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Abstract—Short-term congestion forecasting is highly important
for market participants in wholesale power markets that use lo-
cational marginal prices (LMPs) to manage congestion. Accurate
congestion forecasting facilitates market traders in bidding and
trading activities and assists market operators in system planning.
This study proposes a new short-term forecasting algorithm for
congestion, LMPs, and other power system variables based on the
concept of system patterns—combinations of status flags for gener-
ating units and transmission lines. The advantage of this algorithm
relative to standard statistical forecasting methods is that struc-
tural aspects underlying power market operations are exploited to
reduce forecast error. The advantage relative to previously pro-
posed structural forecasting methods is that data requirements are
substantially reduced. Forecasting results based on a NYISO case
study demonstrate the feasibility and accuracy of the proposed al-
gorithm.

Index Terms—Congestion forecasting, convex hull algorithm,
load partitioning, locational marginal price, price forecasting,
system patterns, wholesale power market.

I. INTRODUCTION

I N many transmission regions, congestion in wholesale
power markets is managed by locational marginal prices

(LMPs), the pricing of power in accordance with the location
and timing of its injection into or withdrawal from the transmis-
sion grid. Congestion and LMP forecasts are highly important
for the decision-making of market participants. Accurate con-
gestion and LMP forecasts give advantages to market traders
in bidding and trading activities and to market operators for
system planning.1

Many studies have focused on electricity price forecasting
based on statistical tools [1]–[5] and structural models [6], [7],
yet few studies have focused on congestion forecasting. Li [8]
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1For example, during an internship at Genscape, Inc., the first author observed
first-hand that the customers for Genscape’s LMP forecasting services were gen-
eration companies, load-serving entities, and utilities interested in developing
daily market bidding strategies and improving their over-the-counter electricity
trading.

applies a statistical model to predict line shadow prices. EPRI
[9] has developed a congestion forecasting model that uses
sequential Monte Carlo simulation to produce a probabilistic
load flow. The EPRI model provides congestion probabilities
for transmission lines of interests, but it requires intensive data
input to the load flow model.

Li and Bo [10], [11] examine LMP variation in response to
load variation and they predict the next binding constraint when
load is increased. However, the authors also assume that a par-
ticular system growth pattern exists and that load growth at
each bus is proportional to this pattern. Most U.S. wholesale
power markets operating under LMP are geographically large;
hence, distributed loads do not necessarily exhibit proportional
growth. Moreover, the authors’ approach has not been applied
in large-scale power systems where practical issues of limited
data availability need to be considered.

In our previous study [12], a piecewise linear-affine map-
ping between distributed loads and DC-OPF system variable
solutions was identified and applied to forecast congestion and
LMPs under the maintained assumption that complete histor-
ical information was available regarding the marginality (or not)
of generating units and the congestion (or not) of transmission
lines. This method is able to give an exact prediction result since
it is derived from the core structure of a wholesale power market.
However, when applied to the actual forecasting of large-scale
wholesale power systems, data requirements become a problem.
The needed historical generation capacity data and line flow data
are either publicly unavailable on market operator websites or
only available with some delay. Consequently, the correct pat-
tern of binding constraints corresponding to any possible future
load point is difficult to effectively identify, which in turn pre-
vents the accurate forecasting of system variables.

Building on [12], this study develops a new algorithm for the
short-term forecasting of system variables in wholesale power
systems with substantially reduced data requirements. This al-
gorithm permits the derivation of estimated probability distri-
butions for congestion, LMPs, and other DC-OPF system vari-
able solutions in real-time markets and in forward markets with
hour-ahead, day-ahead, and week-ahead time horizons, condi-
tional on a given commitment-and-line scenario that specifies
a set of generating units committed for possible dispatch and
a set of transmission lines capable of supporting power flow.
Moreover, given suitable availability of historical data, this sce-
nario-conditioned forecasting algorithm can be generalized to a
cross-scenario forecasting algorithm by the assignment of prob-
abilities to different commitment-and-line scenarios.

This new forecasting algorithm makes use of two supporting
techniques in order to substantially reduce the amount of re-
quired data relative to [12]. The first technique is a method
developed by Bemporad et al. [13] and Tøndel et al. [14] for
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dividing the parameter space of a quadratic-linear program-
ming (QLP) problem into convex subsets such that, within each
convex subset, the optimal solution values can be expressed as
linear-affine functions of the parameters. A similar technique
is applied in this study to a QLP DC-OPF problem formula-
tion to show that, conditional on any given commitment-and-
line scenario, the load space can be divided into convex sub-
sets within which the optimal DC-OPF system variable solu-
tions are linear-affine functions of load. Each convex subset cor-
responds to a unique system pattern, that is, a unique array of
flags reflecting a particular pattern of binding minimum or max-
imum capacity constraints for the committed generating units
and available transmission lines specified by the commitment-
and-line scenario.

The second technique concerns convex hull determination.
Given any collection of points, computational geometry [15]
provides algorithms to compute the corresponding convex hull,
i.e., the smallest convex set containing these points. Convex
hull algorithms have been gaining popularity in the areas of
computer graphics, robotics, geographic information systems,
and so forth. To date, however, they have not been applied
in electricity market forecasting. A convex hull algorithm is
used in this study to estimate the convex subsets of load space
within which DC-OPF solutions are linear-affine functions
of load when incomplete historical data prevent their exact
determination.

More precisely, our new forecasting algorithm generates
short-term forecasts for congestion, LMPs, and other power
system variables as follows. Let denote a vector of loads at
some possible future operating point corresponding to a partic-
ular commitment-and-line scenario . A convex hull method
is first used to estimate the division of load space into convex
subsets (system pattern regions), each corresponding to a dis-
tinct historically-observed system pattern of binding capacity
constraints for the particular committed generating units and
available transmission lines specified under . A probabilistic
point inclusion test is next used to calculate the probability that

is associated with each historical system pattern, taking into
account the imprecision with which the system pattern regions
in load space are estimated. The congestion conditions at are
then probabilistically forecasted using the probability-weighted
historical system patterns and forecasts for LMPs and other
system variables at are calculated using the linear-affine
mapping between load and DC-OPF system variable solutions
that corresponds to each probability-weighted historical system
pattern.

Compared to state-of-the-art forecasting techniques for
power markets, our new scenario-conditioned forecasting
algorithm has the following two advantages:

• First, our algorithm makes novel use of convex hull tech-
niques to enable the short-term forecasting of congestion
conditions, prices, and other system variables for large-
scale wholesale power systems using only publicly avail-
able data.

• Second, our algorithm proposes the novel use of system
patterns as an effective way to take generation and trans-
mission capacity constraints into account when forecasting
DC-OPF-generated system variable solutions, thus permit-
ting more accurate forecasts to be obtained.

The remainder of this paper is organized as follows. The
general formulation of our forecasting problem is presented in
Section II. A detailed description of our basic scenario-con-
ditioned forecasting algorithm is provided in Section III. In
Section IV, after some practical data-availability issues are
addressed, we present a probabilistic extension of our basic
scenario-conditioned forecasting algorithm that is suitable for
addressing these data availability issues. In Section V, we
present a NYISO case study that illustrates the effectiveness
of the probabilistic scenario-conditioned forecasting algorithm
developed in Section IV. In Section VI, we discuss how this
algorithm can be further generalized to permit cross-scenario
forecasting. Concluding remarks are provided in Section VII.

II. BASIC FORECASTING PROBLEM FORMULATION

In electricity markets, congestion occurs when the available
economical electricity has to be delivered to load “out-of-merit-
order” due to transmission limitations. That is, higher-cost gen-
eration needs to be dispatched in place of cheaper generation to
meet this load in order to avoid overload of transmission lines. In
this case, the LMP levels at different nodes separate from each
other and from the unconstrained market-clearing price. There-
fore, congestion is a critical factor determining the formation of
LMP levels.

However, congestion patterns are difficult to anticipate since
they are related to the network topology of power systems.
Provided perfect information is available, such as network data,
load data, and generator bidding data, a market clearing model
could be utilized to obtain accurate forecasts of congestion
conditions and prices. Nevertheless, two issues arise for this di-
rect forecasting method. First, most market traders do not have
direct access to the information that is needed to implement
this method; they would have to depend on data published by
market operators. Second, the market operators, themselves,
would need a high degree of computational speed to carry out
the required computations.

As a result, statistical tools have been developed that tackle
these two forecasting issues by modeling the statistical corre-
lation between prices and explanatory factors. These statistical
tools lack explicit consideration for congestion, partly because
no effective approach has been developed to enable these tools
to capture and express the effects of congestion. Ignoring the
effects of congestion makes the forecasted prices less reliable
and difficult to interpret at operating points with abnormal price
behaviors.

Surely it is possible to glean some useful information about
future possible congestion conditions based on statistically fore-
casted LMPs. However, these intuitive insights, based on fore-
casters’ experiences, cannot provide reliable congestion fore-
casts. From a cause-and-effect point of view, congestion is the
cause while LMP is the effect. One cannot infer the cause (con-
gestion) from the effect (LMP) since LMP is not solely driven
by congestion. In particular, statistical LMP forecasting tools
do not take into account the structural aspects of power markets
that fundamentally drive the determination of LMPs: namely,
the fact that LMPs are derived as solutions to optimal power
flow problems subject to generation capacity and transmission
line constraints.
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TABLE I
FLAGS USED FOR SYSTEM PATTERNS

As explained more carefully in Section III, the novel concept
of a “system pattern” is used in this study to incorporate the
structural generation capacity and transmission line aspects
that drive congestion outcomes. The forecasting of congestion
at a possible future operating point is thus transformed into
a problem of estimating the correct system pattern at this
operating point. Moreover, the forecasting of prices and other
system variables at this operating point can subsequently be
undertaken using the particular linear-affine mapping between
load and DC-OPF system variable solutions that is associated
with this system pattern.

This basic forecasting approach makes three simplifying as-
sumptions. First, it is assumed that the forecasting of system
variables at possible future operating points can be conditioned
on a particular commitment-and-line scenario, that is, a par-
ticular generation commitment (designation of generating units
available for dispatch) and a particular network topology (des-
ignation of available transmission lines). Second, it is assumed
that a lossless DC-OPF problem formulation is used for the
determination of LMPs and other system variables, implying
in particular that the loss components of LMPs are neglected.
Third, it is assumed that generator supply-offer behaviors are
relatively static in the forecasting horizons.

III. BASIC FORECASTING ALGORITHM DESCRIPTION

A. System Patterns and System Pattern Regions

At any system operating point, the number of marginal gen-
erating units and binding transmission constraints tends to be
small compared to the number of nodes, transmission lines,
and generating units. For example, in the Midwest Independent
System Operator (MISO) region with 36 845 network buses and
5575 generating units, the number of day-ahead binding con-
straints is published daily and is typically observed to be less
than 20 for an hourly interval [16]. On the other hand, high-cost
units such as gas and oil units are more likely to become mar-
ginal units during peak hours, the number of which is modest.

Exploiting this important characteristic of power markets, the
idea of a system pattern is introduced consisting of a vector
of flags indicating the marginal status of committed generating
units and the congestion status of available transmission lines
at any given system operating point; see Table I. As long as the
number of marginal generating units (labeled 0) and the number
of congested transmission lines (labeled or 1) are relatively
few in number, the number of possible system patterns can be
easily handled.

As noted in Section II, the basic congestion forecasting
problem can then be transformed into a problem of estimating
the correct system pattern for any given possible future oper-
ating point. The congestion forecast is directly obtained once
the system pattern is estimated, since the status of transmission
lines is part of the system pattern. Moreover, as clarified below

Fig. 1. Illustration of two system pattern regions (SPRs) in load space.

in Section III-D, short-term forecasts for prices and other
system variables at the operating point can also be obtained
making use of this estimated system pattern.

The proposition below provides the theoretical foundation for
our proposed forecasting approach. The proposition uses the
concept of a convex polytope for an -dimensional Euclidean
space , i.e., a region in determined as the intersection of
finitely many half-spaces in .

Proposition 1: Suppose a standard DC-OPF formulation with
fixed loads and quadratic generator cost functions is used by a
market operator to determine system variable solutions. Then,
conditional on any given commitment-and-line scenario , the
load space can be covered by convex polytopes such that: 1) the
interior of each convex polytope corresponds to a unique system
pattern and 2) within the interior of each convex polytope, the
system variable solutions can be expressed as linear-affine func-
tions of the vector of distributed loads.

The proof of Proposition 1, originally derived in [17], is
outlined in an appendix to this paper. The proof starts with the
derivation of inequality and equality constraints constructed
from the first-order KKT conditions for a DC-OPF problem
conditional on a particular commitment-and-line scenario .
The inequality constraints characterize convex polytopes that
cover the load space, where the interior of each convex polytope
corresponds to a unique system pattern. The convex polytopes
constituting the covering of the load space are referred to as
system pattern regions (SPRs) for the fact that the interior of each
convex polytope is associated with a unique system pattern.

Within each SPR, the equality constraints take the form of
linear-affine equations with constant coefficients that describe
fixed linear-affine relationships between DC-OPF system vari-
able solutions and the vector of loads. The matrix of coefficients
for these linear-affine functions gives the rates of change with
regard to real-power dispatch levels for generating units and
shadow prices for bus balance and line constraints when loads
are perturbed within the region. This matrix is referred to below
as the sensitivity matrix for this SPR.

Fig. 1 provides illustrative depictions of two SPRs, and
, together with their associated linear-affine mappings, when

the load space is composed of two-dimensional load vectors
. The symbol denotes the vector of unit dispatch

levels and the symbol denotes the vector of dual variables. The
mappings are characterized by sensitivity matrices
and ordinate vectors that are constant within each
SPR, which implies that the DC-OPF solutions for and can
be expressed as fixed linear-affine functions of the load vector

within each SPR.
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Fig. 2. Illustration of the QuickHull algorithm.

B. Convex Hull Estimation of Historical SPRs

In practice, deriving the exact form of the SPRs is difficult
due to limited access to most of the required information. This
required information includes supply offer data, generating unit
capacity data, and transmission limit data.

This lack of information can be overcome by applying
a “convex hull algorithm” to historical load data to estimate
SPRs. The convex hull of a point set is the smallest convex set
that contains all the points of [18]. A convex hull algorithm
is a computational method for computing the convex hull of a
set .

As will be concretely illustrated in Section V, each historical
load point corresponding to a particular commitment-and-line
scenario can in principle be associated with a distinct system
pattern based on corresponding historical data regarding the
marginal status of the committed generating units and the con-
gested status of the available transmission lines. The historical
SPR corresponding to each such historically identified system
pattern can then be estimated by deriving the convex hull of the
collection of all historical load points that have been associated
with this system pattern.

This study makes use of the “QuickHull algorithm” to esti-
mate historical SPRs conditional on a given commitment-and-
line scenario . The QuickHull algorithm, developed by Barber
et al. [19], is an iterative procedure for determining all of the
points constituting the convex hull of a finite set . At each step,
points in that are internal to the convex hull of , and hence
not viable as vertices of the convex hull, are identified and elim-
inated from further consideration. This process continues until
no more such points can be found.

An illustrative application of the QuickHull algorithm for a
finite planar set is presented in Fig. 2. The set is first par-
titioned into two subsets and by a line lr connecting a
left-most upper point to a right-most lower point , as depicted
in Fig. 2(a). More precisely, the points in with the smallest x
value are first selected and from among these points, a point with
a largest y value is chosen to be the left-most upper point ; sim-
ilarly for the right-most lower point . For each subset and

, a point in that is furthest from is determined and two

additional lines are constructed, from to and from
to ; see Fig. 2(b). By construction, points of that lie strictly
inside the resulting triangle lzr are strictly interior to the convex
hull of and hence can be eliminated from further considera-
tion. The points on the triangle itself are possible vertex points
for the boundary of the convex hull of .

To continue the recursion, the above procedure is repeated for
the reduced subset of resulting from this elimination.

Fig. 3. Illustration of the basic point inclusion test for an SPR in a load plane.

Specifically, two subsets and associated triangles are formed as
before for and the points of lying within the inte-
riors of the resulting triangles are eliminated. If a triangle ever
degenerates to a line, then all the points along the line lie on the
boundary of the convex hull of by construction. For example,
in Fig. 2(c), the endpoints and of the line both lie on
the boundary of the convex hull of .

This process of elimination continues until no additional
points to be eliminated can be found. Since is finite, the
process is guaranteed to stop in finitely many steps. All the
convex hull points for (boundary and interior) can be deter-
mined recursively in this manner. The complete convex hull for

is depicted in Fig. 2(d). By construction, this convex hull is
a planar convex polytope.

The main advantage of the QuickHull algorithm relative to
other such algorithms is its ability to efficiently handle high-di-
mensional sets by reducing computational requirements [20].
The QuickHull algorithm has been widely used in scientific ap-
plications and appears to be the algorithm of choice for higher-
dimensional convex hull computing [21].

C. Basic Point Inclusion Test

Suppose the load space has been divided up into estimated
SPRs whose interiors correspond to distinct system patterns,
conditional on a given commitment-and-line scenario . Con-
sider, now, the task of forecasting congestion conditions at some
future operating point a short time into the future for which sce-
nario again obtains. The essence of this forecasting problem is
the detection of the correct SPR for this future operating point.
If the correct SPR can be detected, then congested conditions
can be inferred directly from the corresponding system pattern.

This detection is undertaken in this study by means of a “point
inclusion test”. The basic point inclusion test used in this study
is illustrated in Fig. 3 for an SPR in a load plane. Recall from
Section III-A that each SPR takes the form of a convex poly-
tope, i.e., a region expressable as the intersection of half-spaces;
hence each SPR has flat faces with straight edges. Let the normal
vectors pointing towards the interior of the SPR be constructed
for each edge of the SPR. Now consider the depicted point

and let denote the vector directed from the vertex to the

point . The dot product between and each normal vector
of each neighboring edge of is greater than or equal to 0. If
this is true for all vertices of the SPR, the point is judged to
be on or inside the SPR. On the other hand, one can see that

is outside the SPR since the dot product of and the normal
vector for the neighboring edge connecting to is negative.

As will be seen in Section IV, practical data-availability is-
sues prevent the use of the basic point inclusion test for the
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exact determination of the SPR containing any possible future
load point . However, given a suitable probabilistic extension
of this basic point inclusion test, the probability that any partic-
ular SPR contains can be estimated.

D. Linear-Affine Mapping Procedure

Given sufficient generation and transmission information,
each historical load point can be associated with an SPR ac-
cording to the status of the generating units and transmission
lines at the historical operating time. More precisely, given any
commitment-and-line scenario , consider the collection of all
historically observed load points obtaining under . Let this
collection of historical load points be partitioned into subsets
corresponding to distinct system patterns for scenario . For
each load subset, use the QuickHull algorithm to calculate
its convex hull in load space. Each of these convex hulls then
constitutes a distinct estimated SPR for scenario . In principal,
any future load point corresponding to scenario can then
be associated with one of these estimated SPRs by means of
the basic point inclusion test. This association permits the
prediction of congestion, prices, and other DC-OPF system
variable solutions at this load point.

To see this more clearly, let and denote matrices con-
sisting of all historically observed DC-OPF system solution vec-
tors and load vectors corresponding to a particular system pat-
tern for a particular commitment-and-line scenario . Let the
SPR in load space corresponding to this system pattern, denoted
by , be estimated by the convex hull of the collection of
all of the historically observed load vectors included in .

By Proposition 1, the mapping between and can be
expressed in the linear-affine form

(1)

where denotes the sensitivity matrix corresponding to .
Normally there will be multiple historical operating points cor-
responding to any one SPR for a given commitment-and-line
scenario . In this case ordinary least squares (OLS) can be ap-
plied to (1) to obtain estimates and for and , as
follows:

(2)

where .
Now let denote a possible load vector for a future oper-

ating time that has been found to belong to the estimated SPR
, as determined from a basic point inclusion test applied to

the collection of all historically estimated SPRs corresponding
to scenario . Then the forecasted vector of DC-OPF system
variable solutions corresponding to can be calculated as

(3)

The above linear-affine mapping procedure is modified in
Section IV to accommodate some practical issues arising from
data incompleteness.

IV. EXTENSION TO PROBABILISTIC FORECASTING

Practical data availability issues arise for the implementation
of the basic scenario-conditioned forecasting algorithm outlined

Fig. 4. Given incomplete constraint information and/or incomplete historical
data, convex hull estimates for SPRs can be biased.

in Section III. This section discusses how these issues can be
addressed by means of a probabilistic extension of this basic
algorithm. Throughout this discussion, the analysis is assumed
to be conditioned on a given commitment-and-line scenario .

A. Practical Data Availability Issues

The basic scenario-conditioned forecasting algorithm pro-
posed in Section III assumes that historical data are available
regarding binding constraints for all generating units and for
transmission lines on an hourly basis. In actuality, however,
the marginal status of generating units is either confidential
or published with limitations. Moreover, the theoretical load
space cannot be fully reflected by the hourly historical load
data which represent several realizations and subsets of the
complete load space.

Due to these data limitations, in practice, the set indexing
hourly binding constraints cannot be completely determined.
Consequently, estimates obtained for the SPRs could be biased.

The two basic ways in which this bias could arise are illus-
trated in Fig. 4 for a simple two-dimensional load space. Sup-
pose the SPR corresponding to the true binding constraint set
is given by (area 1) in Fig. 4.

This true SPR can in principle be determined by applying
the basic point inclusion test to every possible future operating
point. Suppose, however, that the practically estimated binding
constraint set is incomplete; for example, suppose
only reflects the status of the most frequently congested lines.
Given complete historical load data, the estimated convex hull

(area 3) would then have to be larger than the true (area
1) because is smaller (less restrictive) than the true . In
fact, however, the actual estimated convex hull must be based on
available historical load data. Since the latter is only a subset of
the full load space, the result will be an actual estimated convex
hull (area 2) that lies within (area 3). In short, incom-
pleteness of and incompleteness of the practical load space
each separately introduce bias in the estimate for , but in op-
posing directions.

What are the practical implications of this bias for our basic
forecasting algorithm? Two possible cases need to be handled,
as illustrated in Fig. 5.

Case A: Point in Fig. 5 lies in the interior of two different
estimated , namely, and corresponding to
two distinct system patterns and . The true SPRs cor-
responding to and are denoted by the shaded regions

and , respectively. The fact that the interiors of
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Fig. 5. Two possible types of forecast error due to biased SPR estimates.

the true SPRs do not overlap follows from Proposition 1
established in Section III-A. However, as explained above,
overlap can occur for the interiors of estimated SPRs due
to bias.
Case B: Point in Fig. 5 is actually in the true SPR .
However, point cannot be assigned to either of the esti-
mated SPRs because the bias in these estimates has caused
point to lie outside of both of them.

B. Probabilistic Point Inclusion Test

To mitigate the issues arising from the two types of bias
discussed in Section III-A, mean and interval forecasting
can be performed for the DC-OPF system variable solutions
corresponding to any forecasted future load point . This
probabilistic forecasting can be implemented by estimating
the probability of each SPR conditional on , which can be
characterized as a probabilistic point inclusion test.

More precisely, let denote the forecasted load at a future
operating point and let denote any particular SPR . Let
the collection of all historically identified SPRs be denoted by

and let denote the cardinality of . Suppose the prob-
ability of occurrence for any SPR not in is zero. Then the
probability that has occurred, given that has been ob-
served, can be expressed as

(4)

In practice, the various terms in (4) have to be estimated. In
this study, it will be assumed that the prior probability
is an empirical prior estimated by the historical frequency of

: namely, the number of times in the past that has been
observed to occur divided by the total number of all past SPR
observations.

The term in (4) represents the probability of ob-
serving the load point given that the true SPR is . Intu-
itively, this probability should be a decreasing function of the
distance between and . Therefore, this probability is esti-
mated in this study as follows:

(5)

In (5), the term denotes the (Euclidean) distance between
and and denotes the total distance calculated as the sum

of the distances between and each SPR in . The normal-
ization parameter in (5) can be adjusted to obtain an appro-
priate conditional probability measure, possibly by using his-
torical data as training cases. A specification results in
a uniform conditional probability (5) for : namely, 1 divided
by the cardinality of . In this case, (5) is independent of
the distance measures . Alternatively, a specification
implies the conditional probability (5) is derived from a linear
normalization, while corresponds to a quadratic normal-
ization. As will be shown below, the quadratic normalization
form of the conditional probability (5) results in good forecasts
for our NYISO case study.

Mean forecasts for the DC-OPF system variable solutions at
the operating point with forecasted load point can then
be obtained using the estimated form for the conditional proba-
bility assessments (4), denoted by for short. Let denote
the forecasted DC-OPF system variable solution vector corre-
sponding to any historical SPR in . The mean forecast

can then be calculated as

(6)

A forecaster might also be interested in calculating upper and
lower bounds for the DC-OPF system variable solutions calcu-
lated with respect to the most likely SPRs. Let denote the
forecaster’s desired cut-off number of most probable SPRs and
let represent the subset of that contains these most
probable SPRs. Then the upper bound and lower bound

for each forecasted DC-OPF system variable solution can
be determined over the set of SPRs in . As a measure of dis-
persion, the forecaster can further consider the coverage proba-
bility CP, defined to be the summation of the probability assess-
ments (4) for the most probable SPRs.

Finally, another alternative might be for the forecaster to con-
sider mean forecasts calculated using the most probable
SPRs, i.e., the subset of . For example, a forecaster
could choose , which would result in a point fore-
cast for the DC-OPF system variable solutions based on a single
most likely SPR in as determined from the estimated
form of the conditional probability assessments (4).

C. Probabilistic Forecasting Algorithm

Taking into account the practical data issues addressed in
Sections IV-A and B, our proposed probabilistic forecasting al-
gorithm proceeds in four steps, as follows:

Step 1) Perform historical data processing to identify histor-
ical system patterns. Use the QuickHull algorithm to
estimate historical SPRs as convex hulls of histori-
cally observed load points corresponding to distinct
historical system patterns.

Step 2) For each historical SPR estimated in Step 1, a
linear-affine mapping between load vectors and
DC-OPF system variable solution vectors is derived
using historical load and system variable data. The
system variable solution vectors include real-power
dispatch levels and dual variables for nodal balance
and transmission line constraints. The linear-affine
mapping is characterized by a sensitivity matrix and
an ordinate vector.
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Step 3) For any possible load point in the near future for
which system variable forecasts are desired, a prob-
abilistic point inclusion test is performed. More pre-
cisely, the estimated form of the conditional proba-
bility distribution (4) is used to estimate the proba-
bility that lies in each of the historical SPRs iden-
tified in Step 1.

Step 4) The results from Steps 1–3 are used to generate
probabilistic forecasts at the future possible oper-
ating point for generation capacity and transmis-
sion congestion conditions (system patterns) as well
as for DC-OPF system variable solutions for dis-
patch levels and dual variables (including LMPs).
For example, these probabilistic forecasts could take
the form of mean and interval forecasts, or they
could be point forecasts based on a most probable
SPR.

V. NYISO CASE STUDY

A. Case Study Overview

A case study using NYISO 2007 data is reported in this sec-
tion for the probabilistic scenario-conditioned forecasting algo-
rithm presented in Section IV-C. NYISO has a footprint cov-
ering 11 load zones [22]. Short-term zonal load forecasting data
and binding constraints data are available at the NYISO web-
site [23].

This forecasting algorithm is applicable for power markets
using either nodal or zonal LMP pricing, since Proposition 1 in
Section III-A does not rule out either form of pricing. However,
NYISO’s website [23] only posts daily zonal load data for its 11
load zones, which makes it impossible to forecast prices down
to each node. In addition, historical NYISO price data reveal the
similarity of LMPs within some of these 11 load zones, hence
the negligibility of inter-zonal congestion between these zones.
For this reason, to reduce our computational burden without any
significant loss of information, we chose to reduce the original
11 load zones for the NYISO to 8 load zones by combining Zone
Millwood with Dunwoodie and Zone West and Genesee with
Central.

The top 25 most frequently congested high-voltage trans-
mission lines during 2007 for the NYSIO day-ahead market
are studied in [24]. The focus of our case study is on the five
most frequently congested high-voltage transmission lines
during 2007, specifically, DUNWODIE 345 SHORE RD 345 1
(D-S), CENTRAL EAST-VC (C-V), PLSNTVLY 345 LEEDS
345 1 (P-L), WEST CENTRAL (W-C), and SPRNBRK 345
EGRDNCTR 345 1 (S-E). Since the marginal status of gener-
ating units is not available from the NYISO, the conditioning
scenario for this empirical study is taken to be the availability
of these five lines. System patterns are thus equivalent to
congestion patterns for these five lines.

Regarding time period, we selected 12 test days consisting
of the last day of each month in 2007. The 24 operating hours
starting from 0:00 for each test day were treated as future op-
erating points. Forecasted load data at these hours were used to
identify system patterns and to generate system variable fore-
casts. These forecasted results were then compared with actual
realizations to evaluate the performance of our algorithm. Due

TABLE II
FOUR MOST FREQUENT HISTORICAL CONGESTION

PATTERNS FOR 01/31/2007

to space limitations, graphical illustrations are presented only
for January 31 and February 28; numerical results for the last
days of other months are given in tables.

All calculations for this case study were implemented using
Matlab 7.8 on an Intel Core 2 PC with 3.0-GHz CPU. The com-
putational time for each daily forecast was about 2 min.

B. Implementation of Probabilistic Forecasting

Historical price and load data were first processed to iden-
tify historical system patterns and SPRs, which is Step 1 of
our probabilistic forecasting algorithm. Sorted by congestion
patterns, about 19 to 30 historical system patterns (hence
SPRs) were found for each forecasted day. For example, the
four most frequently observed congestion patterns for January
31 are shown in Table II. System patterns for other days are
categorized similarly.

Step 2 of our algorithm was then carried out. Specifically, the
sensitivity matrix and ordinate vector for each historical SPR
were estimated by ordinary least squares, making use of the ac-
tual system operating points observed for each historical system
pattern.

In Step 3, forecasted load data for the 24 operating hours of
each test day were then treated as possible future load points.
For each of the latter points, the probabilistic point inclusion
test detailed in Section IV-B was used to assign estimated con-
ditional probability assessments (4) giving the probability that
this future load point was contained within each historical SPR.
In these Step 3 calculations, we first evaluated the forecasting
performance of three values (0, 1, and 2) for the normalization
parameter in (5) on the basis of historical data. The specifi-
cation gave the best forecast results for most historical
days; hence, this value was chosen to forecast system variables
for the future load points.

Finally, in Step 4, the results of Steps 1–3 above were used
to generate probabilistic forecasts in the form of mean and in-
terval forecasts. For the mean forecasts, was set equal to
the cardinality of . For the interval forecasts, was
set equal to 4.

For the interval forecasts, the size of (i.e., the cut-off
number of most probable SPRs) depends on the forecaster’s de-
sired trade-off between accuracy and precision. A larger
tends to increase forecasting accuracy, in the sense that there
is a better chance the correct SPR will be among the consid-
ered SPRs. On the other hand, the precision of any resulting
mean forecast is correspondingly reduced (i.e., the variance of
the forecasts across the considered SPRs is increased). In the
current study, the specification is used for interval
forecasts because it results in good precision without significant
loss of coverage probability.
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TABLE III
FORECASTED CONGESTION PATTERNS VERSUS THE ACTUAL

CONGESTION PATTERN ON 01/31/2007

C. Congestion Pattern Forecasts

Table III reports the four most probable hourly congestion
patterns, along with their associated estimated conditional prob-
abilities and coverage probability (based on ), for
every fifth hour of January 31, 2007, starting from hour 0:00.
Actual congestion patterns corresponding to each reported hour
are highlighted in gray. As seen, for the reported hours, the
actual congestion pattern is always included among the fore-
casted congestion patterns and has the highest estimated condi-
tional probability. For future reference, note also that the first
entry of the actual congestion pattern, corresponding to trans-
mission line D-S, is always 1. This indicates that D-S is fre-
quently congested.

The multiple forecasted congestion patterns associated with
each reported hour in Table III represent several credible con-
gestion scenarios that could occur in the future. If a forecaster
desires to derive one forecast for the future congestion pattern,
an intuitively reasonable option would be to select a forecasted
congestion pattern that has the highest associated conditional
probability (4). As observed in Table III, for the case study
at hand, this approach would result in the correct prediction
of the actual congestion pattern for each reported hour. In
general, however, more reliable forecasts for system conditions
and DC-OPF system variable solutions would be obtained by
making fuller use of the conditional probability assessments
(4) to form mean forecasts and interval forecasts.

D. Mean Forecasts for LMPs

One of the benefits of congestion forecasting is to enable
the more precise prediction of LMPs for market operators and
traders in their short-term decision making. Forecasted and ac-
tual LMPs for Zone Central on January 31 and February 28 are
shown in Figs. 6 and 7. Root mean squared error (RMSE) and

Fig. 6. Actual versus mean LMP forecasts for Zone Central on 01/31/2007.

Fig. 7. Actual versus mean LMP forecasts for Zone Central on 02/28/2007.

mean absolute percentage error (MAPE) [5] are used as mea-
sures of forecast accuracy:

(7)

(8)

Table IV reports the RMSE and MAPE obtained using our
probabilistic forecasting algorithm for each of our 12 test days.
Corresponding forecast results obtained using a well-known
statistical model—the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model [4]—are also shown for
comparison. As seen, except for the slightly smaller MAPE
value attained in February using GARCH, our forecasting al-
gorithm outperforms GARCH in the sense that smaller RMSE
and MAPE values are obtained.

E. Interval Forecasts for Line Shadow Prices and LMPs

Interval forecasting is recommended over mean forecasting
for line shadow prices. As clarified below, interval forecasting is
more informative than mean forecasting for line shadow prices
because the underlying attribute of interest (negative-direction,
zero, or positive-direction congestion) is measured by a dis-
cretely-valued indicator (-1, 0, or 1).

Hourly upper-bound and lower-bound interval forecasts for
the line shadow prices on line D-S on January 31 and February
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TABLE IV
RMSE AND MAPE VALUES FOR THE 12 TEST DAYS

Fig. 8. Actual versus interval D-S line shadow price forecasts on 01/31/2007.

Fig. 9. Actual versus interval D-S line shadow price forecasts on 02/28/2007.

28 are shown in Figs. 8 and 9 along with actual line shadow
prices for comparison. As seen, the actual line shadow prices
for most hours fall within the forecasted intervals.

To better interpret these findings, consider the Table III results
which forecast that line D-S (the first congestion pattern entry)

Fig. 10. Actual versus interval LMP forecasts for Zone Central on 01/31/2007.

Fig. 11. Actual versus interval LMP forecasts for Zone Central on 02/28/2007.

will be either congested or not during hour 20 with varying prob-
abilities. If congestion is forecasted, it is in the positive direction

and from Fig. 8, the line shadow price is estimated to be
about $60/MWh. On the other hand, if no congestion is fore-
casted (0), then from Fig. 8, the line shadow price is estimated
to be $0/MWh.

One final point for interval forecasts for line shadow prices
is important to note. For lines for which no congestion occurs
in any of the reported congestion patterns (e.g., line S-E in
Table III), the corresponding upper and lower bounds for
the forecasted line shadow price interval will both be zero,
indicating zero congestion.

Interval forecasts for Zone Central LMPs on January 31 and
February 28 are shown in Figs. 10 and 11 along with actual
LMP values for comparison. For most hours, the actual LMP
values fall within the upper and lower bounds of the forecasted
intervals.

The interval forecasting performance for line shadow prices
and zonal LMPs is measured using the accuracy-informative-
ness tradeoff model developed in [25]. The statistical loss func-
tion LOSS is defined to be

(9)

In (9), denotes the actual value, denotes the midpoint of
the forecasted interval, and denotes the natural logarithm
of the width of the forecasted interval. Also, determines
the tradeoff between accuracy (the first term) and informative-
ness (the second term); in this case study, is set to 1. Note
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TABLE V
LOSS FUNCTION VALUES AS A MEASURE OF INTERVAL

FORECASTING PERFORMANCE FOR THE 12 TEST DAYS

that a smaller LOSS indicates better performance for interval
forecasting.

Table V gives the LOSS values for the interval forecasts ob-
tained for line shadow price and zonal LMPs using our proba-
bilistic forecasting algorithm versus the forecasts obtained using
a statistical GARCH model. As seen, our probabilistic fore-
casting algorithm results in uniformly lower LOSS values than
GARCH, indicating a better forecasting performance.

A possible explanation for this performance difference is that
GARCH has difficulty handling the volatility of line shadow
prices, which can abruptly change from 0 to large nonzero
values. In contrast, our probabilistic forecasting algorithm
captures the physical meaning of these line shadow prices and
this facilitates better forecasting.

In this study we observed that, in some months (January,
May, November, and December), the peak-hour LMPs and line
shadow prices were difficult to forecast with precision. This phe-
nomenon could possibly be due to changes in the generating unit
commitment pattern or in the transmission network topology
over the forecast horizon. To enhance peak-hour forecasting re-
sults, more careful collection of historical data might be needed
to ensure that these historical data correspond to the same com-
mitment-and-line scenario as the forecasted point. Alternatively,
as discussed in the following Section VI, an extended cross-sce-
nario forecast study could be attempted.

VI. EXTENSION TO CROSS-SCENARIO FORECASTING

To this point, the forecasting algorithm developed in this
study has been conditioned on a given commitment-and-line
scenario specifying a particular generating unit commitment
pattern and a particular transmission network topology. One
interpretation of is that it represents anticipated conditions at
a future operating point for which forecasts are desired. Another
interpretation of is that it represents a possible future system
contingency (e.g., an N-1 outage scenario) under consideration
in a contingency planning study.

Fig. 12. Scenario-conditioned and cross-scenario forecasting.

A possibly useful extension of this algorithm would be to as-
sign probabilities to distinct scenarios, thus permitting the prob-
abilistic cross-scenario blending of forecasts. These scenarios
could be characterized not only on the basis of system pat-
terns, i.e., generating unit commitments and transmission net-
work topology, but also on the basis of a variety of other types
of contingencies.

As illustrated in Fig. 12, for any future operating point whose
system conditions need to be forecasted, the corresponding gen-
erating unit commitment, transmission network topology, and
other contingencies could be projected with some probabilities.
In each of these projected scenarios, our scenario-conditioned
forecasting algorithm could be applied to estimate congestion,
LMPs, and other system variables. The final forecast for any
system variable of interest could then be the expected value of
this system variable calculated across all projected scenarios.

VII. CONCLUSION

Short-term congestion forecasting is critical for both market
traders and market operators. Congestion forecasting helps to
explain electricity price behaviors and facilitates the decision-
making of power system participants.

This study first proposes a basic scenario-conditioned fore-
casting algorithm that permits the short-term forecasting of con-
gestion, prices, and other power system variables conditional on
a given generating unit commitment pattern and transmission
network topology. This basic algorithm uses the novel concept
of a “system pattern” to permit structural capacity constraints
on generation and transmission to be properly accounted for in
the forecasting procedure.

To handle practical data-availability concerns, a probabilistic
extension of this basic algorithm is then proposed that can be
implemented purely on the basis of publicly available infor-
mation. The accuracy of this probabilistic algorithm relative
to a more traditional GARCH statistical forecasting model is
demonstrated for a NYISO case study.

Finally, a cross-scenario extension of this forecasting algo-
rithm is proposed in which probabilities are assigned to different
scenarios. This would permit forecasters to probabilistically av-
erage forecasts across distinct scenarios, thus potentially per-
mitting longer forecast horizons and/or increased availability of
pertinent historical data.
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The proposed algorithm is targeted for energy-only markets;
future work will consider the incorporation of ancillary ser-
vices. Future work will also explore additional factors, such as
possible strategic supply offer behaviors by generators. More-
over, alternative forms for the probabilistic point inclusion test,
a key building block of our algorithm, will be systematically
studied.

APPENDIX

Consider a wholesale power market operating over a trans-
mission grid with buses. Assume for simplicity that each bus

has one fixed load denoted by and one generator with a real
power level denoted by . Suppose, also, that each generator

has a quadratic total cost function with coefficients and
. Finally, suppose the objective of the market operator in

each hour is to minimize the total system cost of meeting fixed
load subject to an injection-equals-load balance constraint,
transmission line flow limits, and generator operating capacity
limits.

In particular, suppose the market operator attempts to
achieve its objective in each hour by using the following stan-
dard DC-OPF formulation that assumes a lossless transmission
system:

(10)

(11)

(12)

(13)

(14)

(15)

In these equations, denotes the generation shift factor
(GSF) that measures the impact of 1-MW injection by gener-
ator on transmission line . Equality (11) represents the system
balance constraint ensuring total generation matches total load.
The transmission line flow limit constraints in two directions
are expressed in (12) and (13). The last two inequalities (14)
and (15) express each generator’s upper and lower operating ca-
pacity limits.

Proposition 1: Consider the standard DC-OPF formula-
tion with fixed loads and quadratic generator cost functions de-
scribed in (10)–(15). Suppose this standard formulation is used
by a market operator to determine system variable solutions.
Then, conditional on any given commitment-and-line scenario
S, the load space can be covered by convex polytopes such that:
1) the interior of each convex polytope corresponds to a unique
system pattern and 2) within the interior of each convex poly-
tope, the system variable solutions can be expressed as linear-
affine functions of the vector of distributed loads.

Proof Outline [17]: First note that the DC-OPF formu-
lation can equivalently be expressed in the following compact
form:

(16)

(17)

(18)

The notation in this general QP problem is described in [17]. The
KKT first-order necessary conditions for (16)–(18) can then be
expressed as follows:

(19)

(20)

(21)

(22)

(23)

Let denote the set of indices corresponding to the active
(binding) equality and inequality constraints for the DC-OPF
problem. If the number of binding unit capacity constraints and
line limit constraints are denoted by and , respectively, then
Cardinality . Let , , and repre-
sent the matrices corresponding to . Then, , , and
have row dimension and column dimension . Let

denote the multiplier vector corresponding to . Given ,
(19)–(21) reduce to

(24)

(25)

Tøndel [14] defines the linear independence constraint qual-
ification (LICQ) for an active set of constraints to be the as-
sumption that these constraints are linearly independent. For the
problem at hand, LICQ holds if has full row rank. A gen-
erator that is at its upper capacity limit cannot at the same time
be at its lower limit; hence, and never
co-exist. Moreover, the GSF matrix included in has linearly
independent rows. Thus, . It
follows that has full row rank if

(26)

The regularity condition (26) requires that the number of
binding constraints does not exceed the number of
decision variables , a necessary condition for the existence of
the DC-OPF problem solutions assumed to exist in Proposition
1. Consequently, (26) automatically holds under the assump-
tions of Proposition 1.

Given the LICQ (26) and the diagonal form of the matrix ,
is invertible. Equations (24) and (25) can then be

used to derive explicit solutions for and as shown in (27)
and (28). Note that these solutions are linear-affine functions of
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the load vector . See equations (27)–(30) at the bottom of the
page.

In summary, given a particular load vector , explicit solu-
tions have been derived for and as linear-affine functions
of . However, by construction, as long as the set of active con-
straints remains unchanged in a neighborhood of the load vector

in the load space , the linear-affine form of these solutions re-
mains optimal. Such a neighborhood is given by the feasible re-
gion determined from (22) and (23). Substituting and from
(27) and (28) into (22) and (23), one obtains inequalities (29) and
(30). The load vectors satisfying the latter inequalities are the
intersection of a finite number of half-spaces in the load space
and hence they form a convex polytope in this load space.
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