the main () function so that it can be verified. You will need to define the get_vals () function as well.

d. Turn in .CPP file and the screen output.

4.
Multiple inheritance:

A derived class may inherit things from more than one parent class. This is different from inheriting from a chain of classes, as it inherits from more than one class at the same level (parent). Therefore, inheritance can include more than one chain. This is shown in the following code snippet:

#include <iostream.h>

class Date

{

int day;

int month;

int year;

public:

Date();

~Date();

void display();
// displays the date

Date get();

// accesses the date members

void set();
// sets the date members

};

class Time

{

int hour;

int minute;

int second;

public:

Time();

~Time();

void display();
// displays the time

Time get();
// accesses the time members

void set();

// sets the time members

};

class DateAndTime : public Date, public Time

{

int digital;

public:

void display();

// prints date and time

};

a. Define an instance object of class DateTime called Watch.

b. Write a main () function that would initialize the values through the constructor functions, and then allows them to be reset through the set () functions. Be sure and display the results following the constructor before you use the set functions.

c. Through the use of the display () function, the time and date are to be displayed. Note that the display () functions in all three classes need to be defined, as well as the constructor and all the access functions.

d. Turn in the .CPP file(s) and screen output.

PAGE
1

