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An Alternative to RISC: The Intel 80x86

 

MIPS was the vision of a single architect. The pieces of this architecture fit nicely
together and the whole architecture can be described succinctly. Such is not the
case of the 80x86: It is the product of several independent groups who evolved
the architecture over 20 years, adding new features to the original instruction set
as you might add clothing to a packed bag. Here are important 80x86 milestones:

 

�

 

1978—The Intel 8086 architecture was announced as an assembly language–
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Whereas the 8080 was a straightforward accumulator machine, the 8086
extended the architecture with additional registers. Because nearly every reg-
ister has a dedicated use, the 8086 falls somewhere between an accumulator
machine and a general-purpose register machine, and can fairly be called an

 

extended accumulator 

 

machine. 

 

�

 

1980—The Intel 8087 floating-point coprocessor is announced. This architec-
ture extends the 8086 with about 60 floating-point instructions. Its architects
rejected extended accumulators to go with a hybrid of stacks and registers,
essentially an 

 

extended stack

 

 architecture: A complete stack instruction set is
supplemented by a limited set of register-memory instructions. 

 

�

 

1982—The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory mapping and protection
model, and by adding a few instructions to round out the instruction set and to
manipulate the protection model. Because it was important to run 8086 pro-
grams without change, the 80286 offered a 

 

real addressing mode

 

 to make the
machine look just like an 8086.

 

�

 

1985—The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the 80386
added new addressing modes and additional operations. The added instruc-
tions make the 80386 nearly a general-purpose register machine. The 80386
also added paging support in addition to segmented addressing (see Chapter
5). Like the 80286, the 80386 has a mode to execute 8086 programs without
change. 

This history illustrates the impact of the “golden handcuffs” of compatibility
on the 80x86, as the existing software base at each step was too important to
jeopardize with significant architectural changes. Fortunately, the subsequent
80486 in 1989, Pentium in 1992, and P6 in 1995 were aimed at higher perfor-
mance, with only four instructions added to the user-visible instruction set: three
to help with multiprocessing plus a conditional move instruction.

Since 1997 Intel has added hundreds of instructions to support multimedia by
operating on many narrower data types within a single clock (see Chapter 2).
These SIMD or vector instructions are primarily used in handcoded libraries or
drivers and rarely generated by compilers. The first extension, called MMX,
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appeared in 1997. It consists of 57 instructions that pack and unpack multiple
bytes, 16-bit words, or 32-bit double words into 64-bit registers and performs
shift, logical, and integer arithmetic on the narrow data items in parallel. It sup-
ports both saturating and nonsaturating arithmetic. MMX uses the registers com-
prising the floating-point stack and hence there is no new state for operating
systems to save.

In 1999 Intel added another 70 instructions, labeled SSE as part of Pentium
III. The primary changes were to add eight separate registers, double their width
to 128 bits, and add a single-precision floating-point data type. Hence four 32-bit
floating-point operations can be performed in parallel. To improve memory per-
formance, SSE included cache prefetch instructions plus streaming store instruc-
tions that bypass the caches and write directly to memory.

In 2001 Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit floating-
point operations in parallel. Almost all of these 144 instructions are versions of
existing MMX and SSE instructions that operate on 64 bits of data in parallel.
Not only does this change enable multimedia operations, it gives the compiler a
different target for floating-point operations than the unique stack architecture.
Compilers can choose to use the eight SSE registers as floating-point registers as
found in the RISC machines. This change has boosted performance on the Pen-
tium 4, the first microprocessor to include SSE2 instructions. At the time of
announcement, a 1.5 GHz Pentium 4 was 1.24 times faster than a 1 GHz Pentium
III for SPECint2000(base), but it was 1.88 times faster for SPECfp2000(base).

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other server or desktop proces-
sor in the world, perhaps 500 million in 2001. Nevertheless, its checkered ances-
try has led to an architecture that is difficult to explain and impossible to love. 

We start our explanation with the registers and addressing modes, move on to
the integer operations, then cover the floating-point operations, and conclude
with an examination of instruction encoding.

The evolution of the instruction set can be seen in the registers of the 80x86
(Figure D.1). Original registers are shown in black type, with the extensions of
the 80386 shown in a lighter shade, a coloring scheme followed in subsequent
figures. The 80386 basically extended all 16-bit registers (except the segment reg-
isters) to 32 bits, prefixing an “E” to their name to indicate the 32-bit version. The
arithmetic, logical, and data transfer instructions are two-operand instructions
that allow the combinations shown in Figure D.2.

To explain the addressing modes we need to keep in mind whether we are
talking about the 16-bit mode used by both the 8086 and 80286 or the 32-bit
mode available on the 80386 and its successors. The seven data memory address-
ing modes supported are
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Figure D.1

 

The 80x86 has evolved over time, and so has its register set. 

 

The original set is shown in black, and the
extended set in gray. The 8086 divided the first four registers in half so that they could be used either as one 16-bit
register or as two 8-bit registers. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. The floating-point registers on the bottom are 80 bits wide, and although
they look like regular registers they are not. They implement a stack, with the top of stack pointed to by the status
register. One operand must be the top of stack, and the other can be any of the other seven registers below the top
of stack.

FPR 0

FPR 1

FPR 2

FPR 3

FPR 4

FPR 5

FPR 6

FPR 7

079
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015

8 731

GPR 0 AccumulatorEAX AX AH AL

GPR 3 Base addr. regEBX BX BH BL

GPR 1 Count reg: string, loopECX CX CH CL

GPR 2 Data reg: multiply, divideEDX DX DH DL

GPR 6 ESI Index reg, string source ptr.SI

Code segment ptr.CS

Stack  segment ptr. (top of stack)SS

Data segment ptr.DS

Extra data segment ptr. ES

Data segment ptr. 2FS

Data segment ptr. 3GS

GPR 7 EDI Index reg, string dest. ptr.DI
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�

 

absolute

 

�

 

register indirect

 

�

 

based

 

�

 

indexed

 

�

 

based indexed with displacement

 

�

 

based with scaled indexed

 

�

 

based with scaled indexed and displacement 

Displacements can be 8 or 32 bits in 32-bit mode, and 8 or 16 bits in 16-bit mode.
If we count the size of the address as a separate addressing mode, the total is 11
addressing modes. 

Although a memory operand can use any addressing mode, there are restric-
tions on what registers can be used in a mode. Section D.5 on 80x86 instruction
encodings gives the full set of restrictions on registers, but the following descrip-
tion of addressing modes gives the basic register options:

 

�

 

Absolute

 

—With 16-bit or 32-bit displacement, depending on the mode.

 

�

 

Register indirect

 

—

 

BX

 

, 

 

SI

 

, 

 

DI

 

 in 16-bit mode and 

 

EAX

 

, 

 

ECX

 

, 

 

EDX

 

, 

 

EBX

 

, 

 

ESI

 

, and

 

EDI

 

 in 32-bit mode.

 

�

 

Based mode with 8-bit or 16-bit/32-bit displacement

 

—

 

BP

 

, 

 

BX

 

, 

 

SI

 

, 

 

DI

 

 in 16-bit
mode and 

 

EAX

 

, 

 

ECX

 

, 

 

EDX

 

, 

 

EBX

 

, 

 

ESI

 

, and 

 

EDI

 

 in 32-bit mode. The displacement
is either 8 bits or the size of the address mode: 16 or 32 bits. (Intel gives two
different names to this single addressing mode, 

 

based

 

 and 

 

indexed

 

, but they
are essentially identical and we combine them. This book uses indexed
addressing to mean something different and is explained next.)

 

�

 

Indexed

 

—Address is sum of two registers. The allowable combinations are

 

BX+SI

 

, 

 

BX+DI

 

, 

 

BP+SI

 

, and 

 

BP+DI

 

. This mode is called 

 

based indexed

 

 on the
8086. (The 32-bit mode uses a different addressing mode to get the same
effect.)

 

Source/destination operand type Second source operand

 

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

 

Figure D.2

 

Instruction types for the arithmetic, logical, and data transfer instruc-
tions. 

 

The 80x86 allows the combinations shown. The only restriction is the absence of
a memory-memory mode. Immediates may be 8, 16, or 32 bits in length; a register is
any one of the 14 major registers in Figure D.1 (not IP or FLAGS). 
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�

 

Based indexed with 8- or 16-bit displacement

 

—The address is the sum of dis-
placement and contents of two registers. The same restrictions on registers
apply as in indexed mode.

 

�

 

Base plus scaled indexed

 

—This addressing mode and the next were added in
the 80386, and are only available in 32-bit mode. The address calculation is

 

Base register + 2

 

Scale

 

  

 

×

 

 Index register

 

where 

 

Scale

 

 has the value 0, 1, 2, or 3, 

 

Index register

 

 can be any of the eight
32-bit general registers except 

 

ESP

 

, and 

 

Base register

 

 can be any of the eight
32-bit general registers.

 

�

 

Base plus scaled index with 8- or 32-bit displacement

 

—The address is the
sum of the displacement and the address calculated by the scaled mode
immediately above. The same restrictions on registers apply.

The 80x86 uses Little Endian addressing.
Ideally, we would refer discussion of 80x86 logical and physical addresses to

Chapter 5, but the segmented address space prevents us from hiding that informa-
tion. Figure D.3 shows the memory mapping options on the generations of 80x86
machines; Chapter 5 describes the segmented protection scheme in greater detail.

The assembly language programmer clearly must specify which segment reg-
ister should be used with an address, no matter which address mode is used. To
save space in the instructions, segment registers are selected automatically
depending on which address register is used. The rules are simple: References to
instructions (

 

IP

 

) use the code segment register (

 

CS

 

), references to the stack (

 

BP

 

 or

 

SP

 

) use the stack segment register (

 

SS

 

), and the default segment register for the
other registers is the data segment register (

 

DS

 

). The next section explains how
they can be overridden.

The 8086 provides support for both 8-bit (

 

byte

 

) and 16-bit (called 

 

word

 

) data
types. The data type distinctions apply to register operations as well as memory
accesses. The 80386 adds 32-bit addresses and data, called double words. Almost
every operation works on both 8-bit data and one longer data size. That size is
determined by the mode and is either 16 or 32 bits. 

Clearly some programs want to operate on data of all three sizes, so the 80x86
architects provide a convenient way to specify each version without expanding
code size significantly. They decided that most programs would be dominated by
either 16- or 32-bit data, and so it made sense to be able to set a default large size.
This default size is set by a bit in the code segment register. To override the
default size, an 8-bit 

 

prefix

 

 is attached to the instruction to tell the machine to use
the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple pre-
fixes to modify instruction behavior. The three original prefixes override the
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default segment register, lock the bus so as to perform a semaphore (see Chapter
6), or repeat the following instruction until 

 

CX

 

 counts down to zero. This last prefix
was intended to be paired with a byte move instruction to move a variable number
of bytes. The 80386 also added a prefix to override the default address size.

The 80x86 integer operations can be divided into four major classes:

 

1.

 

Data movement instructions, including move, push, and pop.

 

Figure D.3

 

The original segmented scheme of the 8086 is shown on the left.

 

 

 

All 80x86 processors support this
style of addressing, called 

 

real mode

 

. It simply takes the contents of a segment register, shifts it left 4 bits, and adds it
to the 16-bit offset, forming a 20-bit physical address. The 80286 (center) used the contents of the segment register
to select a segment descriptor, which includes a 24-bit base address among other items. It is added to the 16-bit off-
set to form the 24-bit physical address. The 80386 and successors (right) expand this base address in the segment
descriptor to 32 bits and also add an optional paging layer below segmentation. A 32-bit linear address is first
formed from the segment and offset, and then this address is divided into two 10-bit fields and a 12-bit page offset.
The first 10-bit field selects the entry in the first-level page table, and then this entry is used in combination with the
second 10-bit field to access the second-level page table to select the upper 20 bits of the physical address. Prepend-
ing this 20-bit address to the final 12-bit field gives the 32-bit physical address. Paging can be turned off, redefining
the 32-bit linear address as the physical address. Note that a “flat” 80x86 address space comes simply by loading the
same value in all the segment registers; that is, it doesn’t matter which segment register is selected.

OffsetSegment

16 32

32

32

32

20 20

20

1010
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Physical address

Physical address
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Paging

Segmentation

OffsetSegment

16 16

24
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Logical address

OffsetSegment
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2.

 

Arithmetic and logic instructions, including logical operations, test, shifts,
and integer and decimal arithmetic operations.

 

3.

 

Control flow, including conditional branches and unconditional jumps, calls,
and returns.

4. String instructions, including string move and string compare.

Figure D.4 shows some typical 80x86 instructions and their functions.
The data transfer, arithmetic, and logic instructions are unremarkable, except

that the arithmetic and logic instruction operations allow the destination to be
either a register or a memory location.

Control flow instructions must be able to address destinations in another seg-
ment. This is handled by having two types of control flow instructions: “near” for
intrasegment (within a segment) and “far” for intersegment (between segments)
transfers. In far jumps, which must be unconditional, two 16-bit quantities follow
the opcode in 16-bit mode. One of these is used as the instruction pointer, while
the other is loaded into CS and becomes the new code segment. In 32-bit mode
the first field is expanded to 32 bits to match the 32-bit program counter (EIP). 

Calls and returns work similarly—a far call pushes the return instruction
pointer and return segment on the stack and loads both the instruction pointer and
the code segment. A far return pops both the instruction pointer and the code seg-
ment from the stack. Programmers or compiler writers must be sure to always use
the same type of call and return for a procedure—a near return does not work
with a far call, and vice versa.

Instruction Function

JE  name if equal(CC) {IP←name}; IP–128 ≤ name < IP+128
JMP  name IP←name

CALLF name, seg SP←SP–2; M[SS:SP]←IP+5; SP←SP–2; 
M[SS:SP]←CS; IP←name; CS←seg; 

MOVW  BX,[DI+45] BX←16M[DS:DI+45]

PUSH SI SP←SP–2; M[SS:SP]←SI

POP  DI DI←M[SS:SP]; SP←SP+2

ADD  AX,#6765 AX←AX+6765

SHL  BX,1 BX←BX1..15 ## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI]←8M[DS:SI]; DI←DI+1; SI←SI+1

Figure D.4 Some typical 80x86 instructions and their functions. A list of frequent
operations appears in Figure D.5. We use the abbreviation SR:X to indicate the forma-
tion of an address with segment register SR and offset X. This effective address corre-
sponding to SR:X is (SR<<4)+X. The CALLF saves the IP of the next instruction and the
current CS on the stack. The hardware description language is described on the back
inside cover of this book. 
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String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs.

Figure D.5 lists some of the integer 80x86 instructions. Many of the instruc-
tions are available in both byte and word formats.

Instruction Meaning

Control Conditional and unconditional branches

JNZ, JZ Jump if condition to IP + 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative names

JMP, JMPF Unconditional jump—8- or 16-bit offset intrasegment (near), and intersegment (far) versions

CALL, CALLF Subroutine call—16-bit offset; return address pushed; near and far versions

RET, RETF Pops return address from stack and jumps to it; near and far versions

LOOP Loop branch—decrement CX; jump to IP + 8-bit displacement if CX ≠ 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH Push source operand on stack

POP Pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic/logical Arithmetic and logical operations using the data registers and memory

ADD Add source to destination; register-memory format

SUB Subtract source from destination; register-memory format

CMP Compare source and destination; register-memory format

SHL Shift left

SHR Shift logical right

RCR Rotate right with carry as fill

CBW Convert byte in AL to word in AX

TEST Logical AND of source and destination sets flags

INC Increment destination; register-memory format

DEC Decrement destination; register-memory format

OR Logical OR; register-memory format

XOR Exclusive OR; register-memory format

String instructions Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination; may be repeated

LODS Loads a byte or word of a string into the A register

Figure D.5 Some typical operations on the 80x86. Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand.
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Intel provided a stack architecture with its floating-point instructions: loads push
numbers onto the stack, operations find operands in the top two elements of the
stacks, and stores can pop elements off the stack, just as the stack example in
Figure 2.2 on page 93 suggests. 

Intel supplemented this stack architecture with instructions and addressing
modes that allow the architecture to have some of the benefits of a register-
memory model. In addition to finding operands in the top two elements of the
stack, one operand can be in memory or in one of the seven registers below the
top of the stack. 

This hybrid is still a restricted register-memory model, however, in that loads
always move data to the top of the stack while incrementing the top of stack
pointer and stores can only move the top of stack to memory. Intel uses the nota-
tion ST to indicate the top of stack, and ST(i) to represent the ith register below
the top of stack.

One novel feature of this architecture is that the operands are wider in the reg-
ister stack than they are stored in memory, and all operations are performed at
this wide internal precision. Numbers are automatically converted to the internal
80-bit format on a load and converted back to the appropriate size on a store.
Memory data can be 32-bit (single-precision) or 64-bit (double-precision) floating-
point numbers, called real by Intel. The register-memory version of these instruc-
tions will then convert the memory operand to this Intel 80-bit format before per-
forming the operation. The data transfer instructions also will automatically
convert 16- and 32-bit integers to reals, and vice versa, for integer loads and
stores.

The 80x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store.

2. Arithmetic instructions, including add, subtract, multiply, divide, square root,
and absolute value.

3. Comparison, including instructions to send the result to the integer CPU so
that it can branch.

4. Transcendental instructions, including sine, cosine, log, and exponentiation.

Figure D.6 shows some of the 60 floating-point operations. We use the curly
brackets {} to show optional variations of the basic operations: {I} means there
is an integer version of the instruction, {P} means this variation will pop one
operand off the stack after the operation, and {R} means reverse the sense of the
operands in this operation. 

Not all combinations are provided. Hence

F{I}SUB{R}{P}

represents these instructions found in the 80x86:

D.4 80x86 Floating-Point Operations
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FSUB
FISUB
FSUBR
FISUBR
FSUBP
FSUBRP

There are no pop or reverse pop versions of the integer subtract instructions.
Note that we get even more combinations when including the operand modes

for these operations. The floating-point add has these options, ignoring the inte-
ger and pop versions of the instruction:

FADD Both operands in stack, result replaces top of stack.

FADD ST(i) One source operand is ith register below the top of stack,
and the result replaces the top of stack.

FADD ST(i),ST One source operand is the top of stack, and the result
replaces ith register below the top of stack.

FADD mem32 One source operand is a 32-bit location in memory, and
the result replaces the top of stack.

FADD mem64 One source operand is a 64-bit location in memory, and
the result replaces the top of stack.

As mentioned above SSE2 presents yet another model of IEEE floating-point
registers.

Data transfer Arithmetic Compare Transcendental

F{I}LD mem/ST(i) F{I}ADD{P} mem/ST(i) F{I}COM{P}{P} FPATAN

F{I}ST{P} mem/ST(i) F{I}SUB{R}{P} mem/ST(i) F{I}UCOM{P}{P} F2XM1

FLDPI F{I}MUL{P} mem/ST(i) FSTSW AX/mem FCOS

FLD1 F{I}DIV{R}{P} mem/ST(i) FPTAN

FLDZ FSQRT FPREM

FABS FSIN

FRNDINT FYL2X

Figure D.6 The floating-point instructions of the 80x86. The first column shows the data transfer instructions,
which move data to memory or to one of the registers below the top of the stack. The last three operations push con-
stants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described above. Note
that the last three operate only on the top of stack. The third column is the compare instructions. Since there are no
special floating-point branch instructions, the result of the compare must be transferred to the integer CPU via the
FSTSW instruction, either into the AX register or into memory, followed by an SAHF instruction to set the condition
codes. The floating-point comparison can then be tested using integer branch instructions. The final column gives
the higher-level floating-point operations.
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Saving the worst for last, the encoding of instructions in the 8086 is complex,
with many different instruction formats. Instructions may vary from one byte,
when there are no operands, to up to six bytes, when the instruction contains a
16-bit immediate and uses 16-bit displacement addressing. Prefix instructions
increase 8086 instruction length beyond the obvious sizes. 

The 80386 additions expand the instruction size even further, as Figure D.7
shows. Both the displacement and immediate fields can be 32 bits long, two more
prefixes are possible, the opcode can be 16 bits long, and the scaled index mode
specifier adds another 8 bits. The maximum possible 80386 instruction is 17
bytes long.

Figure D.8 shows the instruction format for several of the example instruc-
tions in Figure D.4. The opcode byte usually contains a bit saying whether the
operand is a byte wide or the larger size, 16 bits or 32 bits depending on the
mode. For some instructions the opcode may include the addressing mode and
the register; this is true in many instructions that have the form register
←register op immediate. Other instructions use a “postbyte” or extra opcode

Figure D.7 The instruction format of the 8086 (black type) and the extensions for
the 80386 (shaded type). Every field is optional except the opcode.
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Opcode

mod, reg, r/m

Disp8

Disp16
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Immediate

Opcode

Repeat

Lock



D.5 80x86 Instruction Encoding � D-13

byte, labeled “mod, reg, r/m” in Figure D.7, which contains the addressing mode
information. This postbyte is used for many of the instructions that address mem-
ory. The based with scaled index uses a second postbyte, labeled “sc, index, base”
in Figure D.7.

Figure D.8 Typical 8086 instruction formats. The encoding of the postbyte is shown
in Figure D.9. Many instructions contain the 1-bit field w, which says whether the opera-
tion is a byte or a word. Fields of the form v/w or d/w are a d-field or v-field followed by
the w-field. The d-field in MOV is used in instructions that may move to or from memory
and shows the direction of the move. The field v in the SHL instruction indicates a
variable-length shift; variable-length shifts use a register to hold the shift count. The
ADD instruction shows a typical optimized short encoding usable only when the first
operand is AX. Overall instructions may vary from one to six bytes in length. 

JE

a.  JE PC + displacement

CALLF Segment numberOffset

b.  CALLF

c.  MOV  BX, [DI + 45]

PUSH

d.  PUSH SI

ADD w

e.  ADD AX, #6765

SHL
r-r

postbytev/w

f.  SHL BX, 1

g.  TEST DX, #42

Reg

4 4 8

6 8 8

8 16 16

2

5 3

4 13 16

Constant

6 2 8

7 1 8 8

Condition Displacement

MOV d/w Displacement
r-m

postbyte

TEST Postbyte Immediatew

Reg
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The floating-point instructions are encoded in the escape opcode of the 8086
and the postbyte address specifier. The memory operations reserve 2 bits to
decide whether the operand is a 32- or 64-bit real or a 16- or 32-bit integer. Those
same 2 bits are used in versions that do not access memory to decide whether the
stack should be popped after the operation and whether the top of stack or a lower
register should get the result.

Alas, you cannot separate the restrictions on registers from the encoding of
the addressing modes in the 80x86. Hence Figures D.9 and D.10 show the encod-
ing of the two postbyte address specifiers for both 16- and 32-bit mode.

In this section we present detailed measurements for the 80x86, and then com-
pare the measurements to MIPS for the same programs. To facilitate comparisons
among dynamic instruction set measurements, we use a subset of the SPEC92
programs. The 80x86 results were taken in 1994 using the Sun Solaris FOR-
TRAN and C compilers V2.0 and executed in 32-bit mode. These compilers were
comparable in quality to the compilers used for MIPS.

w = 1 mod = 0 mod = 1 mod = 2

reg w = 0 16b 32b r/m 16b 32b 16b 32b 16b 32b mod = 3 

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 field

4 AH SP ESP 4 addr=SI =(sib) SI+disp16 (sib)+disp8 SI+disp8 (sib)+disp32 "

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 "

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 "

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 "

Figure D.9 The encoding of the first address specifier of the 80x86, “mod, reg, r/m.” The first four columns show
the encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-
or 32-bit mode. The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends
on the value in the 2-bit mod field and the address size. Basically, the registers used in the address calculation are
listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod = 2
adding a 16- or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; r/m = 5 when mod =1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and r/m = 4 in 32-bit mode when mod ≠3 (sib) means use the scaled index mode shown in
Figure D.10. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with
the w bit.

D.6 Putting It All Together: Measurements of Instruction 
Set Usage
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Remember that these measurements depend on the benchmarks chosen and
the compiler technology used. Although we feel that the measurements in this
section are reasonably indicative of the usage of these architectures, other pro-
grams may behave differently from any of the benchmarks here, and different
compilers may yield different results. In doing a real instruction set study, the
architect would want to have a much larger set of benchmarks, spanning as wide
an application range as possible, and consider the operating system and its usage
of the instruction set. Single-user benchmarks like those measured here do not
necessarily behave in the same fashion as the operating system.

We start with an evaluation of the features of the 80x86 in isolation, and later
compare instruction counts with those of DLX.

Measurements of 80x86 Operand Addressing

We start with addressing modes. Figure D.11 shows the distribution of the oper-
and types in the 80x86. These measurements cover the “second” operand of the
operation; for example, 

mov EAX, [45]

counts as a single memory operand. If the types of the first operand were counted,
the percentage of register usage would increase by about a factor of 1.5.

The 80x86 memory operands are divided into their respective addressing
modes in Figure D.12. Probably the biggest surprise is the popularity of the
addressing modes added by the 80386, the last four rows of the figure. They

Index Base

0 EAX EAX

1 ECX ECX

2 EDX EDX

3 EBX EBX

4 no index ESP

5 EBP if mod = 0, disp32
if mod ≠ 0, EBP

6 ESI ESI

7 EDI EDI

Figure D.10 Based plus scaled index mode address specifier found in the 80386.
This mode is indicated by the (sib) notation in Figure D.9. Note that this mode expands
the list of registers to be used in other modes: register indirect using ESP comes from
Scale = 0, Index = 4, and Base = 4, and base displacement with EBP comes from Scale =
0, Index = 5, and mod = 0. The two-bit scale field is used in this formula of the effective
address: Base register + 2Scale × Index register.
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account for about half of all the memory accesses. Another surprise is the popu-
larity of direct addressing. On most other machines, the equivalent of the direct
addressing mode is rare. Perhaps the segmented address space of the 80x86
makes direct addressing more useful, since the address is relative to a base
address from the segment register.

These addressing modes largely determine the size of the Intel instructions.
Figure D.13 shows the distribution of instruction sizes. The average number of
bytes per instruction for integer programs is 2.8, with a standard deviation of 1.5,
and 4.1 with a standard deviation of 1.9 for floating-point programs. The differ-
ence in length arises partly from the differences in the addressing modes: Integer
programs rely more on the shorter register indirect and 8-bit displacement
addressing modes, while floating-point programs more frequently use the 80386
addressing modes with the longer 32-bit displacements.

Given that the floating-point instructions have aspects of both stacks and reg-
isters, how are they used? Figure D.14 shows that, at least for the compilers used

Integer average FP average

Register 45% 22%

Immediate 16% 6%

Memory 39% 72%

Figure D.11 Operand type distribution for the average of five SPECint92 programs
(compress, eqntott, espresso, gcc, li) and the average of five SPECfp92 programs
(doduc, ear, hydro2d, mdljdp2, su2cor).

Addressing mode Integer average FP average

Register indirect 13% 3%

Base + 8-bit disp. 31% 15%

Base + 32-bit disp. 9% 25%

Indexed 0% 0%

Based indexed + 8-bit disp. 0% 0%

Based indexed + 32-bit disp. 0% 1%

Base + scaled indexed 22% 7%

Base + scaled indexed + 8-bit disp. 0% 8%

Base + scaled indexed + 32-bit disp. 4% 4%

32-bit direct 20% 37%

Figure D.12 Operand addressing mode distribution by program. This chart does not
include addressing modes used by branches or control instructions.
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in this measurement, the stack model of execution is rarely followed. (See Sec-
tion D.8 for a historical explanation of this observation.)

Finally, Figures D.15 and D.16 show the instruction mixes for 10 SPEC92
programs.

Figure D.13 Averages of the histograms of 80x86 instruction lengths for five
SPECint92 programs and for five SPECfp92 programs, all running in 32-bit mode.

Option doduc ear hydro2d mdljdp2 su2cor FP average

Stack (2nd operand ST (1)) 1.1% 0.0% 0.0% 0.2% 0.6% 0.4%

Register (2nd operand ST(i), i > 1) 17.3% 63.4% 14.2% 7.1% 30.7% 26.5%

Memory 81.6% 36.6% 85.8% 92.7% 68.7% 73.1%

Figure D.14 The percentage of instructions for the floating-point operations (add, sub, mul, div) that use each of
the three options for specifying a floating-point operand on the 80x86. The three options are 1) the strict stack
model of implicit operands on the stack, 2) register version naming an explicit operand that is not one of the top two
elements of the stack, and 3) memory operand.
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Comparative Operation Measurements

Figures D.17 and D.18 show the number of instructions executed for each of the
10 programs on the 80x86 and the ratio of instruction execution compared with
that for DLX: Numbers less than 1.0 mean the 80x86 executes fewer instructions
than DLX. The instruction count is surprisingly close to DLX for many integer
programs, as you would expect a load-store instruction set architecture like DLX
to execute more instructions than a register-memory architecture like the 80x86.
The floating-point programs always have higher counts for the 80x86, presum-
ably due to the lack of floating-point registers and the use of a stack architecture. 

Instruction compress eqntott espresso gcc (cc1) li Int. average

load 20.8% 18.5% 21.9% 24.9% 23.3% 22%

store 13.8% 3.2% 8.3% 16.6% 18.7% 12%

add 10.3% 8.8% 8.15% 7.6% 6.1% 8%

sub 7.0% 10.6% 3.5% 2.9% 3.6% 5%

mul 0.1% 0%

div 0%

compare 8.2% 27.7% 15.3% 13.5% 7.7% 16%

mov reg-reg 7.9% 0.6% 5.0% 4.2% 7.8% 4%

load imm 0.5% 0.2% 0.6% 0.4% 0%

cond. branch 15.5% 28.6% 18.9% 17.4% 15.4% 20%

uncond. branch 1.2% 0.2% 0.9% 2.2% 2.2% 1%

call 0.5% 0.4% 0.7% 1.5% 3.2% 1%

return, jmp indirect 0.5% 0.4% 0.7% 1.5% 3.2% 1%

shift 3.8% 2.5% 1.7% 1%

and 8.4% 1.0% 8.7% 4.5% 8.4% 6%

or 0.6% 2.7% 0.4% 0.4% 1%

other (xor, not, . . .) 0.9% 2.2% 0.1% 1%

load FP 0%

store  FP 0%

add FP 0%

sub  FP 0%

mul FP 0%

div FP 0%

compare FP 0%

mov reg-reg FP 0%

other (abs, sqrt, . . .) 0%

Figure D.15 80x86 instruction mix for five SPECint92 programs.
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Another question is the total amount of data traffic for the 80x86 versus DLX,
since the 80x86 can specify memory operands as part of operations while DLX
can only access via loads and stores. Figures D.17 and D.18 also show the data
reads, data writes, and data read-modify-writes for these 10 programs. The total
accesses ratio to DLX of each memory access type is shown in the bottom rows,
with the read-modify-write counting as one read and one write. The 80x86
performs about two to four times as many data accesses as DLX for floating-point
programs, and 1.25 times as many for integer programs. Finally, Figure D.19
shows the percentage of instructions in each category for 80x86 and DLX. 

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

load 8.9% 6.5% 18.0% 27.6% 27.6% 20%

store 12.4% 3.1% 11.5% 7.8% 7.8% 8%

add 5.4% 6.6% 14.6% 8.8% 8.8% 10%

sub 1.0% 2.4% 3.3% 2.4% 2.4% 3%

mul 0%

div 0%

compare 1.8% 5.1% 0.8% 1.0% 1.0% 2%

mov reg-reg 3.2% 0.1% 1.8% 2.3% 2.3% 2%

load imm 0.4% 1.5% 0%

cond. branch 5.4% 8.2% 5.1% 2.7% 2.7% 5%

uncond branch 0.8% 0.4% 1.3% 0.3% 0.3% 1%

call 0.5% 1.6% 0.1% 0.1% 0%

return, jmp indirect 0.5% 1.6% 0.1% 0.1% 0%

shift 1.1% 4.5% 2.5% 2.5% 2%

and 0.8% 0.8% 0.7% 1.3% 1.3% 1%

or 0.1% 0.1% 0.1% 0%

other (xor, not, . . .) 0%

load FP 14.1% 22.5% 9.1% 12.6% 12.6% 14%

store  FP 8.6% 11.4% 4.1% 6.6% 6.6% 7%

add FP 5.8% 6.1% 1.4% 6.6% 6.6% 5%

sub  FP 2.2% 2.7% 3.1% 2.9% 2.9% 3%

mul FP 8.9% 8.0% 4.1% 12.0% 12.0% 9%

div FP 2.1% 0.8% 0.2% 0.2% 0%

compare FP 9.4% 6.9% 10.8% 0.5% 0.5% 5%

mov reg-reg FP 2.5% 0.8% 0.3% 0.8% 0.8% 1%

other (abs, sqrt, . . .) 3.9% 3.8% 4.1% 0.8% 0.8% 2%

Figure D.16 80x86 instruction mix for five SPECfp92 programs.
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Beauty is in the eye of the beholder.

Old Adage

As we have seen, “orthogonal” is not a term found in the Intel architectural dic-
tionary. To fully understand which registers and which addressing modes are

compress eqntott espresso gcc (cc1) li Int. avg.

Instructions executed on 80x86 (millions) 2226 1203 2216 3770 5020

Instructions executed ratio to DLX 0.61 1.74 0.85 0.96 0.98 1.03

Data reads on 80x86 (millions) 589 229 622 1079 1459

Data writes on 80x86 (millions) 311 39 191 661 981

Data read-modify-writes on 80x86 (millions) 26 1 129 48 48

Total data reads on 80x86 (millions) 615 230 751 1127 1507

Data read ratio to DLX 0.85 1.09 1.38 1.25 0.94 1.10

Total data writes on 80x86 (millions) 338 40 319 709 1029

Data write ratio to DLX 1.67 9.26 2.39 1.25 1.20 3.15

Total data accesses on 80x86 (millions) 953 269 1070 1836 2536

Data access ratio to DLX 1.03 1.25 1.58 1.25 1.03 1.23

Figure D.17 Instructions executed and data accesses on 80x86 and ratios compared to DLX for five SPECint92
programs.

doduc ear hydro2d mdljdp2 su2cor FP average

Instructions executed on 80x86 (millions) 1223 15,220 13,342 6197 6197

Instructions executed ratio to DLX 1.19 1.19 2.53 2.09 1.62 1.73

Data reads on 80x86 (millions) 515 6007 5501 3696 3643

Data writes on 80x86 (millions) 260 2205 2085 892 892

Data read-modify-writes on 80x86 (millions) 1 0 189 124 124

Total data reads on 80x86 (millions) 517 6007 5690 3820 3767

Data read ratio to DLX 2.04 2.36 4.48 4.77 3.91 3.51

Total data writes on 80x86 (millions) 261 2205 2274 1015 1015

Data write ratio to DLX 3.68 33.25 38.74 16.74 9.35 20.35

Total data accesses on 80x86 (millions) 778 8212 7965 4835 4782

Data access ratio to DLX 2.40 3.14 5.99 5.73 4.47 4.35

Figure D.18 Instructions executed and data accesses for five SPECfp92 programs on 80x86 and ratio to DLX.

D.7 Concluding Remarks
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available, you need to see the encoding of all addressing modes and sometimes
the encoding of the instructions. 

Some argue that the inelegance of the 80x86 instruction set is unavoidable,
the price that must be paid for rampant success by any architecture. We reject that
notion. Obviously no successful architecture can jettison features that were added
in previous implementations, and over time some features may be seen as unde-
sirable. The awkwardness of the 80x86 began at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions of the
8087, 80286, and 80386. 

A counterexample is the IBM 360/370 architecture, which is much older than
the 80x86. It dominates the mainframe market just as the 80x86 dominates the
PC market. Due undoubtedly to a better base and more compatible enhance-
ments, this instruction set makes much more sense than the 80x86 more than 30
years after its first implementation. 

For better or worse, Intel had a 16-bit microprocessor years before its com-
petitors’ more elegant architectures, and this head start led to the selection of the
8086 as the CPU for the IBM PC. What it lacks in style is made up in quantity,
making the 80x86 beautiful from the right perspective.

The saving grace of the 80x86 is that its architectural components are not too
difficult to implement, as Intel has demonstrated by rapidly improving perfor-
mance of integer programs since 1978. High floating-point performance is a
larger challenge in this architecture.

The complexity of the x86 is not an impassable barrier. . . . The biggest weakness in
the x86 instruction set is the lack of registers coupled with an extremely painful
addressing scheme.

Mike Johnson, Leader of 80x86 Design at AMD
Microprocessor Report (1994)

Integer average FP average

Category x86 DLX x86 DLX

Total data transfer 34% 36% 28% 2%

Total integer arithmetic 34% 31% 16% 12%

Total control 24% 20% 6% 10%

Total logical 8% 13% 3% 2%

Total FP data transfer 0% 0% 22% 33%

Total FP arithmetic 0% 0% 25% 41%

Figure D.19 Percentage of instructions executed by category for 80x86 and DLX for
the averages of five SPECint92 and SPECfp92 programs of Figures D.17 and D.18.

D.8 Historical Perspective and References
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There are numerous descriptions of the 80x86 architecture that have been pub-
lished—Wakerly’s [1989] is both concise and easy to understand. Crawford and
Gelsinger [1988] is a thorough description of the 80386. 

The ancestors of the 80x86 were the first microprocessors, produced late in
the first half of the 1970s. The Intel 4004 and 8008 were extremely simple 4- and
8-bit accumulator-style machines. Morse et al. [1980] describe the evolution of
the 8086 from the 8080 in the late 1970s as an attempt to provide a 16-bit
machine with better throughput. At that time almost all programming for micro-
processors was done in assembly language—both memory and compilers were in
short supply. Intel wanted to keep its base of 8080 users, so the 8086 was
designed to be “compatible” with the 8080. The 8086 was never object-code
compatible with the 8080, but the machines were close enough that translation of
assembly language programs could be done automatically. 

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce the
cost of the machine. This choice, together with the tremendous success of the
IBM PC, has made the 8086 architecture ubiquitous. The success of the IBM PC
was due in part because IBM opened the architecture of the PC and enabled the
PC-clone industry to flourish. As discussed in the introduction of this appendix,
the 80286, 80386, 80486, Pentium, and P6 have extended the architecture and
provided a series of performance enhancements.

Although the 68000 was chosen for the popular Macintosh, the Macintosh
was never as pervasive as the PC, partly because Apple did not allow clones until
recently, and the 68000 did not acquire the same software leverage that the 8086
enjoys. The Motorola 68000 may have been more significant technically than the
8086, but the impact of the selection by IBM and IBM’s open architecture strat-
egy dominated the technical advantages of the 68000 in the market. 

Kahan’s history [1990] of the stack architecture selection for the 8086 is enter-
taining. The floating-point architecture of the companion 8087 had to be retrofitted
into the 8086 opcode space, making it inconvenient to offer two operands per
instruction as found in the rest of the 8086. Hence the decision for one operand per
instruction using a stack: “The designer’s task was to make a Virtue of this Neces-
sity.” Rather than the classical stack architecture, which has no provision for
avoiding common subexpressions from being pushed and popped from memory
into the top of the stack found in registers, Intel tried to combine a flat register file
with a stack. The reasoning was the restriction of the top of stack as one operand
was not so bad since it only required the execution of an FXCH instruction (which
swapped registers) to get the same result as a two-operand instruction, and FXCH
was much faster than the floating-point operations of the 8087.

Since floating-point expressions are not that complex, Kahan reasoned that
eight registers meant that the stack would rarely overflow. Hence he urged that
the 8087 use this hybrid scheme with the provision that stack overflow or stack
underflow would interrupt the 8086 so that interrupt software could give the illu-
sion to the compiler writer of an unlimited stack for floating-point data. The Intel
8087 was implemented in Israel, and 7500 miles and 10 time zones made com-
munication difficult from California. According to Palmer and Morse [1984]:
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Unfortunately, nobody tried to write a software stack manager until after the 8087
was built, and by then it was too late; what was too complicated to perform in
hardware turned out to be even worse in software. One thing found lacking is the
ability to conveniently determine if an invalid-operation exception is indeed due
to a stack overflow. . . . Also lacking is the ability to restart the instruction that
caused the stack overflow . . . [p. 93]

The result is that the stack exceptions are too slow to handle in software. As
Kahan [1990] says:

Consequently, almost all higher-level languages’ compilers emit inefficient code
for the 80x87 family, degrading the chip’s performance by typically 50% with
spurious stores and loads necessary simply to preclude stack over/underflow. . . .

I still regret that the 8087’s stack implementation was not quite so neat as my
original intention. . . . If the original design had been realized, compilers today
would use the 80x87 and its descendents more efficiently, and Intel’s competitors
could more easily market faster but compatible 80x87 imitations.

 The P6 renames the floating-point registers (see Chapter 3), effectively pro-
viding up to 40 floating-point registers at any given instant. The main effect of the
stack organization is to force design teams to use transistors for dereferencing the
stack before doing the renaming.

Hewlett-Packard and Intel have announced a new, common instruction set
architecture. It is also upward compatible with the 80x86, and thus the 80x86
instruction set will be available in some form in computers of this century.
Instruction set anthropologists will peel off layer by layer from such machines
until they uncover artifacts from the first microprocessor. Given such a find, how
will they judge 20th-century computer architecture?
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