
Supporting Aggregate Queries Over Ad-Hoc Wireless Sensor Networks

Samuel Madden, Robert Szewczyk, Michael J. Franklin and David Culler
University of California, Berkeley�

madden, szewczyk, franklin, culler � @cs.berkeley.edu

Abstract

We show how the database community’s notion of a
generic query interface for data aggregation can be applied
to ad-hoc networks of sensor devices. As has been noted in
the sensor network literature, aggregation is important as a
data-reduction tool; networking approaches, however, have
focused on application specific solutions, whereas our in-
network aggregation approach is driven by a general pur-
pose, SQL-style interface that can execute queries over any
type of sensor data while providing opportunities for sig-
nificant optimization. We present a variety of techniques
to improve the reliability and performance of our solution.
We also show how grouped aggregates can be efficiently
computed and offer a comparison to related systems and
database projects.

1. Introduction

Recent advances in computing technology have led to
the production of a new class of computing device: the
wireless, battery powered, smart sensor. Unlike traditional
sensors deployed throughout buildings, labs, and equipment
everywhere, these new sensors are not merely passive de-
vices that modulate a voltage based on some environmental
parameter: they are full fledged computers, capable of fil-
tering, sharing, and combining sensor readings.

At UC Berkeley, researchers have developed small sen-
sor devices called motes, and an operating system, called
TinyOS, that is especially suited to running on them. Motes
are equipped with a radio, a processor, and a suite of sen-
sors. TinyOS makes it possible to deploy ad-hoc networks
of sensors that can locate each other and route data without
any a priori knowledge of network topology.

As various groups around the country have begun to de-
ploy large networks of sensors, a need has arisen for tools
to collect and query data from these networks. Of partic-
ular interest are aggregates – operations which summarize
current sensor values in some or all of a sensor network.
For example, given a dense network of thousands of sensors

querying temperature, users want to know temperature pat-
terns in relatively large regions encompassing tens of sen-
sors – individual sensor readings are of little value.

Sensor networks are limited in external bandwidth, i.e.
how much data they can deliver to an outside system. In
many cases the externally available bandwidth is a small
fraction of the aggregate internal bandwidth. Thus comput-
ing aggregates in-network is also attractive from a network
performance and longevity standpoint: extracting all data
over all time from all sensors will consume large amounts of
time and power as each individual sensor’s data is indepen-
dently routed through the network. Previous studies have
shown [6] that aggregation dramatically reduces the amount
of data routed through the network, increasing throughput
and extending the life of battery powered sensor networks
as less load is placed on power-hungry radios.

Previous networking research [11, 10, 6] approached ag-
gregation as an application specific technique that can be
used to reduce the amount of data that must be sent over a
network. In the database community, however, aggregates
are viewed as a generic technique that can be applied to any
data, irrespective of the application. In this work, we adopt
this database intuition: our system provides a generic aggre-
gation interface that allows aggregate queries to be posed
over networks of sensors. There are two benefits of this ap-
proach over the traditional network solution: first, by defin-
ing the language that users use to express aggregates, we
can significantly optimize their computation. Second, be-
cause the same aggregation language can be applied to all
data types, the burden on programmers is substantially less:
they can issue declarative, SQL style queries rather than im-
plementing custom networking protocols to extract the data
they need from the network.

In this paper, we discuss the challenges associated with
implementing the five basic database aggregates (COUNT,
MIN, MAX, SUM, and AVERAGE) with grouping in ad-hoc
networks of sensors. We show how our this generic ap-
proach leads to a significant power savings. Further, we
show that sensor network queries can be structured as time
series of aggregates, and how such queries adapt to the
changing network structure. We have implemented early



versions of these techniques and are in the process of exper-
imentally validating them.

We begin with the relevant background in the TinyOS
platform on which our aggregation algorithms are deployed,
along with a brief summary of aggregation in database sys-
tems. Following that, we present our algorithms for aggre-
gation, related and future work, and conclusions.

2. Background

In this section, we first discuss the relevant design as-
pects of the TinyOS operating system and mote architec-
ture. For more complete treatment of these topics, refer to
[9, 18, 8]. We then summarize aggregation in database sys-
tems and discuss how those techniques provide a useful and
well defined framework for computing aggregates in sensor
networks.

2.1. Motes

A photograph of the current generation of motes is
shown in Figure 1. These devices are equipped with a 4Mhz
Atmel microprocessor with 512 bytes of RAM and 8 kB of
code space, a 917 MHz RFM radio running at 10 kb/s, and
32kB of EEPROM. An expansion slot accommodates a va-
riety of sensor boards by exposing a number of analog input
lines as well as popular chip-to-chip serial busses. Current
sensor options include: light, temperature, magnetic field,
acceleration (and vibration), sound, and power.

The radio hardware uses a single channel, and uses on-
off keying. It provides an unbuffered bit-level interface; the
rest of the communication stack (up to message layer) is
implemented by TinyOS software. Like all single-channel
radios, it offers only a half duplex channel. Currently, the
default TinyOS implementation uses a CSMA-like media
access protocol with random backoff scheme. Message
delivery is unreliable by default, though applications can
build up an acknowledgement layer. Often, a message ac-
knowledgement can be obtained for free (see below in Sec-
tion 2.3).

Figure 1. A TinyOS Sensor Mote

Power is supplied via a free-hanging AA battery pack or
a coin-cell attached through the expansion slot.

The effective lifetime of the sensor is determined by its
power supply. In turn, the power consumption of each sen-
sor node is dominated by the cost of transmitting and re-
ceiving messages; including processor cost, sending a sin-
gle bit of data requires about 4000 nJ of energy, whereas
a single instruction on a 5mW processor running at 4Mhz
consumes only 5 nJ (see [9]). Thus, in terms of power con-
sumption, transmitting a single bit of data is equivalent to
800 instructions. This energy tradeoff between communi-
cation and computation implies that many applications will
benefit by processing the data inside the network rather than
simply transmitting the sensor readings.

2.2. TinyOS

TinyOS provides a number of services to greatly sim-
plify writing programs that capture and process sensor data
and transmit messages over the radio. The reader is referred
to [8] for details of the operating system. For the purposes
of this paper, TinyOS should be thought of as an API which
can send and receive messages and read from sensors. The
next section goes into some detail on the messaging and net-
working aspects of TinyOS and wireless sensors, as those
are most relevant to the topic of aggregation.

2.3. Ad-hoc Sensor Networks

In this section, we discuss how data is routed in our ad-
hoc aggregation network. To understand the solution, two
properties of radio communication need to be emphasized.
First, radio is a broadcast medium, such that any sensor
within hearing distance can hear any message, irrespective
of whether or not it is the intended recipient. Second, radio
links are typically symmetric: if sensor � can hear sensor

�
,

we assume sensor
�

can also hear sensor � . Note that this
may not be a valid assumption in some cases: if � ’s signal
strength is higher, because its batteries are fresher or its sig-
nal is more amplified,

�
will be able to hear � but not reply

to it.
Messages in the current generation of TinyOS are a fixed

size preprogrammed into sensors – by default, 30 byte mes-
sages are used. Each message type has a message id that dis-
tinguishes it from other types of messages. Sensor program-
mers write message id specific handlers that are invoked by
TinyOS when a message of the appropriate id is heard on
the radio. Each sensor has a unique sensor id that distin-
guishes it from other sensors. All messages specify their re-
cipient (or broadcast, meaning all available recipients), al-
lowing sensors to ignore messages not intended for them,
although non-broadcast messages must still be received by



all sensors within range – unintended recipients simply drop
messages not addressed to them.

Given this brief primer on wireless sensor communica-
tion, we now show how sensors route data. The technique
we adopt is to build a routing tree.1 We appoint one sensor
to be the root. The root is the point from which the rout-
ing tree will be built, and upon which aggregated data will
converge. Thus, the root is typically the sensor that inter-
faces the querying user to the rest of the network. The root
broadcasts a message asking sensors to organize into a rout-
ing tree; in that message it specifies its own id and its level,
or distance from the root, which is zero. Any sensor that
hears this message assigns its own level to be the level in
the message plus one, if its current level is not already less
than or equal to the level in the message. It also chooses the
sender of the message as its parent, through which it will
route messages to the root. Each of these sensors then re-
broadcasts the routing message, inserting their own ids and
levels. The routing message floods down the tree in this
fashion, with each node rebroadcasting the message until
all nodes have been assigned a level and a parent. Nodes
that hear multiple parents choose one arbitrarily, although
we will discuss approaches in below (Section 3.3) where
multiple parents can be used to improve the quality of ag-
gregates. These routing messages are periodically broad-
cast from the root, so that the process of topology discovery
goes on continuously. This constant topology maintenance
makes it relatively easy to adapt to network changes caused
by mobility of certain nodes, or to the addition or deletion of
sensors: each sensor simply looks at the history of received
routing messages, and chooses the “best” parent, while en-
suring that no routing cycles are created with that decision.

This approach makes it possible to efficiently route data
towards the root. When a sensor wishes to send a mes-
sage to the root, it sends the message to its parent, which
in turn forwards the message on to its parent, and so on,
eventually reaching the root. This approach doesn’t address
point-to-point routing; however, for our purposes, flooding
aggregation requests and routing replies up the tree to the
root is sufficient. We’ll see in the Section 3 how, as data
is routed towards the root, it can be combined with data
from other sensors to efficiently combine routing and ag-
gregation. First, however, we describe how aggregates are
expressed in database systems.

1Note that this is one of many possible techniques that could be used;
the reader is referred to [18, 11, 10, 12, 1] for more information. Our
observations about aggregation of sensor data do not depend on a particular
routing tree algorithm; rather, they exploit the fact that such a structure can
be built and maintained efficiently in the presence of a changing network
topology.

2.4. Aggregation in Database Systems

Aggregation in SQL-based database systems is defined
by an aggregate function and a grouping predicate. The
aggregate function specifies how a set of values should be
combined to compute an aggregate; the standard set of SQL
aggregate functions is COUNT, MIN, MAX, AVERAGE,
and SUM. These compute the obvious functions; for exam-
ple, the SQL statement:

SELECT AVERAGE(temp) FROM sensors

computes the average temperature from some table sen-
sors, which represents a set of sensor readings that have
been read into the system. Similarly, the COUNT function
counts the number of items in a set, the MIN and MAX func-
tions compute minimal and maximal values, and SUM cal-
culates the total of all values. Additionally, most database
systems allow user-defined functions (UDFs) that specify
more complex aggregates than the five listed above.

Grouping is also a standard feature of database systems.
Rather than merely computing a single aggregate value over
the entire set of data values, a grouping predicate partitions
the values into groups based on some attribute. For exam-
ple, the query:

SELECT TRUNC(temp/10), AVERAGE(light)

FROM sensors

GROUP BY TRUNC(temp/10)

HAVING AVERAGE(light) � 50

partitions sensor readings into groups according to their
temperature reading and computes the average light reading
within each group. The HAVING clause excludes groups
whose average light readings are less than or equal to 50.

In the rest of this paper, we discuss the challenges as-
sociated with implementing the five basic aggregates with
grouping in ad-hoc networks of TinyOS sensors. We start
by considering a single aggregate being computed at a time,
and then argue that often users are interested in viewing ag-
gregates as sequences of changing values over time. We dis-
cuss the implication of this assertion in Section 6. Through-
out this work, we will assume the user is stationed at a
desktop-class PC with ample memory. Despite the simple
appearances of this architecture, there are a number of dif-
ficulties presented by the limited capabilities of the sensors,
as we will see in the next section.

Throughout the following analyses, the focus is on re-
ducing total number of messages required to compute an
aggregate; this is because, as discussed above, message
transmission costs typically dominate energy consumption
of sensors, especially when performing only simple compu-
tation such as the five standard database aggregates.



3. Generic Aggregation Techniques

A naive implementation of sensor network aggregation
would be to use a centralized, server-based approach where
all sensor readings are sent to the host PC, which then com-
putes the aggregates. However, as was shown in [6], a
distributed, in-network approach where aggregates are par-
tially or fully computed by the sensors themselves as read-
ings are routed through the network towards the host-PC
can be considerably more efficient. In this section, we fo-
cus on the in-network approach, because, if properly im-
plemented, it has the potential to be both lower latency and
lower power than the server based approach.

To illustrate the potential advantages of the in-network
approach, consider the simple example of computing an ag-
gregate over a group of sensors arranged as shown in Fig-
ure 2. Dotted lines represent connections between sensors,
solid lines represent the routing tree imposed on top of this
graph (as discussed above) to allow sensors to propagate
data to the root along a single path. In the centralized ap-
proach, each sensor value must be routed to the root of the
network; for a node at depth � , this requires n-1 messages to
be transmitted per sensor. The sensors in Figure 2(a) have
been labeled with their distance from the root; summing
these numbers gives a total of sixteen messages required to
route all aggregation information to the root. Contrast this
with the sensors in Figure 2(b): sensors with no children
simply transmit their readings to their parents. Intermedi-
ate nodes (with children) combine their own readings with
the readings of their children via the aggregation function�

and propagate the partial aggregate, along with any extra
data required to update the aggregate, up the tree.

Notice that the amount of data transmitted in this so-
lution depends on the aggregate. Consider the AVERAGE
function: at each intermediate node � , the sum and count
of all children’s sensor readings are needed to compute the
average of sensor readings of the subtree rooted at � . We
assume that, in the case of AVERAGE, both pieces of infor-
mation will easily fit into a single 30 byte message. Thus, a
total of five messages need to be sent for the average func-
tion. In the case of the other standard SQL aggregates, no
additional state is required: COUNT, MIN, MAX, and SUM
can be computed by a parent node given sensor or partial
aggregate values at all of the child nodes.

In this work we focus on a class of aggregation pred-
icates that is particularly well suited to the in-network
regime. Such aggregates can be expressed as an aggregate
function

�
over the sets � and

�
such that:

���
��� ���	��
 �����

�
��
 ��� �����

(1)

We focused on this class of aggregates for two reasons:
first the basic SQL aggregates all exhibit the above property,
and second because the problems with this substructure map

2

333

4

1

(a) (b)

a

c d

ƒ(c,d,f (a,b))

Figure 2. Server-based (a) versus In-network (b) ag-
gregation. In (a), each node is labelled with the num-
ber of messages required to get data to the host PC: a
total of 16 messages are required. In (b), only one
message is sent along each edge as aggregation is
performed by the sensors themselves.

easily onto the underlying network. We expect to tackle
more generalized aggregation predicates, such as median,
in a future work.

For the reasons described above, in network aggregation
is always a superior choice. Given the in-network regime,
we next give a brief description of how aggregation queries
are pushed down into a sensor network and how results are
returned to the user. For the purposes of this discussion,
we assume aggregate queries do not specify groups; queries
with groups are discussed in Section 4. Then, in the re-
mainder of this section, we examine other problems that can
arise in ad-hoc sensor environments and sketch possible so-
lutions.

3.1. Injecting a Query

Computing an aggregate consists of two phases: a prop-
agation phase, in which aggregate queries are pushed down
into sensor networks, and an aggregation phase, where the
aggregate values are propagated up from children to par-
ents. The most basic approach to propagation works just
like the network discovery algorithm described above, ex-
cept that leaf nodes (nodes with no children) must discover
that they are leaves and propagate singular aggregates up to
their parents. Thus, when a sensor � receives an aggregate

� , either from another sensor or from the user, it transmits �

and begins listening. If � has any children, it will hear those
children re-transmit � to their children, and will know it is
not a leaf. If, after some time interval � , � has heard no chil-
dren, it concludes it is a leaf and transmits its current sensor



value up the routing tree. If � has children, it assumes they
will all report within time � , and so after time � it computes
the value of � applied to its own value and the values of its
children and forwards this partial aggregate to its parent.

Notice that choosing too short a duration for � can lead to
missed reports from children, and also that the proper value
of � varies depending on the depth of the routing tree. We
will discuss a possible solution to this problem in the next
section; for now, assume that � is set to be long enough that
the message has time to propagate down to all leaves below
� and back, or, numerically:

� ����� �����	�
����
���� ��� � ������� ��� � ��
���������� � (2)

where � � �!� � is the time to send a message and
� � ��
"�"������� is

the time to process an aggregation request. Empirical stud-
ies suggest that

� ������� �#� � �$
��"������� � needs to be 200 or more
milliseconds. The time to transmit a 30-byte message on a
10kbit radio is about 50 ms: each nibble must be DC bal-
anced (have the same number of ones and zeros), costing
extra bits. This, plus the overhead of simple forward error
correction, means that for every byte, 18 bits must be trans-
mitted; 18 * 30 bytes / 10000 bits / sec = 50ms. Computa-
tion time is small, but significantly more than 50 ms must
be allocated per hop to account for differences in clock syn-
chronization between sensors and random collision detec-
tion back-off that sensors engage in. Thus, for a deep sen-
sor network, computing a single aggregate can take several
seconds. In the next section, we will see that the unreliable
communication inherent to sensor networks, coupled with
such long computation times make this simple in-network
approach undesirable.

3.2. Streaming Aggregates

Sensor networks are inherently unreliable: individual ra-
dio transmission can fail, nodes can move, and so on. Thus,
it is very hard to guarantee that a significant portion of a sen-
sor network was not detached during a particular aggregate
computation. Consider, for example, what happens when
a sensor, � , broadcasts � and its only child, % , somehow
misses the message (perhaps because it was garbled during
transmission.) & will never hear % rebroadcast, and will as-
sume that it has no children and that it should forward only
its own sensor value. The entire network below � is thus
excluded from the aggregation computation, and the end re-
sult is probably incorrect. Indeed, when any subtree of the
graph can fail in this way, it is impossible to give any guar-
antees about the accuracy of the result.

One solution to this problem is to double-check aggre-
gates by computing them multiple times. The simplest way
to do this would be to request the aggregate be computed
multiple times at the root of the network; by observing the
common-case value of the aggregate, the client could make

a reasonable guess as to its true value. The problem with
this technique is that it requires retransmitting the aggre-
gate request down the network multiple times, at a signifi-
cant message overhead, and the user must wait for the entire
aggregation interval for each additional result.

Instead, we propose using a pipelined aggregate, which
works as follows. In this scheme, aggregates are propa-
gated into the network as described above. However, in the
pipelined approach, time is divided into intervals of dura-
tion ' . During each interval, every sensor that has heard
the request to aggregate transmits a partial aggregate by
applying � to its local reading and the values its children
reported during the previous interval. Thus, after the first
interval, the root hears from sensors one radio-hop away.
After the second, it hears aggregates of sensors one and two
hops away, and so on. In order to include sensors which
missed the request to begin aggregation, a sensor that hears
another sensor reporting its aggregate value can assume it
too should begin reporting its aggregate value.

In addition to tending to include nodes that would have
been excluded from a single pass aggregation, the pipelined
solution has a number of interesting properties: first, after
aggregates have propagated up from leaves, a new aggre-
gate arrives every ' seconds. Note that the value of ' can
be quite small, about the time it takes for a single sensor to
produce and transmit a sensor reading, versus the value of
� in the simple multi-round solution proposed above, which
is roughly

��( � ��) ��
"��� times larger. Second, the total time
for an aggregation request to propagate down to the leaves
and back to the root is roughly � , but the user begins to
see approximations of the aggregate after the first interval
has elapsed; in very deep networks, this additional feed-
back may be a useful approximation while waiting for the
true value to propagate out and back. The benefits of online,
streaming aggregate values are discussed in the database lit-
erature on online-aggregation [7]. These two properties pro-
vide users with a stream of aggregate values that changes as
sensor readings and the underlying network change. As dis-
cussed above, such continuous results are often more useful
than a single, isolated aggregate, as they allow users to un-
derstand how the network is behaving over time. Figure 3
illustrates a simple aggregate running in a pipelined fashion
over a small sensor network.

The most significant drawback of this approach is that
a number of additional messages are transmitted to extract
the first aggregate over all sensors. For the example shown
in Figure 3, 22 messages are sent, since each aggregating
node is transmits once per time interval. The comparable
non-pipelined aggregate requires only 10 messages – one
down and one back along each edge. Note, however, that,
in this example, after this initial 12 message overhead, each
additional aggregate arrives at a cost of only 5 messages
and at a rate of one update per time interval. Still, it is use-



ful to consider optimizations to reduce this overhead. One
option is that sensors could transmit only when the value
of the aggregate computed over their subtree changes, and
parents could assume their children’s aggregate values are
unchanged unless they hear differently. In such a scheme,
far fewer messages will be sent, but some of the ability to
incorporate nodes that failed to hear the initial request to
aggregate will also be lost, as there will be fewer aggregate
reports for those nodes to snoop on. We reserve the analysis
of the tradeoffs of these approaches for future work.

We believe a hybrid pipeline scheme will significantly
improve the robustness of aggregates by tending to incorpo-
rate nodes that lose initial aggregation requests. Pipelining
also improves throughput, which can be important when a
a single aggregate requires seconds to compute. With this
pipelined model in mind, we now consider a number of
other optimizations that can improve the efficiency of ag-
gregates in sensor networks.

3.3. Taking Advantage of A Shared Channel

In our discussion of aggregation algorithms up to this
point, we have largely ignored the fact that sensors com-
municate over a shared radio channel. The fact that every
message is effectively broadcast to all other sensors within
range enables a number of optimizations that can signifi-
cantly reduce the number of messages transmitted and in-
crease the accuracy of aggregates in the face of transmission
failures.

We saw an example of how a shared channel can be used
to increase message efficiency when a sensor that misses an
initial request to begin aggregation: it can initiate aggrega-
tion even after missing the start request by snooping on the
network traffic of nearby sensors. When it sees another sen-
sor reporting an aggregate, it can assume it too should be
aggregating.

This technique is not only beneficial for improving the
number of sensors participating in any aggregate; it also
substantially reduces the number of messages that must be
sent when using the pipelined aggregation scheme. Because
nodes assume they should begin aggregation any time they
hear an aggregate reported, a sensor does not need to ex-
plicitly tell its children to begin aggregation. It can simply
report its value to its parents, which its children will also
hear. The children will assume they missed the start request
and initiate aggregation locally. For the simple example in
Figure 3, none of the messages associated with black arrows
actually need to be sent. This reduces the total messages
required to compute the first full aggregate of the network
from 22 to 17, for a total savings of 23%.

Of course, for later rounds in the aggregation, when no
messages are sent from parents to children, these savings
are no longer available. Snooping can, however, be used to

reduce the number of messages sent for certain classes of
aggregates. Consider computing a maximum over a group
of sensors; if a sensor hears a peer reporting a maximum
value greater than its local maximum, it can elect to not send
its own value and be assured of not affecting the value of the
final aggregate. We will discuss variants of this technique
in more detail in Section 3.4 below.

In addition to reducing the number of messages that must
be sent, the inherently broadcast nature of radio also of-
fers communications redundancy which improve reliability.
Consider a sensor with two parents: instead of sending its
aggregate value to just one parent, it can send it to both par-
ents. It is easy for a node to discover that it has multiple
parents, since it can simply build a list of nodes it has heard
that are one step closer to the root. Of course, for aggregates
other than MIN and MAX, sending to multiple parents re-
sults has the undesirable effect of causing the node to be
counted multiple times. The solution to this is to send part
of the aggregate to one parent and the rest to the other. Con-
sider a COUNT; a sensor with % ���

children and two parents
can send a COUNT of %�� � to both parents instead of a count
of % to a single parent. A simple statistical analysis reveals
the advantage of doing this: assume that a message is trans-
mitted with probability � , and that losses are independent,
so that if a message � from sensor � is lost in transition to
parent &�� , it is no more likely to lost in transit to &	� . 2 First,
consider the case where � sends % to a single parent; the ex-
pected value of the transmitted count is � � % (0 with prob-
ability

� � �
� �
and % with probability � ), and the variance is

% � � � � ��� � � � , since these are standard Bernoulli trials
with a probability of success � multiplied by a constant % .
For the case where � sends %�� � to both parents, linearity of
expectation tells us the expected value is the sum of the ex-
pected value through each parent, or

� � � � %�� � . Similarly,
we can sum the variances through each parent to get:

var =
��� � %�� � � � � � � �
� � � � = % � � ��� � � ��� � � �

Thus, the variance of the multiple parent COUNT is much
less, although its expected value is the same. This is be-
cause it is much less likely (assuming independence) for the
message to both parents to be lost, and a single loss will less
dramatically effect the computed value. Note that the prob-
ability that no data is lost is actually lower with multiple
parents (� � versus � ), suggesting that this may not always
be a useful technique. However, since losses are almost as-
sured of happening occasionally when aggregating, we be-
lieve users will prefer that their aggregates be closer to the
correct answer than exactly right more often.

This technique applies equally well for SUM and AVER-
AGE aggregates or for any aggregate which is a linear com-
bination of a number of values. For rank-based aggregates,

2Although failure independence is not always a valid assumption, it
will occur when a hidden-node garbles communication to ��� but not ��� ,
or when one parent is forwarding a message and another is not.



Count: 0

t = 0

Non-aggregating nodeAggregating Node

Count: 1

t = 1

Count: 2

t = 2

Count: 2

t = 3

Count: 3

t = 4

Count: 3

t = 5

Count: 5

t = 6

ƒ(1) ƒ(1,2) ƒ(1,2) ƒ(1,2,3) ƒ(1,2,3) ƒ(1,2,3,4,5)

ƒ(2,3) ƒ(2,3) ƒ(2,3) ƒ(2,3,4,5)

ƒ(3,4,5) ƒ(3,4,5) ƒ(3,4,5,6)

ƒ(5,6) ƒ(5,6)

Figure 3. Pipelined computation of aggregates

like mode and median, this technique cannot be applied.
We now present our final technique for increasing the ef-

ficiency of aggregates: rephrasing aggregates as hypotheses
to dramatically reduce the number of sensors required to
respond to any aggregate.

3.4. Hypothesis Testing

Although the above techniques offer significant gains in
terms of number of messages transmitted and robustness
with respect to naive approaches, these techniques still re-
quire input from every node in a network to compute an
aggregate. In this section, we observe that we only need to
hear from a particular sensor if that sensor’s sensor value
will affect the end value of the aggregate. For some aggre-
gates, this can significantly reduce the number of nodes that
need to report.

We presented a simple example of hypothesis testing
above: when computing a MAX or MIN, a sensor can snoop
on the values its peers report and omit its own value if it
knows it cannot affect the final value of the aggregate. This
technique can be generalized to an approach we call hy-
pothesis testing. If a node is presented with a guess as to
the proper value of an aggregate, either by snooping on an-
other sensor’s aggregate value or by explicitly being pre-
sented with a hypothesis by the user or root of the network,
it can decide locally whether contributing its reading and
the readings of its children will affect the value of the ag-
gregate.

For MAX, MIN and other top-n[3] aggregates, this tech-
nique is directly applicable. There are a number of ways it
can be applied – the snooping approach is one. As another
example, the root of the network seeking a MIN sensor value
might compute the value of the aggregate over the top � lev-
els of the network (using the pipelined approach described
above), and then abort the aggregate and issue a new request
asking for only those sensor values less than the minimum
observed in the top � levels. In this approach, leaf nodes

will be required to send no message if their value is greater
than the minimum observed over the top � levels (interme-
diate nodes must forward the request to aggregate, so they
must still send messages.) If we assume sensor values are
independent and randomly distributed (a big assumption!),
then a particular leaf mote must transmit with probability� � ���

(where b is the branching factor of the tree and
���

is
the number of sensors in the top k levels), which is quite
low for even small values of � . Since, in a balanced tree,
at least half the nodes are in the bottommost level, this can
reduce the total number of messages that must be sent by a
factor of two or more.

For other aggregates that accumulate a total, such as SUM
and COUNT this technique will never be applicable. For the
a third class of statistical aggregates, such as AVERAGE or
variance, this technique can reduce the number of messages,
although not as drastically. To obtain any benefit with such
aggregates, the user must define an error bound that he is
willing to tolerate over the value of the aggregate. Given
this error bound, the same approach as for top-n aggregates
can be applied. Consider the case of an average: any sensor
that is within the error bound of the approximate answer
need not answer – its parent can assume its value is the
same as the approximate answer and count it accordingly
(this scheme requires parents to know how many children
they have.) The total computed average will not be off from
the actual average by more than the error bound, and leaf
sensors with values close to the average will not be required
to report. Obviously, the value of this scheme varies greatly
on the distribution of sensor values. If values are uniformly
distributed, the fraction of leaves that need not report will
approximate the size of the error bound. If values are nor-
mally distributed, a much larger percentage of leaves will
not report. Thus, the value of this scheme depends on the
expected distribution of values and the tolerance of the user
to inaccurate error bounds.

In summary, we proposed using in-network aggregation
to compute aggregates. By pipelining aggregates, we were



able to increase throughput and smooth over intermittent
losses inherent in radio communication. We improved on
this basic approach with several other techniques: snooping
over the radio to reduce message load and improve accuracy
of aggregates, and hypothesis testing to invert problems and
further reduce the number of messages sent. In the next
section, we augment the algorithms presented in this section
to support grouping.

4. Grouping

Recall that grouping computes aggregates over partitions
of sensor readings. The basic technique for grouping is to
push down a set of predicates that specify group member-
ship, ask sensors to choose the group they belong to, and
then, as answers flow back, update the aggregate values in
the appropriate groups.

Group predicates are appended to requests to begin ag-
gregation. If sending all predicates requires more storage
than will fit into a single message, multiple messages are
sent. Each group predicate specifies a group id, a sensor at-
tribute (e.g. light, temperature), and a range of sensor values
that define membership in the group. Groups are assumed
to be disjoint and defined over the same attribute, which is
typically not the attribute being aggregated. Because the
number of groups can be large enough such that informa-
tion about all groups does not fit into the RAM of any one
sensor, sensors pick the group they belong to as messages
defining group predicates flow past and discard information
about other groups.

Messages containing sensed values are propagated just
as in the pipelined approach described above. When a sen-
sor is a leaf, it simply tags the sensor value with its group
number. When a sensor receives a message from a child, it
checks the group number. If the child is in the same group
as the sensor, it combines the two values just as above. If
it is in a different group, it stores the value of the child’s
group along with its own value for forwarding in the next
interval. If another child message arrives with a value in
either group, the sensor updates the appropriate aggregate.
During the next interval, the sensor will send out the value
of all groups it collected information about during the previ-
ous interval, combining information about multiple groups
into a single message as long as the message size permits.
Figure 4 shows an example of computing a query grouped
by temperature that selects average light readings. In this
snapshot, data is assumed to have filled the pipeline, such
that results from the bottom of the tree have reached the
root.

Recall that SQL queries also contain a HAVING clause
that constrains the set of groups in the final query result
by applying a filtration predicate to each group’s aggregate
value. We sometimes pass this predicate into the network

along with partitions. The predicate is only sent into the
network if it can potentially be used to reduce the number
of messages that must be sent: for, example, if the predicate
is of the form MAX(attr) � x, then information about
groups with MAX(attr) � x need not be transmitted up
the tree, and so the predicate is sent down into the network.
However, other HAVING predicates, such as those filtering
AVERAGE aggregates, or of the form MAX(attr) � x,
cannot be applied in the network because they can only be
evaluated when the final group-aggregate value is known.

Because the number of groups can exceed available stor-
age on any one sensor, a way to evict groups is needed.
Once an eviction victim is selected, it is forwarded to the
sensor’s parent, which may choose to hold on to the group
or continue to forward it up the tree. Because groups can be
evicted, the user workstation at the top of the network may
be called upon to combine partial groups to form an accu-
rate aggregate value. Evicting partially computed groups
is known as partial preaggregation, as described in the
database literature [13].

There are a number of possible policies for choosing
which group to evict. We believe that policies which in-
cur a significant storage overhead (more than a few bits per
group) are undesirable because they will reduce the num-
ber of groups that can be stored and increase the number of
messages that must be sent. Evicting groups with low mem-
bership is likely a good policy, as those are the groups that
are least likely to be combined with other sensor readings
and so are the groups that benefit the least from in-network
aggregation.

Evicting groups forces information about the current
time interval into higher level nodes in the tree. Since in
the standard pipelined scheme presented above, aggregates
are computed over values from the previous time interval,
this presents an inconsistency. We believe, however, that
this will not dramatically effect aggregates; verifying this
remains an area of future work.

Thus, we have shown how to partition sensor readings
into a number of groups and properly compute aggregates
over those groups, even when the amount of group informa-
tion exceeds available storage in any one sensor.

5. Related Work

In this section, we discuss related work from both the
database and sensor networking communities. Although the
networking community has begun to explore issues of data
collection within sensor networks, there is no other work
that we are aware of that proposes a generic, query-based
scheme for extracting data from sensor networks.

With respect to aggregation, the semantics used here are
largely a part of the SQL standard [2]. The partial preaggre-
gation techniques [13] used to enable group eviction were



Temp: 20
Light: 10

Temp: 20
Light: 50

Temp: 10
Light: 15

Temp: 30
Light: 25

Temp: 10
Light: 15

Temp: 10
Light: 5

1

2

3

4

5

6

1

2

3

4

5

6

Aggregate
AVG(light)

Groups
1 : 0 < temp  10
2 : 10 < temp  20
3 : 20 < temp  30

Group   AVG
1
2
3

10
-
-

Group   AVG
1
2
3

10
-
25

Group   AVG
1
2
3

10
50
25

Group   AVG
1
2
3

10
30
25

(6,5,2)
(3,1)
(4)

(6,5)
()
(4)

(6,5)
()
()

Figure 4. A sensor network (left) with an in-network, grouped aggregate applied to it (right). Parenthesized numbers
represent the sensors that contributed to the average; they are included for the reader’s benefit – the sensors do not
actually track this information.

proposed as a technique to deal with very large numbers
of groups to improve the efficiency of hash joins and other
bucket-based database operators.

The Cougar project at Cornell [15] discusses queries
over sensor networks, as does our own work on Fjords [14],
although the former only considers moving selection oper-
ators onto sensors and neither presents a specific, power-
sensitive algorithms for use in sensor networks.

The problem of computing aggregates in large clusters
of nodes has been addressed previously in the context of
shared-nothing query processing environments [16]. Solu-
tions developed for such environments, however, have little
applicability in the domain of sensor networks as they as-
sume a static, fully-connected, storage rich topology and
depend on communication heavy techniques such as hash
partitioning.

Literature on active-networks [17] first identified the idea
that the network could simultaneous route and transform
data, rather than simply serving as an end-to-end data con-
duit. Within the sensor network community, work on net-
works that perform data analysis has been largely confined
to the USC/ISI and UCLA communities. Their work on di-
rected diffusion [11] discusses techniques for moving spe-
cific pieces of information from one place in a network
to another, and proposes aggregation-like operations that
nodes may perform as data flows through them. [6] pro-
poses a scheme for imposing names onto related groups of
sensors in a network, in much the way that our scheme par-
titions sensor networks into groups. [10] discusses network-
ing protocols for routing data to improve the extent to which
data can be combined as it flows up a sensor network – it
provides low level techniques for building routing trees that
could be useful in computing database style aggregates.

Networking protocols for routing data in wireless net-
works are very popular within the literature [12, 1, 4, 5],
however, none of them address higher level issues of data
processing, merely techniques for data routing. Our tree
based routing approach is clearly inferior to these ap-
proaches for peer to peer routing, but works well for the
aggregation scenarios we are focusing on.

The TinyOS group at UC Berkeley has published a num-
ber of papers describing the design of motes [9], the design
of TinyOS [8], and the implementation of the networking
protocols used to construct ad-hoc sensor networks [18].
None of this work directly addresses issues of data col-
lection or aggregation, but is important as the platform on
which our solution operates.

6. Future Work

There are a number of areas of future work. Clearly,
experimental and mathematical validation of many of the
techniques presented in this paper is needed. As researchers
at UC Berkeley, we are currently working with the sensor
testbed built by the TinyOS group to empirically verify the
algorithms we have presented. Beyond verification, how-
ever, there are several significant challenges that have been
glossed over in this work.

We have not explored the tradeoffs between fully
pipelined communication and techniques such as sending
values only when sensor readings change. There are a num-
ber of options in this space, each of which has different mes-
sage costs and robustness properties.

We do not yet fully understand how our approach be-
haves when sensors move. Although the routing tree con-
struction algorithm allows moving nodes to reattach, and



the pipelined aggregation scheme can eventually adjust to
moved nodes or subtrees, it is important to formally charac-
terize how movements and disconnections affect the value
of aggregates.

Finally, we have not explored the problem of comput-
ing multiple simultaneous aggregates over a single sensor
network. It should be possible for sensors to accommo-
date multiple queries (just as they handle multiple groups)
up to some small number of queries. There may be an
eviction option, as with grouping, but there may also be a
point at which the in-network approach is so slow that the
server-based approach again becomes viable. The imple-
mentation issues associated with simultaneous aggregates
must be explored before these in-network approaches can
be implemented in a database system that supports concur-
rent queries.

7. Conclusion

We have demonstrated techniques for applying database
style aggregates with groups to sensor readings flowing
through ad-hoc sensor networks. By applying generic ag-
gregation operations in the tradition of database systems,
our approach offers the ability to query arbitrary data in a
sensor network without custom-building applications. By
pipelining the flow of data through the sensor network, we
are able to robustly compute aggregates while providing
rapid and continuous updates of their value to the user.
Finally, by snooping on messages in the shared channel
and applying techniques for hypothesis testing, we are able
to substantially improve the performance of our basic ap-
proach.

This work marks a first step towards a generic, in-
network approach for collecting and computing over sensor
data. SQL, as it has developed over many years, has proven
to work work well in the context of database systems. We
believe a similar language, when properly applied to sensor
networks, will offer similar benefits as SQL: ease of use, ex-
pressiveness, and a standard on which research and industry
can build.

References

[1] W. Adjue-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional naming
system. In ACM SOSP, December 1999.

[2] ANSI. SQL Standard, 1992. X3.135-1992.
[3] M. J. Carey and D. Kossman. Processing top n and bottom

n queries. Data Engineering Bulletin, 20(3):12–19, 1197.
[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris.

Span: An energy-efficient coordination algorithm for topol-
ogy maintenance in ad-hoc wireless networks. In ACM Mo-
biCom, July 2001.

[5] T. Goff, N. Abu-Ghazaleh, D. Phatak, and R. Kahvecioglu.
Preemptive routing in ad hoc networks. In ACM MobiCom,
July 2001.

[6] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless sensor
networks with low-level naming. In SOSP, October 2001.

[7] J. Hellerstein, P. Hass, and H. Wang. Online aggregation. In
Proceedings of the ACM SIGMOD, pages 171–182, Tucson,
AZ, May 1997.

[8] J. Hill. A software architecture to support network sensors.
Master’s thesis, UC Berkeley, 2000.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pis-
ter. System architecture directions for networked sensors.
In Proceedings of the 9th International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, November 2000.

[10] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Hei-
demann. Impact of network density on data aggregation
in wireless sensor networks. Submitted for Publication,
ICDCS-22, November 2001.

[11] C. Intanagonwiwat, R. Govindan, , and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In In Proceedings of the Sixth An-
nual International Conference on Mobile Computing and
Networks (MobiCOM 2000), Boston, MA, August 2000.

[12] J. Kulik, W. Rabiner, and H. Balakrishnan. Adaptive pro-
tocols for information dissemination in wireless sensor net-
works. In Proceedings of the 5th Annual IEEE/Mobicom
Conference, Seattle, WA, 1999.

[13] P.-A. Larson. Data reduction by partial preaggregation. In
ICDE, 2002. (to appear).

[14] S. Madden and M. J. Franklin. Fjording the stream: An ar-
chitechture for queries over streaming sensor data. In ICDE,
2002. (to appear).

[15] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor
database systems. In 2nd International Conference on Mo-
bile Data Management, Hong Kong, January 2001.

[16] A. Shatdal and J. Naughton. Adaptive parallel aggregation
algorithms. In ACM SIGMOD, 1995.

[17] D. Tennenhouse. Active networks. In OSDI, October 1996.
[18] A. Woo and D. Culler. A transmission control scheme for

media access in sensor networks. In ACM Mobicom, July
2001.


