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Abstract—Unmanned aerial vehicles (UAVs) are widely used
in many application areas within opportunistic networks. In this
paper, we investigate the charging station placement problem in
the application scenario with ten UAVs deployed in an oppor-
tunistic network environment. We have used a real-world dataset
that contains human mobility traces from North Carolina State
University. The UAVs cruise on the network with spiral shapes
and distribute messages to the nodes on the ground. The charg-
ing station locations are generated with random, Density-based
spatial clustering of applications with noise (DBSCAN) and k-
means clustering approaches. The evaluation results indicate
that the k-means algorithm with three clusters outperformed
the other two methods in terms of the success rates and the
message delay.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are used in civilian,
military, and other types of different applications. The UAVs
used in the military are generally large in size and have longer
cruise time with a single charge. In contrast, the UAVs used
in civilian applications are much smaller, have shorter cruise
time, and require full charging after cruising around 20 to 45
minutes. This limited battery life creates challenges when it
comes to civilian applications.

In our application scenario, the UAVs cruise around an
area where the mobile nodes on the ground communicate in a
peer-to-peer manner, in an opportunistic network. The ground
nodes create messages, and these messages are distributed
between nodes through the assistance of the UAVs. The UAVs
require charging every 45 minutes flight time, and they land
on the charging stations for recharging and then take off again
when set.

One of the challenges is the scanning pattern problem for
UAVs. Since the flight time is short, inspecting the entire map
with a single UAV may not always be possible even though a
few studies use one UAV for examining the whole map [1],
[2]. In that case, a scanning method or a pattern aimed at
scanning small parts of the map should be developed.

Another challenge is the appropriate placement of the
charging stations for the scanning pattern. Placing the charg-
ing stations too close to each other may impact UAVs’ ability
to scan different parts on the map. On the other hand, keeping
the charging stations far away from each other may create
fragmented locations on the map. The UAVs need to be in
the proximity of a charging station so they can return to it
once they drain their batteries.

Additional challenges occur due to the nature of the oppor-
tunistic network environment. An appropriate packet routing
strategy, which can result in high success rates and low
message delays, for the UAV and the nodes on the ground
are essential. The connectivity between different nodes can
change from time to time due to nature of connectivity within
the opportunistic networks.

We have simulated an opportunistic network environment
with different charging station places and various numbers of
charging stations for the UAVs. We have used spiral shapes as
the scanning pattern followed by UAVs on the environment.

The contributions of this study can be summarized as
follows:

o We have defined an application scenario where commer-
cially available UAVs are leveraged in an opportunistic
environment. The simulation study is conducted using a
real-world dataset.

« For our application scenario, we proposed a charging sta-
tion placement solution based on a spiral-based scanning
technique for the UAVs. The proposed routing strategy
between the UAVs and the nodes on the ground makes
minimal information exchange. No location information
or encounter history are exchanged, resulting in more
lightweight communication architecture. We can include
additional UAVs in the system without modifying the
data processing architecture.

The remainder of the paper is organized as follows. In
Section II, we have compared the literature with our work.
A detailed description of the application scenario within the
opportunistic environment is given in Section III. Our pro-
posed approach is presented in Section IV. The performance
evaluation results are discussed in Section V while the paper
concludes in Section VI.

II. RELATED WORK

Many routing strategies have been developed over the years
[3], [4]. For opportunistic networks, one of the most well-
known approaches is epidemic routing [5]. Besides epidemic,
spray and wait [6], PROPHET [7], and State-based Campus
Routing (SCR) [8] are the other few examples of opportunistic
routing strategies.

Wang et al. [9] have proposed improvements to the
PROPHET. Bacanli et al. [8] designed an opportunistic net-
work message flooding strategy in a campus environment and



used an encounter dataset to create SCR without any UAVs.
Bacanli and Turgut [1], [10] further extended their work to
incorporate additional military standard UAVs, which do not
use charging stations to scan the whole environment.

Tseng et al. [11] modeled the energy consumption of
drones through various flight scenarios and investigated the
flight path planning along with the recharging optimization
to ensure the drones complete their tour as planned. Yu et
al. [12] aim to minimize the time of deliveries by the UAVs,
and they leverage stationary as well as mobile recharging
stations (e.g., unmanned ground vehicles). Bourass et al. [13]
developed a scheme to determine the optimal itineraries for
electric vehicles to reach their destination, aiming to minimize
the recharging wait time of these electric vehicles. Gong et
al. [14] examined a scenario where a UAV collects data from
a set of sensors on a straight line with a minimum flight time
objective.

Won [15] proposed UBAT, a heuristic framework based
on the ant colony optimization to solve the charging station
deployment problem for UAVs. Ribeiro et al. [16] presented
a new optimization model based on mixed-integer linear
programming that addresses UAV routing and charging station
planning for belt conveyor inspection used in the mining
industry. The aim was to define the appropriate number of
UAVs for monitoring the system.

Amaro, Angeles and Judrez [17] provided a theoretical
framework for a single drone used in animal monitoring
application scenarios in which one of the proposed data
collection schemes in cluster-based wireless sensor networks
is based on UAVs. In this scheme, the UAV only visits the
clusterhead for data collection since all the cluster members
forward their sensed data to their clusterhead, resulting in
reduced flight time and energy usage.

III. APPLICATION SCENARIO

In our application scenario, the nodes communicate with
each other as well as with the UAVs. The UAVs communicate
whenever they encounter each other. The nodes on the ground
are part of an opportunistic network, and the UAVs help the
network achieve low message delays and high success rates.

The nodes refer to people walking with their smartphones
connected through WiFi, and they create text messages every
60 minutes. Three hours after the initial creation of the
message, the nodes stop receiving messages due to the 3 hours
message lifetime. Both UAVs and the nodes on the ground
use IEEE 802.11 WiFi protocol. The maximum connectivity
distance is 250 meters, which is appropriate for the IEEE
802.11 standard. The UAVs, however, are only responsible
for distributing the messages through the network.

The charging station size is a circle with a 1m diameter.
The UAV stays at the charging station for 30 seconds. Since
charging a battery will take much longer than 30 seconds, we
assume that the drained battery will be replaced with a fully
charged one in 30 seconds.

The UAVs make random spiral scans on the environment at
100m altitudes. We assume that the UAV’s maximum speed is

20m/s and has 30 minutes cruising time with a single charge.
The UAV’s specifications follow the commercial drone, DJI
Mavic 2 Pro Drone [18]. The UAVs’ scanning strategy is
autonomous, and they ensure to have sufficient battery power
to reach any charging station before their battery is depleted.

The proposed system can broadcast messages through the
campus area with the UAVs considering a university campus
where the dataset is collected.

I'V. PROPOSED APPROACH

Regardless of the charging location generation technique,
each charging location has at least one UAV at the start. After
the UAV takes off, it goes to a random location and scans the
environment with a random spiral radius. The spiral radius is
the maximum distance between the center of the spiral and
the limiting distance. If the distance between the UAV and the
center of the spiral goes outside of the mapped environment
or if the UAV reaches the maximum spiral distance, the
UAV stops and goes to another random location to make
another spiral scan. If the UAV is cruising away from the
closest charging station and barely has enough battery to make
a return trip to that station, the flight plan is immediately
canceled, and the UAV is redirected to the closest charging
location. Once the UAV reaches the charging station, it waits
on the charging station for 30 seconds for battery replacement
and then takes off for a new spiral scanning.

The spiral pattern for the spiral scan is selected since
inspecting a small area is possible by adjusting a(density) and
R(maximum radius) parameters of the spiral (see Figurel). In
the spiral pattern we use, Archimedes spiral, the density of
the spiral (a) stays constant, unlike Fibonacci(Golden) spiral
where the density(a) increases. The density of the spiral is
the distance between two consecutive arcs. The maximum
radius of the spiral is the distance between the center of the
spiral and the largest arc. For our application case, the density
parameter(a) is set to 200. The maximum communication
distance between nodes and a UAV is around 223 meters.
In that case, if the spiral density is 200 meters, at least two
encounters can occur with a stable node on the ground since
the maximum radius of the spiral is 400 meters.

UAVs do not request any location information from the
nodes or the other UAVs. The packet exchange between
the nodes and UAVs is minimal so that an encounter time
between them can be sufficient to make packet exchange
communication efficient. The UAVs have a GPS or a location
sensor as they travel around locations that are determined
dynamically. As a result, the UAVs can be added or removed
from the environment for maintenance or other purposes.

We use three different techniques to determine the charg-
ing station locations. In the first approach, we choose the
charging stations’ locations as random points on the map.
In the second approach, we determine the locations by the k-
means clustering on the dataset. K-means clustering algorithm
takes the number of clusters to be created and returns the
cluster center locations of the created clusters. These centers



Fig. 1: Archimedes spiral with density a and maximum radius
as R.

act as the charging locations. The last approach covers the
case where Density-based spatial clustering of applications
with noise (DBSCAN) is used to decide. DBSCAN is a
non-parametric clustering algorithm that takes the maximum
distance between clusters and the minimum number of nodes
in a cluster as parameters. Based on the parameters, DBSCAN
gives different numbers of cluster centers. The minimum
number of nodes in a cluster is three for the DBSCAN cases.

The reason we compare the Density-based spatial clustering
of applications with noise (DBSCAN) and k-means clustering
techniques is that DBSCAN is a non-parametric clustering
algorithm, whereas k-means is a parametric clustering algo-
rithm.

The DBSCAN approach has been evaluated with parame-
ters of 1000, 900, 800, and 700 meters for maximum distance
between clusters. The tested parameters gave 2, 3, 4, and 5
cluster centers, respectively. k-means approach is evaluated
with 2, 3, 4, and 5 cluster numbers. We choose 2, 3, 4, and
5 random locations to compare the results with the random
charging location setting approach.

V. SIMULATION STUDY
A. Simulation environment and metrics

We used an in-house simulator [1] to carry out our evalua-
tion study. We assume that the encounter duration between the
nodes is sufficiently long enough for packet exchange. Based
on the nature of the opportunistic network, if the receiver
does not receive a protocol message, the sender does not
resend the packet. The reason is that the message may be
received from another node when encountering takes place.
The opportunistic wireless environment includes a 10% error
rate for wireless communication.

The message delay and success rate have been used as
the simulation metrics to evaluate the performance of the
compared approaches. Message delay is considered the time
between the message creation and the receipt of the message.
The success rate is the distribution rate of the message. If a
message stays in the node’s buffer, then the success rate of
the message is 0%. On the other hand, if the message gets
distributed to every node, the success rate becomes 100%. At
the end of the simulation, we calculate the message delay and
the success rate for every message. We provide the statistical
distributions as complementary cumulative distribution graphs
for success rates and box plot graphs for message delays. An
efficient approach should maintain low message delay and
high success rates.

B. Dataset

We have used North Carolina State University (NCSU)
dataset by Rhee et al. [19]. NCSU dataset contains 35
movement traces of students on the university campus for
78090 seconds (more than 21 hours). The participants were
randomly selected students who took a course in the computer
science department, and every week several randomly chosen
students carried the GPS receivers for their regular daily
activities. This scenario represents a typical example of the
movement of the nodes in an opportunistic network.

The width of the simulation environment is 14629 meters
by 9714 meters. The third movement trace was removed. The
removed movement trace goes to the corner of the map where
no node movement activity occurs. The dataset contains the
traces of the nodes every 10 seconds. We have used the data
points of all the nodes on the map at every 300 second time
intervals while applying the clustering techniques.

C. k-means clustering results

Figure 2 presents the cluster centers generated by the k-
means and DBSCAN clustering algorithms. When k-means
generates two locations, it generates them on the diagonals
of the map.

As the number of clusters increase, k-means clustering
creates different centers. The cluster centers appear to be
further away from each other when the number of clusters
increases. DBSCAN, on the other hand, creates new cluster
centers around the previous ones. For instance, three cluster
centers are located close to the existing two cluster centers.
The graph of the cluster centers gives an overview of the
performance of the clustering techniques.

Figure 3 shows box plots of message delay distribution for
2 through 5 cluster centers generated with k-means clustering.
k-means clustering technique gives low message delay for 2
clusters. The difference between the message delay medians
of 2 and 3 clusters is similar; however, 4 and 5 cluster centers
show an increase in the message delay.

Figure 4 presents the complementary cumulative success
rates graph for 2 through 5 cluster centers generated with k-
means clustering. Unlike the message delay graph, the success
rates give similar results for the different cluster centers.

D. DBSCAN clustering results

Figure 5 presents the complementary cumulative success
rates graph for 2 through 5 cluster centers generated with
DBSCAN clustering for maximum cluster center parameters
of 1000, 900, 800, and 700 meters, respectively. In terms of
success rates, DBSCAN also performs poorly.

E. Three random cluster centers

DBSCAN technique has created three cluster centers for
900 meters maximum cluster centers. In order to employ
an efficient number of chargers in our application case, we
suggest using 900 meters as the DBSCAN cluster parameter
to acquire the number of clusters. We can then use the cluster
number in the k-means clustering algorithm to determine the
charging locations.
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Fig. 2: Cluster centers, created by k-means clustering, are shown on the map. The numbers in x- and y-axes represent the x

and y coordinates of the map.
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Fig. 3: Box plot distribution results of k-means clustering with
numbers of different cluster centers.

Figure 6 shows the box plots of message delay distributions
for three cluster center locations generated with DBSCAN
clustering, k-means clustering, and random algorithms. DB-
SCAN clustering generated three cluster center locations for
the maximum cluster distance parameter of 900 meters. k-
means outperforms both random and DBSCAN approaches
in terms of message delay. DBSCAN clustering algorithm,
in turn, has a lower delay than randomly generated cluster
center locations.

Figure 7 presents the complementary cumulative success
rates graph for 3 cluster center locations generated with
DBSCAN clustering, k-means clustering, and random ap-
proaches. Randomly assigning the charging locations results
in a higher success rate than the DBSCAN. k-means continues
to outperform random and DBSCAN algorithms.
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Fig. 4: k-means clustering CCDF success rates with different
cluster numbers.

VI. CONCLUSION

In this paper, we used unmanned aerial vehicles (UAVs) to
distribute messages in an opportunistic network environment
that included ten UAVs with limited cruising time. We used
the North Carolina State University dataset with 35 nodes on
the ground, and the UAVs were randomly making spiral scans
with limited battery life. They could cruise for 30 minutes
and visit charging stations on the ground when their battery
is too low to make another spiral scan. We have evaluated 2,
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Fig. 7: CCDF success rates results of three cluster centers

generated by DBSCAN, k-means and random clustering.

3, 4, and 5 charging stations with different charging station
locations. The three approaches compared were random,
DBSCAN, and k-mean clustering algorithms. The evaluation
results show that k-means clustering outperforms the other
two approaches in determining the UAVs’ charging station
locations.

(1]

(2]

[3]

(4]

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

S. S. Bacanli and D. Turgut, “Unmanned aerial vehicles in opportunistic
networks,” in IEEE Global Communications Conference (Globecom-
2019), December 2019, pp. 1-5.

A. Arvanitaki and N. Pappas, “Modeling of a UAV-based data collection
system,” in IEEE International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD-2017),
June 2017, pp. 1-6.

A. Radwan, M. Girgis, T. Mahmoud, and E. Elgeldawi, “Improving the
efficiency of the flow deviation method for solving the optimal routing
problem in a packet-switched computer network,” International Journal
of Applied Mathematics, vol. 5, pp. 171-187, 2001.

A. Radwan and E. Elgeldawi, “Solving the optimal routing problem in
a packet-switched computer network using decomposition,” Egyptian
International Journal, vol. 4, 2003.

A. Vahdet and D. Becker, “Epidemic routing for partially connected ad
hoc networks,” CS-200006, Duke University, Tech. Rep., 2000.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and Wait:
an efficient routing scheme for intermittently connected mobile net-
works,” in ACM SIGCOMM Workshop on Delay-tolerant Networking
(WDTN-2005), 2005, pp. 252-259.

A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks,” ACM SIGMOBILE Mobile Computing
and Communications Review, vol. 7, no. 3, pp. 19-20, July 2003.

S. S. Bacanli, G. Solmaz, and D. Turgut, “Opportunistic message broad-
casting in campus environments,” in IEEE Global Communications
Conference (Globecom-2015), December 2015, pp. 1-6.

G. Wang, J. Tao, H. Zhang, and D. Pan, “A improved prophet routing
based on congestion level of nodes in DTN,” in IEEE Advanced
Information Technology, Electronic and Automation Control Conference
(IAEAC-2017), March 2017, pp. 1666-1669.

S. S. Bacanli and D. Turgut, “Energy-efficient unmanned aerial vehicle
scanning approach with node clustering in opportunistic networks,”
Computer Communications, vol. 161, pp. 76-85, September 2020.

C. Tseng, C. Chau, K. M. Elbassioni, and M. Khonji, “Flight tour
planning with recharging optimization for battery-operated autonomous
drones,” CoRR, vol. abs/1703.10049, 2017.

K. Yu, A. K. Budhiraja, and P. Tokekar, “Algorithms for routing of
unmanned aerial vehicles with mobile recharging stations,” in /EEE
International Conference on Robotics and Automation (ICRA-2018),
May 2018, pp. 5720-5725.

A. Bourass, S. Cherkaoui, and L. Khoukhi, “Secure optimal itinerary
planning for electric vehicles in the smart grid,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 6, pp. 3236-3245, September 2017.
J. Gong, T. Chang, C. Shen, and X. Chen, “Flight time minimization of
UAV for data collection over wireless sensor networks,” IEEE Journal
on Selected Areas in Communications (JSAC), vol. 36, no. 9, pp. 1942—
1954, September 2018.

M. Won, “UBAT: on jointly optimizing UAV trajectories and placement
of battery swap stations,” in /EEE International Conference on Robotics
and Automation (ICRA-2020), June 2020.

R. G. Ribeiro, J. R. C. Junior, L. P. Cota, T. A. M. Euzébio, and E. G.
Guimardes, “Unmanned aerial vehicle location routing problem with
charging stations for belt conveyor inspection system in the mining
industry,” IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 10, pp. 4186-4195, 2020.

R. Vera-Amaro, M. E. Rivero—Angeles, and A. Luviano-Judrez, “Data
collection schemes for animal monitoring using WSNs-assisted by
UAVs: WSNs-oriented or UAV-oriented,” Sensors, vol. 20, no. 1, 2020.
DJI Mavic 2 Pro Drone. (2020) DJI Mavic 2 Pro Drone. [Online]. Avail-
able: https://www.apple.com/shop/product/HM9Q2ZM/A/dji-mavic-2-
pro-drone

I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On
the Levy-walk nature of human mobility,” IEEE/ACM Transactions on
Networking, vol. 19, no. 3, p. 630-643, June 2011.



