
Command Node

Sensor nodes

Gateway Node

Fig. 1: Multi-gateway clustered sensor network

Fault-Tolerant Clustering of Wireless Sensor
Networks

 Gaurav Gupta Mohamed Younis
Dept. of Computer Science and Elec. Eng. Dept. of Computer Science and Elec. Eng.
University of Maryland Baltimore County University of Maryland Baltimore County

Baltimore, MD 21250 Baltimore, MD 21250
gagupta1@cs.umbc.edu younis@cs.umbc.edu

Abstract-- During the past few years distributed wireless
sensor networks have been the focus of considerable
research for both military and civil applications. Sensors are
generally constrained in on-board energy supply therefore
efficient management of the network is crucial to extend the
life of the system. Sensors’ energy cannot support long haul
communication to reach a remote command site, thus they
require multi-tier architecture to forward data. An efficient
way to enhance the lifetime of the system is to partition the
network into distinct clusters with a high-energy node called
gateway as cluster-head. Failures are inevitable in sensor
networks due to the inhospitable environment and unattended
deployment. However, failures in higher level of hierarchy
e.g. cluster-head cause more damage to the system because
they also limit accessibility to the nodes that are under their
supervision. In this paper we propose an efficient mechanism
to recover sensors from a failed cluster. Our approach
avoids a full-scale re-clustering and does not require
deployment of redundant gateways.

Keywords: Network clustering, Fault-tolerance, Energy-
Aware Communication, Sensor networks.

1. Introduction
Recent advancements in integrated circuits have fostered the
emergence of a new generation of tiny, inexpensive low-
power sensors. Due to their economic and computational
feasibility, a network of hundreds and thousands of sensors
has the potential for numerous applications in both military
and civil applications such as combat field surveillance,
security and disaster management. These sensing devices are
capable to monitor a wide variety of ambient conditions such
as: temperature, pressure, motion etc. The sheer number of
these devices and their ad-hoc deployment in the area of
interest brings numerous challenges in networking and
management of these systems. Sensors are typically
disposable and expected to last until their energy drains.
Therefore, energy is a very scarce resource for such sensor
systems and has to be managed wisely in order to extend the
life of the sensors for the duration of a particular mission.

Typically sensor networks follow the model of a
command node or base station, where sensors relay streams
of data to a command node either periodically or based on
events. The command node is located faraway from the area
where the sensors are usually deployed. In order to conserve

energy consumed in communication with the command node
various multi-hop and energy aware routing techniques have
been suggested in the literature [5][6]. These techniques have
overhead due to route discovery and to find optimum hops to
communicate with the command node. In addition, there will
be extra burden on the nodes, which are located around the
command node, as most of the traffic will be routed through
them.

To avoid these overheads and unbalanced consumption
of energy some high-energy nodes called “Gateways” are
deployed in the network. These gateways, group sensors to
form distinct clusters in the system, manage the network in
the cluster, perform data fusion to correlate sensor reports
and organize sensors by activating a subset relevant to
required missions or tasks as shown in Fig 1. Clusters are
formed based on the load on the gateways and the
communication distance between sensors and the gateways

[8]. Each sensor belongs to only one cluster and
communicates with the command node only through the
gateway of the cluster.

 In sensor networks the effectiveness of data fusion
depends not only on the sensed data but also on the coverage
of sensors. In some mission critical applications such as
disaster management it is essential to ensure good coverage
to increase the potential of rescuing survivals and ensure the
safety of the rescue crew. Therefore, dependability of the
system becomes another very important factor for the
efficient operation of the system. Sensors are susceptible to

0-7803-7700-1/03/$17.00 (C) 2003 IEEE 1579

device failures due to limited battery power but will also be
inactive if the gateway in their cluster suffers from some
faults. Reconfiguration of the system can be used to recover
the sensors in a faulty cluster through re-clustering. Re-
clustering the system complicates the network setup and
bootstrapping. Gateways have to stop data processing and
communication in order to perform clustering. New
communication schedules have to be set and transmitted to
the sensors. Moreover, frequent faults will result in frequent
re-clustering wasting precious energy and time. Redundant
gateways can also be deployed in the system to replace the
faulty gateways. However, pre-deployment of redundant
gateways makes them unutilized resource while replacement
of faulty gateway can be impractical and slow.

In this paper we investigate the dependability of sensor
networks in the presence of faults in the gateways. We
propose a run-time recovery mechanism based on consensus
of healthy gateways to detect and handle faults in one faulty
gateway. A two-phased detection and recovery mechanism is
proposed to limit the performance impacts caused by a
gateway failure. We use a simulation-based fault injection
method, which assumes that errors occur according to a
predetermined distribution. The sensors assigned to the faulty
gateway are reorganized on the fly without bringing the
system to a complete shutdown. The recovery information is
created during clustering which facilitates the recovery
process. Various communication fault scenarios are
considered and handled during recovery. Our approach
provided considerable improvement in the stability of the
system and reduces the overhead of re-clustering and system
reconfigurations.

In the next two sections we define the architectural
model of sensor networks and summarize the related work.
Section 4 describes the fault-detection and recovery
approach. Description of the simulation environment and
validation of the experiments can be found in section 5.
Finally section 6 concludes the paper and discusses our future
research plan.

2. System Model
The system architecture for the sensor network is shown in
Fig 1. There are only two kinds of nodes in the system;
sensors and less-energy-constrained gateway nodes. The
sensors and gateways are assumed to be of the same kind and
have same properties respectively. All communication is over
wireless links. A wireless link is established between two
nodes only if they are in range of each other. Gateways are
capable of long-haul communication compared to the sensors
and are in direct communication range with the command
node. Communication between nodes is over a single shared
channel. Current implementation supports TDMA [7]
protocol to provide MAC layer communication.

In this paper we assume that the sensor and gateway
nodes are stationary. In the future we plan to incorporate
mobile gateways in the system. During the bootstrapping
process, all the sensors and gateways are assigned unique

IDs, initial energy and TDMA schedule. All nodes are
assumed to be aware of their position through some GPS
system. While the GPS consumes significant energy, it has to
be turned on for a very short duration during bootstrapping.
Sensors inform the gateways about their location during the
clustering process. It is worth noting that most of these
capabilities are available on some of the advanced sensors,
e.g. the Acoustic Ballistic Module from SenTech Inc. [2].

Initially all gateways are assumed to be in
communication range with one another. Gateways form their
own subnet to exchange status information about the clusters
and to reach a consensus during recovery. The schedule of
first inter-gateway communication is known to all the
gateways during bootstrapping. No communication between
the gateways and sensors is scheduled during inter-gateway
communication.

2.1 Fault Model
A system failure occurs when the delivered service deviates
from the specified service [17]. Hardware and software
faults affect the system state and the operational behavior,
such as memory or register content, program control flow,
and communication links etc. We assume a fail silent model
where any erroneous behavior does not affect the healthy
components. We assume that the communicated data is error
free and semantic-related generic faults in the software are
detected and removed by application-specific checks.

Communication faults can be caused due to hardware
failure or energy depletion. Communication can be disrupted
due to environmental conditions like wind or rain. Hardware
faults can also disrupt radio communication, ending all the
communication to and from the gateway. A fault in
transmitter can prevent the gateway to transmit tasks to the
sensors as well as relay the data to the command node. Data
send by the sensors will be lost if receiver of a gateway fails.
We call all such failures as complete gateway failures
because the gateway can no longer serve as a liaison between
the sensors and the command node. Another kind of failures
is caused due to faults in range of gateway. Faults in range of
the device can affect its coverage. A gateway can experience
communication link failure between the sensors in its cluster
or with other gateways. A communication link failure with
the sensors requires the sensors to be allocated to other
gateways within communicate range. Faults in inter-gateway
communication are handled through forwarding approach
explained later.

Based on the temporal behavior of a fault it can be
considered as permanent, intermittent or transient. In our
fault model we consider only permanent faults. A permanent
fault once activated remains effective until it is detected and
handled. We also assume that the system is not liable to
Byzantine-type faults [20].

3. Related Work
Our work is motivated by a various research projects in
sensor network domain. Researchers are exploring both

1580

hardware and software aspect of sensor networks. Projects
like Smartdust [9], WINS [10], PicoRadio [11] have given a
new dimension to the size and capabilities of sensors. Since
sensors are typically battery-operated with limited energy
supply, many research groups have focused on issues like
energy aware routing [5], sensor coordination [6], and energy
saving through activation of a limited subset of nodes
[4][12].

Many clustering approaches have been proposed for
efficient selection of a cluster-head such as randomized [13]
lowest cluster-ID [15], or highest degree of connectivity [16,
17]. However, if load is not balanced among the cluster it can
lead to increased latency in communication, inadequate
tracking of targets or events and finally results in failure of
the gateway. In our previous work a multi-gateway
architecture is presented to cluster the network around high-
energy gateways while balancing load among the clusters [8].

Moreover, these approaches do not focus on
dependability and fault-tolerance in the system. Upon failure
of a cluster-head either the role is reassigned to another node
requiring re-configuration of the whole system or redundant
hardware is used as replacement. Projects like LEACH [13]
include redundancy in the system by periodically selecting a
cluster-head from the sensors in the network but suffer from
overhead of re-clustering. We believe that, significant
performance gain can be achieved if efficient recovery is
embedded in the system from the beginning. Faults should be
detected and handled during the run-time. Analysis and
modeling of faults is a well-researched field [20]. In this
paper we present a run-time recovery mechanism, which
detects faults in gateways and recover sensors from the failed
clusters.

4. Fault-Tolerance Mechanism
The main objective of our approach is to perform run-time
recovery of the sensors from the clusters in which the
gateway has experienced some faults. The mechanism is
divided in to two phases; detection and recovery. In order to
recover the sensors from the failed cluster it is important to
detect whether a fault has occurred in the system. We follow
a consensus model of the gateways to agree on a particular
fault in the system. A consensus is required to maintain the
synchronization in the network with respect to the status and
cardinality of a gateway. The cardinality of a gateway is the
number of sensors that belong to the cluster of a gateway. In
later sections we present scenarios where gateways can have
conflicting knowledge about the status of a gateway and
explain methods to avoid it. The second phase of fault-
tolerance identifies the type of fault and performs recovery of
the sensors.

4.1 Detection of gateway failure
Detection is the first phase of fault-tolerance in our system.
All the gateways in a sensor network are independent
identities. A gateway is responsible only for the sensors in its
own cluster. We adopt a method of periodic status updates

through inter-gateway communication. Status updates inform
all the gateways about the whereabouts of the rest of the
clusters in the system.

As mentioned in section 2, we are using TDMA MAC
protocol for communication. TDMA schedules for sensors
are decided by their respective gateways. Typically, gateways
allocate slots for sensors to send data based in available
energy, tasks, and priority [7]. Fig 2 shows a simple slot
allocation for a gateway. Sensors are informed about the
schedule and routing information in a “Route Update” slot.
The dark slots represent the route update slots and the white
slots are reserved for sensors to send data in that cycle. Along
with the sensed data, sensors also provide their energy status
to the gateways. A cycle is completed when all the sensors
send data and energy status to their respective gateways and
wait for the next route update. At the end of every cycle each
gateway constructs a “Status” containing information about
the sensors in its cluster and the status of the gateways itself.

Gateway status is exchanged in a “Status Update” slot
(shown as grey slots in Fig. 2) whose period depends on the
stability of the system. We use a Multiplicative Increase
Linear Decrease (MILD) mechanism to schedule the status
exchange. In the absence of faults, MILD increases the time
period of the exchange by a multiplicative factor while
linearly decreases the time period when a fault is detected.
By this method we reduce the overhead of status exchange
when the system is stable and recovers fast from the faults
when the system is fragile. Status messages also act as
heartbeat messages from the gateways informing about their
presence. At the end of detection phase when a gateway “A”
does not receives update from another gateway “B”, gateway
“B” is considered to be faulty by “A”. Since the updates can
be missed due to link failures between two nodes, a
consensus has to be reached by all gateways before recovery
commences. It is important to remember that a gateway
should not be considered completely failed until even one of
the gateways in the network is able to communicate with it.

In case of link failures multiple hops have to be used to
forward updates. Efficient routing can be used to forward
these updates but they require maintenance and update of
routing tables. For the purpose of this paper we adopt a
simple forwarding approach. Each gateway forwards
(broadcasts) every “new” update it receives to all the
gateways in its range. This method will add redundant
messages in the network when the network is fault-free but

Status
Update

Route
Update

Sensor
Data

Fig. 2: Slot Allocation in Sensor Networks

 Cycle

 … … … …

1581

ensures that every gateway has the same status information of
the system. A consensus is reached automatically since all
the gateways share the same information. If a gateway has
failed none of the other gateways will receive the update and
can start the recovery. We describe two scenarios to explain
the forwarding approach and introduce an experience-based
enhancement to avoid redundant messages in the absence of
faults.

Case 1: No Faults, fully connected network

Fig 3 shows a fault free fully connected gateway architecture
where all gateways (G1-G4) are in direct communication
range with one another. During the status update phase all the
gateways will broadcast their updates. Since all the gateways
are in direct communication range every gateway will receive
the status and will conclude that no gateway has completely
failed in the system. But, the forwarding algorithm will make
the gateways broadcast the redundant status information of
other gateways as well.

In order to avoid such message redundancy in the
absence of faults in the system we use an “experience” based
model. Before forwarding updates from other gateways each
gateway constructs an experience of the updates received.
They first broadcast their experience about the connectivity
with other gateways. After receiving the experience from
other gateways, an experience table is constructed that shows
the connectivity of different nodes in the system. For the case
described above the experience table is shown in Table 1.
When a gateway receive the experiences like the one shown
in table below, it signifies that the network is fully connected
and no forwarding of update message is required.

 G1 G2 G3 G4
G1 √√√√ 1 1 1

G2 1 √√√√ 1 1

G3 1 1 √√√√ 1

G4 1 1 1 √√√√

Table 1: Experience Table for Case 1

Where:
√ signifies own update
1 signifies that the update is received
0 signifies that the update is missed

Case 2: Multiple link failure and single complete failure

Fig 4 shows the system architecture after link failures
between gateway G1 and G3 followed by a complete failure
of gateway G4. In the first status update slot no gateway will
receive status from G4. Also, G1 and G3 will not receive
status from each other and G2 will receive status from both
G1 and G3.

 G1 G2 G3 G4
G1 √√√√ 1 0 0

G2 1 √√√√ 1 0

G3 0 1 √√√√ 0

G4 0 0 0 0

Table 2: Experience Table for Case 2

The experience table formed at gateway G2 is shown in
Table 2. After analyzing the experience table, gateway G2
realizes that none of the gateways has received status update
from gateway G4 and G4 had not send its experience to any
of the gateways. This clearly indicates that G4 is not able to
transmit any data to other nodes due to transmitter fault.
Therefore, G4 is tagged as completely failed and all the
sensors in the cluster of G4 have to be recovered.

The zeros in the experience on G1 and G3 indicate the
link failure between them. Since a consensus cannot be
reached about the complete failure of Gateway G4 unless all
the gateways receive the experience, G2 understand that it
has to forward the update to G1 and G3. Once the gateways
G1 and G3 receive all the update except from G4 they also
concur to the complete failure of gateway G4.

4.2 Recovery
Once the gateways reach a consensus about the presence of a
fault, the next step is to identify the type of faults and allocate
the sensors to new clusters. The status message is parsed to
extract the identity of sensors that cannot communicate with
the gateway due to range faults in the gateways. When a
gateway is identified as completely failed all the sensors in
its cluster are recovered.

Clustering is based on the distance between the sensors
and gateways. During clustering each gateway creates a
range set based on the communication range of the sensors
and the gateways. A sensor ‘Sj’ belongs to range set ‘RSet’ of
gateway ‘Gi’ if it satisfies the following criteria:

 G1

 G1

 G2

 G3

 Fig. 3: Fully Connected Gateway Model

 G2 G1

 G4 G3

 G2

Fig. 4: Multiple Link and Single Complete failure
Model

1582

 Sj ∈ RSetGi ⇔[(RGi > dSj->Gi) Λ (RSj,max > dSj-->Gi)]

Where, RGi is the range of gateway Gi, RSj,max is the maximum
range of sensor Sj and dSj->Gi is the distance between sensor
Sj and Gateway Gi. A final set (FSet) is constructed based on
the minimum communication cost between sensors and
gateways [8]. For the purpose of recovery each gateway
constructs another set containing nodes that do not belong to
the cluster of the gateway but are included in its RSet. This
set is called a Backup set (BSet). Each node only belongs to a
single FSet but can be part of many BSets. The definition of
BSet is defined as:

 Sj ∈ BSetGi ⇔[(Sj ∈ RSetGi) Λ (Sj ∉ FSetGi)]

When a sensor has to be recovered all the gateways check
their own BSets for the sensor. The sensor is recovered if it is
present in the BSet of the gateway. If a sensor is present in
multiple BSets, it is accommodated by the gateway, which
has the minimum communication cost with the sensor other
then one failed. Once the sensor is associated with the backup
gateway, it is removed from the BSet of the backup gateway
as well as the RSet of the faulty gateway.

Due to previous schedule the receivers of the sensor are
turned on during the route update slot to receive the new
update from the gateway. Therefore, the backup gateway
informs the sensor about the new association in the same slot.
New TDMA schedules are given to the sensor according to
the cardinality of the new gateway and the sensor becomes a
part of the backup cluster.

5. Experimental Validation
The effectiveness of our recovery approach is validated
through simulation. This section describes simulation
environment, fault injection technique and validation of the
protocol.

5.1 Environmental Setup
Experiments are performed on simulations with 1000 sensors
and 3 gateways uniformly distributed in a 10 × 10 square
kilometer area. Each sensor is assumed to have an initial
energy of 5 joules. A node is considered non-functional if its
energy level reaches 0 joules. The sensor energy
consumption model used in our system is discussed in [8]
[13].The maximum range of the sensors is set to 0.5 times the
maximum distance between two nodes in the system. Initial
range of the gateways is considered enough to cover the
whole area. It is assumed that the channel is collision free
and packets are not dropped in the medium. Sensors are
given IDs in random fashion. Sensors are informed about the
first TDMA schedules by their respective gateways. Schedule
for first inter-gateway communication is decided during
bootstrapping. Nodes switch on their transmitter if needed
and receiver circuitry only during their allocated slots.

 Fault injection is used to test the robustness and
behavior of the sensor network. Fault injection allows
studying the effectiveness fault detection and recovery

capabilities of our system. We use a simulation-based fault
injection methodology to inject communication faults in the
gateways. We created a fault library of possible link, range
and complete failures. We then created a timely ordered
failure list using Poisson distribution for occurrence of faults.
Faults are picked from the library based on a Uniform
distribution for the type of failure and Normal distribution for
the location of the fault.

We implement a fault-injector module to trigger the
faults as events. The fault-injector keeps a check on the
system time and compares it with the timestamp of the next
entry in the failure list. Whenever the system time equals a
fault event time, the fault-injector selects the fault from the
library, reads the fault destination (gateway id) and inserts
the fault in the event queue of the gateway. When a gateway
encounters the fault in the event queue, it simulates the fault.
The consequences of a fault experienced by the system are
based on its type.

Fig 5 describes the design of the fault-injection environment.
It shows a link fault being injected by the fault-injector in
gateway G3. Previously, gateway G2 stops all operation due
to complete failure. Also, gateway G1 is suffering from a
range fault. In order to measure the performance of our
approach we calculate the coverage of the algorithm.
Coverage is the ability of the system to detect and recover
from the occurrence of a fault during normal system’s
operation [17].

Coverage = Probability [system recovers/fault occurs]

We have injected 1000 faults in order to measure the
coverage of our algorithm. Since, complete failures are less
common compared to other faults, we have inserted them

Route

RF

Data

Data

Status

 G1

:

Route

Data

Data

CF

 G2

:

Data

Status

Route

Data

 LF

 G3

:

Fault Injector

RF-G1 CF-G2 LF-G3 LF-G1 RF-G3 RF-G3

 …

Fig 5. Design of the fault injection environment

1583

with lower frequency than range and link failures. All
complete failures are detected instantaneously during the
status period. We injected faults to decrease the range of
gateway G1 by 2% every 15 min of operation. On all
occasion our detection mechanism detects the faults and
identifies the sensors that have gone out of range from the
gateways. Sensors are successfully recovered to other
gateways till the range of G1 drops below a threshold and
only the sensors very close to G1 are left in the cluster. After
every subsequent range fault in G1 coverage decreases
because the algorithm fails to find any gateway to
accommodate the sensors.

Link failures are injected in gateway G3 to study the
impact on number of status messages in the system. Due to
link failures status messages are not received by other
gateways and forwarding scheme is activated. Total number
of message per gateway in the forwarding scheme is N+1,
where N is the total number of gateways in the system. Each
gateway will transmit one status message, one experience
message and forward N-1 status messages. The period of
status updates is controlled by MILD algorithm until we
inject a burst of faults making the recovery more frequent.
The coverage of link failure has been observed to be 100%
throughout the simulation until all the incoming/outgoing
links from a gateway fails. After all link fails, any fault on
G3 are detected as a complete failure by other gateways.
Recovery of sensors in the cluster of G3 is only done on the
first complete failure.

The results of the fault injection experiments clearly
demonstrate that the system is resilient to communication
faults and recovers efficiently without re-configurations or
manual repairs.

6. Conclusions and future work
High-energy gateway node acts as a centralized manager to
handle the sensors and serves as a hop to relay data from
sensors to a distant command node. In this paper we have
introduced a two phase; detect and recover fault-tolerance
approach to recover sensors from the failed gateways without
shutting down or re-clustering the system. Gateways can
suffer from complete, link or range failures caused due to
software or hardware faults. Our approach enables fault-
tolerance in the system by performing periodic checks on the
status of the gateways. Sensors managed by a faulty gateway
are recovered by re-associating them to other clusters based
on backup information created during the time of clustering.

Our future plan includes extending the clustering model
to allow gateway mobility. Also, we plan to integrate
bootstrapping and energy-aware routing to our approach.

References
[1] R. Burne, et. al, "A Self-Organizing, Cooperative UGS Network

for Target Tracking," Proc. of SPIE Conference on Unattended
Ground Sensor Tech. and Applications II, Orlando, April 2000.

[2] "Data sheet for the Acoustic Ballistic Module", SenTech Inc.,
http://www.sentech-acoustic.com/

[3] W. Heinzelman, et. al, "Energy-Scalable Algorithms and
Protocols for Wireless Microsensor Networks," Proc.
International Conference on Acoustics, Speech and Signal
Processing (ICASSP '00), June 2000.

[4] B. Chen, et al., “Span: An Energy-Efficient Coordination
Algorithm for Topology Maintenance in Ad Hoc Wireless
Networks”, Proc. of MobiCom 2001, Rome, Italy, July 2001.

[5] S. Singh, M. Woo and C. S. Raghavendra, "Power-Aware
Routing in Mobile Ad Hoc Networks", Proc. of ACM
MOBICOM'98, Dallas, Texas, October 1998

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Scalable
coordination in sensor networks. Proc. of ACM/IEEE MobiCom
1999, Seattle, Washington, August 1999.

[7] K. Arisha, M. Youssef, M. Younis, “Energy-Aware TDMA-
Based MAC for Sensor Networks,” IEEE Workshop on
Integrated Management of Power Aware Communications,
Computing and Networking (IMPACCT 2002), May 2002.

[8] G. Gupta, M. Younis, “Load-Balanced Clustering in Wireless
Sensor Networks”, Submitted to the IEEE International
conference on communications (ICC 2003), Anchorage, Alaska,
May 2003,

[9] J.M. Kahn, R.H. Katz, K.S.J. Pister, Next century challenges:
Mobile networking for 'smart dust', Proc. MOBICOM, Seattle,
1999

[10] Burnstein, A., Bult, K., Chang, D, Chang, F. et al. "Wireless
Integrated Microsensors"; Proceedings Sensors EXPO 1996,
Anaheim, CA., 1996

[11] J. Rabaey, J. Ammer, J.L. da Silva, D. Patel, "PicoRadio: Ad-
hoc wireless networking of ubiquitous low-energy
sensor/monitor nodes," IEEE Computer Society Workshop on
VLSI 2000, Orlando, FL, pp. 9--12, April 2000.

[12] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring
Sensor Networks Topologies,” Proc. INFOCOM 2002, New
York, June 2002

[13] W. Rabiner Heinzelman, A. Chandrakasan, and H.
Balakrishnan, “Energy-Efficient Communication Protocols for
Wireless Microsensor Networks,” Hawaii International
Conference on System Sciences (HICSS '00), January 2000.

[14] D.J Baker and A. Ephremides, "A Distributed algorithm for
Organizing Mobile Radio Telecommunication Networks", in
the Proceedings of the 2nd International Conference in
Distributed Computer Systems, April 1981.

[15] M. Gerla and J.T.C Tsai, “Multicluster, mobile, multimedia
radio network,” ACM/Baltzer Journal of Wireless networks,
Vol. 1, No. 3, pp. 255-265, 1995.

[16] A.K. Parekh, "Selecting Routers in Ad-Hoc Wireless
Networks", Proceedings of the SBT/IEEE International
Telecommunications Symposium, August 1994

[17] J. B. Dugan and K. S. Trivedi, "Coverage Modeling for
Dependability Analysis of Fault-Tolerant Systems", IEEE
Transactions on Computers, 38 (6), pp.775-87, June 1989

[18] S. Han, K. G. Shin, and H. A. Rosenberg, "DOCTOR: An
Integrated Software Fault Injection Environment for Distributed
Real-time Systems," Proceedings of International Computer
Performance and Dependability Symposium, Erlangen,
Germany, pp. 204-213, April 1995.

[19] M.C. Hsueh, T.K Tsai, R.K Iyer, “Fault Injection Techniques
and Tools”, Computer, April 1997, pp.75-82

[20] D. Pradhan, Fault-tolerant computer system design. Prentice
Hall Publisher, Englewood Cliffs, New Jersey, USA, 1996.

1584

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

