
2005 IEEE International Symposium on Cluster Computing and the Grid

n-Cycle: a set of algorithms for task distribution on
a commodity grid

Ladislau Boloni*, Damla Turgut* and Dan C. Marinescut
*Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816,

Email: lboloni,turgut@cpe.ucf.edu
tSchool of Computer Science
University of Central Florida

Orlando, FL 32816,
Email: dcm@cs.ucf.edu

Abstract-The global internet is rich in commodity resources
but scarce in specialized resources. We argue that a grid frame-
work can achieve better performance if it separates management
of commodity tasks from the management of the tasks requiring
specialized resources. Assuming a relative homogeneity of the
commodity resource providers, the determining factor of grid
performance becomes the latency of entering into execution.
This effectively transforms the resource allocation problem into
a routing problem.
We present an approach in which commodity tasks are distrib-

uted to the commodity service providers by request forwarding
on the n-Cycle overlay network. We provide algorithms for task
allocation and for the maintenance of the overlay network. By
ensuring that the algorithms use only narrow local information,
the approach is easily scalable to millions of nodes.

For task allocation algorithms in a commercial setting, fairness
is of paramount importance. We investigate the properties of the
proposed algorithms from the fairness point of view and show
how adding several hops of random pre-walk to the algorithm
can improve its fairness.

Extensive simulations prove that the approach provides ef-
ficient task allocation on networks loaded up to 95% of their
capacity.

I. INTRODUCTION
The main contribution of this paper is to present and analyze

the n-Cycle task distribution algorithm for commodity grids. In
this introduction we motivate the need for separate treatment of
commodity tasks on the grid and show the differences between
the architecture of the commodity grid vs. the architecture of
the grid for specialized tasks.
The computational grid (and the internet at large) is rich

in commodity resources but scarce in specialized resources.
There is a large number of PC class hardware (Windows and
Apple desktops, Unix and Linux workstations) with typically
very low resource utilization. On the other hand, there is
a scarcity of specialized resources, such as supercomputers,
vector processors, specialized input and output devices and so
on. Typically, the need for specialized resources is dictated by
the nature of the application and, less often, by the chosen
implementation. The success of the Network of Workstations
(NOW, [2]) approach proved that some applications can be
rewritten in such a way that they can run on commodity

resources. For other applications however, such a rewrite
might not be possible, or come with a significant performance
penalty.

If we look at the state of the art for distributed high
performance computing, we see two different approaches:

. The computational grid community develops software
which manages scarce specialized resources. Although
the vision of grid computing was refined several times
([6] -* [8] -+ [7] -+ [3]) the main deployment of grid
applications are for projects with expensive specialized
hardware. Examples of testbeds are the grid projects of
the National Partnership for Advanced Computational
Infrastructure (NPACI) and National Computational Sci-
ence Alliance (NCSA) in the US or the European Data-
Grid project. The grid computing projects developed at
IBM, Sun and Hewlett Packard are also largely fall in
this category.

* A number of "public computing" initiatives are exploiting
the abundance of commodity resources for solving highly
parallel applications. Examples are SETI@Home [19],
Folding@Home the cryptographic challenges sponsored
by RSA laboratories [18] or the Mersenne prime search.
The Berkeley Open Infrastructure for Network Comput-
ing (BOINC, [1], [17]) proposes to provide a framework
more general than the SETI@Home project, which can
be shared by a number of projects following this pattern
of interaction.

Both approaches target grand challenge applications. The
applications targeted by the grid computing community how-
ever, are more general than the typical public computing
approaches. On the other hand, SETI@Home and the related
applications are highly successful in harnessing large amount
of cheap computing resources.
The tasks in the public computing approaches are com-

modity tasks. They have moderate processor and memory
requirements, and they can run on any of the current gen-
eration of personal computers. In addition, public computing
introduces certain simplifying assumptions, which typically

0-7803-9074-1/05/$20.00 ©2005 IEEE 615

do not hold in other settings: there is a single client for
all tasks, there are no hard deadlines, and as there are no
financial transactions involved, the accounting, fairness and
security issues are of secondary importance. For instance,
in the SETI@Home system, computers are "rewarded" for
executing a task, but they are not penalized for accepting a
task for execution and then not executing it.
We note that many high performance computing workflows

contain both specialized and commodity tasks'. For the spe-
cialized tasks, the best thing the workflow engine can do
is to queue them at the appropriate specialized providers,
for instance through a system such as Condor [14]. The
commodity components in these workflows are about the same
granularity as the subtasks of the SETI@Home or Mersenne
prime search, but they do not share the other simplifying
assumptions of those approaches.
The rest of this paper assumes an architecture where the

execution of the specialized and commodity tasks is treated
separately (Figure 1). Specialized tasks are executed by queu-
ing at the service providers, while commodity tasks are queued
at the customer side and distributed to commodity service
providers. The workflow engine is responsible to maintain
the dependency relationships between the components of the
workflow, and we allow specialized tasks to be dependent on
commodity tasks.
The commodity service providers are considered essentially

equivalent in performance. If a task is executed on a commod-
ity hardware, the main determining factor of the termination
time is the time at which the task is taken into execution.
Furthermore, given the abundance of the commodity resources,
it is likely that if a task needs to be queued at a certain
host, it is almost sure that somewhere on the internet there
is a task which can take it into execution immediately. Under
this assumption, the task allocation problem is reduced to a
specialized routing problem.

The remainder of this paper is organized as follows. The
architecture of the proposed system is presented in Section
II. We introduce the n-Cycle overlay network, algorithms for
building and maintaining it, and two distributed algorithms for
task allocation in Section III. Simulation results are presented
in Section IV. We overview related work in Section V and
conclude in Section VI.

II. SYSTEM ARCHITECTURE

A. Participants and algorithm sequence
This section presents the architecture of the grid framework

for the execution of commodity tasks. We start by introducing
the participants:

Application Client (AC). A host which desires to run a
grid workflow, where a subset of nodes are commodity tasks.
The AC needs to be in contact with at least one commodity
resource provider, called the insertion point.

'For instance, the authors experience with computational virology work-
flows shows that approximately 75% of the workflow contains image process-
ing tasks on moderate datasets which can be written as commodity tasks [10].

Customer side
queuing

Commodity

Tasks with tasks
special

,equi,remnts

4p C hest

applicathon E

Proviter-sire

Commodity
resource
providers

Speialized
proures
provirters

Fig. 1. The separate execution of commodity and specialized tasks of a grid
workflow. Note that the queuing of specialized tasks happen at the resource
provider, while commodity tasks are queued at the consumer.

Commodity Resource Providers (CRP). Computers which
can execute a commodity task. The CRP's also serve as
distribution nodes, and are able to forward task requests
according to the distribution policy.
Commodity Algorithm Server (CAS). A service which

provides the standard implementation of the commodity algo-
rithms. This can be a simple FTP or HTTP based service with
a specific naming convention. Alternatively, the AC can serve
as the CAS.

Security and Accounting Service (SAS). A trusted web
service which is used to (a) record the commitment of the CRP
to execute the commodity task and (b) record the successful
execution or the failure of the task. For the specialized grid,
where the resource provider is well known, we frequently
assume that the resource provider is trustworthy. This does not
apply to the commodity grid. Public computing projects, on the
other hand, frequently assume that the client is trustworthy and
integrate the AC and SAS. For the commodity grid, however,
we need to assume that the SAS is a trusted third party,
which is not affiliated neither with the CRP nor with the AC.
It is outside the purpose of this paper to discuss the actual
implementation details of this service.
The general process of the algorithm is as follows:
(1) The AC formulates a commodity problem as a task

description message TDM and sends it to one of the insertion
points. The TDM contains the address of the AC.

(2) When a TDM reaches a CRP, it is either accepted for
execution, or distributed/forwarded according to a distribution
policy. If the task is accepted for execution a Task Accepted
Message TAM is sent directly to the AC. We assume that every
AC can accept only a single task for execution at a time.

(3) The AC, the CRP, the CAS and the SAS communicate to
prepare the task for execution. If the CRP does not have a copy
of the algorithm, it is downloaded from the CAS. The input
data of the task is transfered to the CRP, through protocols

616

such as GridFTP. If the input data is very small, it can be
sent in a message directly from the AC. The SAS records the
successful negotiation for the start of the execution.

(4) The CRP executes the task.
(5) The CRP notifies the AC of the successful termination

or failure of the task. The output data is uploaded to the AC.
The SAS records the termination of the execution.

AC CRP CRP CRP

ask Distributionpolicy

A
-: 0 ~ Request for

: algorithm (-)

Transferring
inputs

Task T~~as

execution

Task
terminated -

A

CAS SAS

Algorithm
dowload

Registering
commitment

-- Transferring
outputs Registering

E ~ g---- __ execution

v v v V V V

from A to B and status information propagated from B to A.
The links of the overlay network form n separate Hamiltonian
cycles connecting all the elements in the grid node. The cycles
are formed randomly, we are not interested in optimizing
the length of the cycle. The randomness of the cycles is
an important part of the algorithm. For any n-Cycle overlay
network, every individual node will have n nodes "upstream"
and n nodes "downstream" from it. The node forwards tasks
to the upstream nodes and receives status updates from them.
Similarly, the node receives tasks from the downstream nodes
and forwards status updates to them.
To maintain the overlay network, we need algorithms to

create a network from a set of nodes, add and remove nodes
from an existing network. Algorithm 1, creates the overlay
network from a set of (known) nodes. Algorithm 2 is adding
a new node to the existing overlay network by making n "cuts"
at random locations in the existing cycles and "splicing" the
node in the cycles at these locations. The randomness of the
cuts are an important part of the algorithm. Finally, Algorithm
3 removes a node from the network, by "tying together" its
uplink and downlink nodes.

Algorithm 1 Creating the n-Cycle overlay network (central-
ized)
W = set of current nodes
Repeat n times

C = copy of W
firstNode = extract random node from C
previousNode = firstNode
While C not empty

current = extract random node from C
make current uplink from previous
make previous downlink from current

End While
make firstNode uplink from current
make current downlink from firstNode

End Repeat

Fig. 2. The flow of the task allocation process

III. THE N-CYCLE TASK DISTRIBUTION ALGORITHM

The goal of the task distribution algorithm is to deliver tasks
to commodity resource providers. With the number of CRPs
involved (on the order of millions), scalability is of utmost im-
portance. Having millions of hosts changing their availability
on a minute-per-minute basis centralized algorithms based on

global information are not appropriate.
The n-Cycle algorithm we propose uses only limited local

information, it is virtually indefinitely scalable and performs
efficient task distribution for grids loaded as high as 95% of
their nominal capacity. The algorithm can be divided in two
parts: the creation and maintenance of the overlay network and
the forwarding algorithm.

A. Creation and maintenance of the overlay network
The n-Cycle algorithm creates a overlay network of direc-

tional links. For any link A B, we will have task forwarded

Algorithm 2 Adding a node A to an n-Cycle overlay network
W = set of current nodes
For i=1 to n

C = pick a random node from N
D = i-th uplink from C
make A the i-th downlink from D
make A the i-th uplink from C

End For
W=W A

Algorithm 3 Removing a node A from an n-Cycle overlay
network
For i=1 to n

C = the i-th downlink from A
D = the i-th uplink from A
make C the i-th downlink from D
make D the i-th uplink from C

End For

617

(e

T,

B. Maintaining the overlay network with local information
The n-Cycle can be applied to very large networks, on

the order of magnitude of several million nodes. Thus, the
scalability of all the algorithm components are of importance.
Primarily, we prefer fully distributed algorithms which rely
only on limited local information.

Algorithms 1 and 2 require global information in the form
of the set of grid nodes W2. We are interested in developing a
completely distributed approach to creation and maintenance
of the n-Cycle overlay network. First, we will not use Algo-
rithm 1 and we will rely on adding the nodes individually to
the network. Algorithm 2 for adding a node also requires the
knowledge of the set of grid nodes W in order to extract the
n random nodes where the insertion cuts will be made.

It is important that these cuts are randomly chosen from
the complete set of nodes W. Let us assume that the cuts are
chosen only from a set W' C W. Then, if we add a series
of nodes E = {e,, e2 . . . e?} the resulting network assumes
an hourglass shape, with W' being the bottleneck. The task
forwarding algorithm will still work, but it will be unbalanced.

In the following, we present two fully distributed algorithms
for the insertion of a new node into the n-Cycle network. The
first algorithm guarantees that the node is connected through
cuts which are selected from the full set of nodes W, but its
complexity is linear in the size of the network. The second
algorithm offers only a statistical certainty, but its complexity
is logarithmic. Both algorithms exploit the properties of the n-
Cycle network. For both algorithms we assume that we have
an estimate of the size of the network IWj, this doesn't break
the distributed nature of our algorithm, as overestimates are
acceptable.
The first algorithm relies on a random walk on a single

Hamilton cycle of the n-Cycle network. As the cycle contains
all the nodes, we can pick n random cuts by randomly selecting
n numbers between 0 and WI, and reaching the nodes by
sending a message from node to node, in the direction of the
uplinks.
We can now propose the following lemma:
Lemma 1: The average number of messages exchanged

exchanged during Algorithm 4 is (2n1I)IWI2n
We leave the proof of this lemma as an exercise to the

reader. The main conclusion of this lemma is that the temporal
complexity of this algorithm is O(1WI), which makes the
complexity of building the complete n-Cycle with repeated
additions O(WI(IWI-1)). Given the fact that the constant
factor is proportional to the sending of a single message on
the network, this complexity factor is unacceptable. For a grid
of I million nodes and the (optimistic) assumption of Ims
processing time per message, building the network will take

2We need to note, that this is not such a great problem as if the actual
forwarding algorithm would require global informnation. The network creation
algorithm would be run only once, while the node addition will be run
whenever a new node runs the system - as opposed to the forwarding rules,
which need to be run several times for every task entered in the system.
Furthermore, the global information required by these algorithms is a simple
list of the nodes, without further status information.

Algorithm 4 Adding a node A into the n-Cycle overlay
network using a random walk on a cycle
When node A to be inserted into overlay network W

generate n random numbers ci E tO... IWI}
sort them in increasing order
create a message Ml = {0, {CI, C2 ... c,}, A}
send it to downlink 0

When node B receives a message MAI = {i, {Ck c* *C}, A}
If i ==ck

make B's k-th uplink the k-th uplink of A
make A B's k-th uplink
If k < n

create new message
I' = {i + 1, {Ck+L *.. Cm},A}

send it to downlink 0
Else

create new message M' = {ji + 1, {Ck ... cm}, A}
send it to downlink 0

0.5- 109 seconds or 15.85 years.

Algorithm 5 Adding a node into the n-Cycle overlay network
using a random walk on a cycle
When node A to be inserted into overlay network W

For i = 0 to n
generate k = Flog(IWD)1 + 3 random numbers
cm E {O ...n- I}
create a message M = {i, {cI ... ck}, A}
send it to downlink cl

When node B receives a message
M = {i, {Cj ... Ck}, A}
If j == k

make B's i-th uplink the i-th uplink of A
make A B's i-th uplink

Else
create new message M'-{i, {c+i . Ck}, A}
send it to downlink cj

The second algorithm relies on the fact that the n Hamil-
tonian cycles of the n-Cycle network are independently ran-
domized. Thus we see the downstream nodes of the insertion
point to form an n-ary tree. We can now perform a random
walk of k steps in this tree by randomly selecting one of
the n downlink nodes. Simple probability analysis shows that
the probability that a given node will not be reacheable in
[log,(JWJ)l + s steps is (1)n". For instance, the values for
a 5-Cycle network are 0.3679 for s = 0, 0.0067 for s = 1,
1.3887- 10-11 for s = 2 and 5.1656 10-55 for s = 3. Thus,
we conclude that performing [log (IWI)1 + 3 steps offers
statistically sufficient guarantees that the new node will be
inserted at a random position chosen from the whole set of
existing nodes.

For this algorithm, the time complexity is much smaller,
0(nlogn(jWj)), which leads to the complexity of the com-
plete network building 0(njWjIlogn(jW/)). With the previous
assumptions, we calculate an average network building time
of 6000 seconds or 1.6 hours.

618

C Distributing tasks on the overlay network
One of the remarkable properties of the n-Cycle overlay

network is that a significant majority of the nodes can be
reached by only F1ogn (W)l hops.
We can design a random wandering task allocation algo-

rithm, with the following rule: if current host is free, take the
incoming task into execution. If not, then forward randomly
to one of the uplink nodes. As we showed before, we are
interested in bringing the task into execution as quickly as
possible, which means that we need to minimize the number
of hops.

For a random wandering algorithm, the number of hops
depends on the average load of the network p. In a first
approximation, for any number of hops h, the probability that
a node will be allocated in less than h hops is (1 _ p)h.
Although this approach leads to satisfactory average values as
long as the load is not getting close to 100%, the maximum
values can be (potentially) indefinitely long. The advantage of
a random wandering algorithm is that it operates without any
information about the state of the network.

In the following we introduce a weighted stochastic algo-
rithm which uses information collected from upstream nodes
in the forwarding decision. In our simulation studies, we show
that this algorithm leads to significantly better performance
with an acceptable cost. Every node maintains its weight w
which intuitely represents the desireability of the node as a
forwarding target for a task. The weight w is composed in
equal parts from (a) the ability of the node to receive a task
for execution (b) the weights of the nodes downstream from
the node. The weight w is propagated to the upstream nodes.
A change in the weight is propagated only if it exceeds a
threshold 5, preventing floods of updates.

At any given node, a task is either taken into execution (if
the node is free), or forwarded to one of the upstream nodes
with a probability proportional with their weight (as seen by
the current node).

D. Considerations offairness
The architecture presented in this paper is based on the

voluntary cooperation of resource providers and customers.
This cooperation can be assured only if the algorithm is viewed
as "fair" by the participants3. In this section, we consider the
issues of fairness for this algorithm, and propose modifications
which increase its fairness at the cost of slight reductions in
efficiency.

There are two, largely independent viewpoints towards the
fairness of the task allocation algorithm. From the point of
view of the customers, fairness means that the servicing of a
task does not depend of its customer. From a point of view
of providers, fairness means that every available provider has
an equal chance to service a given task. In order to assure the
cooperation of both customers and providers, the algorithm
needs to be satisfactory according to both measures of fairness.

3We note that it is out of the scope of this paper to propose methods of
detecting participants who feign cooperation, or cheat through other methods.

Algorithm 6
Initially

Wself = 1

W =1, ViE {1...n}
When task t received by node N

If Wself == 1

take t into execution
Wself 0

Else
forward t to upstream node i with probability wi'

calculate new weight wI Wself + -k= Wk
If jw -Wl> 2
w-w
send the new weight w to all upstream nodes

When execution of task t is terminated at node N
Wself = 1

calculate new weight W = Wself + k=I Wk
send the new weight w to all upstream nodes

When weight w received from i-th downstream node
Wi = W

calculate new weight w' = Wslf + k=i wk
If jw-w'l>

w tw
send the new weight w to all upstream nodes

1) Fairness towards customers: Fairness towards customers
means that every task is serviced with the same performance
parameters, independently of the customer who submitted
it. The most important performance parameter, of course is
whether a task is executed or rejected. A less important factor
is the number of hops the task needs to travel until it is taken
into execution. As long as the number of hops is small (on
the order of 10-20), this factor is of little importance. For
heavily loaded networks however, the additional travel time
might make the difference between a task being accepted or
rejected.
As there is no differentiating factor between the task de-

scription messages, the main factor is the insertion point.
For networks with a single insertion point, the fairness is
guaranteed by the equal treatment of the TDMs. The same
consideration applies to the case where the tasks are inserted
at a random point in the network, provided that the insertion
point is uniformly distributed and independent of the previous
tasks.

If there is a small number of fixed insertion points, tasks
inserted at some points might have a greater chance to be
allocated or they have to travel different distances until they
are allocated. This depends on the task arrival rate at the given
insertion point as well as the relative location of the insertion
points in the network. Intuitively, every insertion point "fills
up" the grid nodes in its vicinity, and if the insertion points
are "close" to each other, the problem might be compounded.

2) Fairness towards the providers: We defined fairness
towards the providers as every available provider to have the
same chance of being allocated a task. In practice, it is easier
to measure the number of tasks allocated to a provider during
period of time. The interest of the service providers is to have
as many tasks allocated as possible (given that every allocated

619

task gives revenue).
The algorithms presented previously in this section are

greedy regarding the allocation of tasks - if a TDM reaches an
available host it will be immediately allocated. This leads to
an unbalanced (and, according to our definition, unfair) load
distribution. The nodes in the vicinity of the insertion point
will be almost always fully loaded, while nodes farther from
the insertion point will be idle. Paradoxically, this effect is
more pronounced for lighter loads. If the number of tasks
is sufficiently small, the whole load can be handled by the
neighbors of the insertion point, while the rest of the network
would not receive any task4.

In conclusion, the proposed algorithms are fair towards the
providers only in the case in which the insertion point is a
random variable uniformly distributed on the network.

3) Ensuring fairness with pre-walking: As we have seen,
the presented n-Cycle algorithms are fair towards both the
consumer and the provider only in the case when the insertion
point for every given task is randomly and uniformly chosen
from all points in the network. It is not enough for a consumer
to choose an insertion point randomly, and later send all its
tasks through that point; the random selection needs to be
repeated for every task. This would require every consumer to
have global information about the network.
Now, we present a simple modification in the structure of

the algorithms, which will ensure fairness at the price of a
small decrease in efficiency. This method exploits the built-
in randomness of the n-Cycle network. We require every task
description packet to perform a random pre-walk of length
m before the task can be taken into execution. The pre-
walk number m will be part of the task description packet.
As long as m > 0. the packet will be forwarded randomly
according to the random wandering algorithm, but it will not
be allocated to any node even if the current node is free. At
every forwarding the pre-walk number will be decreased by
1. The node at which the packets arrive with m - 0 will be
called effective insertion point. From then on, the weighted
stochastic algorithm will be followed.

With the same reasoning as in Subsection III-B, we can
prove that a value of m [F1ogn(jWj)j + 3 leads with a
statistical certainty to a random effective insertion point.

In Subsection IV we extensively study the fairness proper-
ties of the presented algorithms with and without pre-walk.

IV. SIMULATION
We have used the YAES [21] simulation framework to

simulate the behavior of the algorithm. Table I illustrates the
input and output parameters of the simulation as specified in
the YAES configuration files.

Figure 3 presents the average and maximum number of
hops (top) and the total network load (below) in function of
the average number of arriving tasks. We note that both the
average and maximum number of hops is staying virtually

4The number of providers which will be allocated tasks can be determined
by considering the arrival rate and distribution of the tasks, the servicing rate
of N nodes and a simple queuing theoretic model.

Average hops
Maximum hops

-E Average load

TABLE I
SIMULATION PARAMETERS

250

150

100

50 F

01
1 20 40 60 80 100 120 140 160 180

-1

- 0.9

0.8

0.7

0.6
X

0.5si

0.4

0.3

0.2

0.1

200

Fig. 3. Number of hops (average and maximum) and network load vs.
the incoming number of tasks per second, using the weighted stochastic
forwarding algorithm.

250

200 r

150

I

10C

i,,,.S IG

El'

O El 0.4

.10.3
El

0o2
2 - El .4'

00.

0 26 40 60 80 100 120 140 160 150 200

0.9

0.8

0.7

0.6

0.5-j

Fig. 4. Number of hops (average and maximum) and network load vs.
the incoming number of tasks per second, using random forwarding on the
n-Cycle overlay network.

constant at a very low number (under 10 hops), up to loads
approaching 95%. At that moment the number of hops in-
creases dramatically as the algorithm struggles to find free
nodes in an overwhelmingly busy network.
The relatively constant number of nodes for moderate loads

is explained by the single insertion point. The nodes closer to
the insertion point will be filled in relatively quickly, so the
majority of tasks need to "hop over" the busy nodes in this
area. A good approximation of the size of this constant value
is 109N(IW) which in our case is log5(10000), approximately

620

El

Input parameters
Number of grid nodes 10,000
Overlay network 5-Cycle
Task arrival Poisson-distributed arrival, mean 50... 200

tasks/sec
Task servicing Normally distributed, mean 60 sec/task
Simulation tine 5000 seconds
Pre-walk hops 0 and 9

Output parameters (Measurements)
Hops per task Number of hops a task is forwarded until it

finds a host for execution (avg, max)
Average load Ratio of busy vs. total nodes
Discarded tasks Number of tasks which were discarded

- Average hops
- Maximum hops
-- Average load E3 ;-i-t

,E1"

F-I~~~~~~~~~~~~~~

E

El'
El

El

El o-+

CJ

I)

5.7. If we choose a random insertion point, we will obtain a
diagram with a similar shape, but with an average number
of hops for lightly loaded networks much smaller (about 1-2
hops).

In a different simulation run, Figure 4 presents the random
walking algorithm. For light loads, this algorithm also shows
very good results (due to the randomizing nature of the N-
Cycle network). However, for greater loads, the maximum
number of hops start to increase. For instance, at a load of
90% the maximum will be as high as 75 hops vs. about 10
hops for the stochastically weighted algorithm.

Fairness measures

In a separate series of measurements, we have measured
the fairness towards the providers in function of the number
of tasks arriving to the network. The measurements were
performed by counting the number of tasks executed by every
host. These values were then sorted and four values picked
at the minimum, maximum, 5% and 95% levels. The reason
for plotting the intermediate values is to filter out providers
having special position in the network. For example, for a
single insertion point network, the insertion point has a special
situation, given that all incoming tasks are passing through it.

Figure 5 shows the results of the measurements for the case
of a single insertion point. As expected, the maximum value
shows that the insertion point will achieve 100% load. The
bottom 5% has no tasks allocated for task arrival rate as high
as 40 tasks/seconds. The gap between the four measurements
is higher at low loads, and lower at high loads when even
providers far from the entry point will be allocated tasks. This
measurement validates our prediction that for single insertion
point method leads to unbalanced and unfair distribution of
tasks.

90 - _ -

Ca-
+

60- E +

50 !

40 E +

30- -t

20 + + Minimum tasks
+- 5 percent tasks

10 _ --t-E-- 95 percent tasks
I-+ *-- ^ Maximum tasks

0 20 40 6, 80 100 120 140 160 180 200

insertion point, normally distributed execution time) and the
limited timeframe of the simulation. Simulated over longer
timeframes, these values are converging to a single line. This
is basically the ideal fairness, but as we stated before, it
requires global information about the network to prepare a
proper random insertion point.

350

300

250

200

15s

10C

51

Fig. 6. Fairness in terms of tasks allocated to providers. Random insertion
point, no pre-walk.

Figure 7 shows the measurements for a single insertion
point and the task distribution algorithm including a 9 hop
pre-walk. The value of 9 is the empirically obtained value
of F1ogn(IWI)1 + 3 for |WI = 10000 and n = 5. We should
note the resemblance of the diagram to Figure 6. We conclude
that a pre-walk with sufficient number of hops achieves the
same results as the random insertion point approach, while
still requiring only local information.

350

300

250

200

150

100

50

0 20 40 60 80 100 120 140 160 180 200

Fig. 7. Fairness in terms of tasks allocated to providers. Single insertion
point and 9-hop pre-walking.

Fig. 5. Fairness in terms of tasks allocated to providers. Single insertion
point, no prewalk.

Figure 6 presents the measurements for the case of a

random insertion point. Again, the simulation results match
the prediction, the number of tasks executed by the nodes
being in a relatively narrow range, without standout values.
As an observation, the reason of the spread in the values
is due to the inherent randomness (Poisson arrival, random

V. RELATED WORK
This paper proposes an architecture where the commodity

tasks are allocated on a grid by the forwarding of the requests.
Similar designs are proposed in [9], [4]. The Wire Speed
Grid Project [20], proposes an architecture in which the task
allocation is performed hardware accelerated on the network
routers.
The algorithms presented in this paper have their closest

relatives in the class of distributed algorithms which create

621

+

4-
El + 5 prcent ta I

+ 95 percent tasks

El 4>-'- Maximum tasks

0 20 40 60 80 100 120 140 160 180 20C

El

_ ~~~~~~~El-'+
+w-- E: +

/K El'+" +
~ ~ ~ ~ ~ E+,

- El -+ -----+ Minimum tasks

±- +- -H---- 5 percent tasks
ElC3 t -t ---95 percent tasks

El ,+-± - I Maximum tasks

Q

I

and exploit an additional graph structure, built on top of
the existing, fully connected internet (often called overlay
network).
One of the most important classes of overlay networks are

Distributed Hash Tables (DHT). These networks store pieces
of data with their associated unique key. Every key and the
associated data is mapped to a certain host, which is normally
not known to the user. Data can be inserted and retrieved from
a DHT without knowledge on where it will actually be stored
- in fact, it is possible that the location of data will change as
hosts join and leave the DHT. A number of DHT architectures
were proposed such as CAN [11], Chord[13], Pastry [12],
and Tapestry [15]. For most of these networks every node
maintains O(log(N)) neighbors and a message can be routed
in O(log(N)) hops.
The properties of a DHT allow us to use it as the basis for a

resource discovery and allocation framework. An example of
this is the Self-Organizing Flock of Condors project [5] which
is augmenting the Condor program with a DHT based on the
Pastry overlay.
The CCOF (Cluster Computing on The Fly) project [16]

implements a system in which idle cycles are harvested from
a collection of computers. The system employs community
based overlay networks, which allow hosts to dynamically join
and leave. For the actual resource allocation step, a variety of
search algorithms were implemented and measured, the most
complex being Advertisement Based Search and Rendezvous
Point Search.

Let us now succintly state the position of the n-Cycle
model in respect to the other approaches. The n-Cycle model
builds an overlay network, which, however, is not a DHT.
The request distribution algorithm is strictly unicast, and the
algorithm requires exclusively local information both for the
actual forwarding and the maintenance of the overlay network.
The grid model we assume is one of commodity tasks and
commodity resource providers. We argued that under these
assumptions, it is more efficient to queue the tasks on the
consumer side then on the provider side. This differentiates us
from models which are based on provider side queuing such as
the one provided by Condor, which are more appropriate for
specialized resources. The system we are considering assumes
some sort of payment for the services provided, and that even
if the same host might alternatively provider and customer,
there is no guarantee that the credits will be equalized. The
consequence of this is that the assumption of "long term
fairness" is not appropriate here and the fairness of the task
allocation needs to be guaranteed with explicit techniques.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced an algorithm for allocating tasks

on a commodity grid. Our analysis and simulation studies
show that (a) the algorithm is scaleable for several million
nodes and (b) it proved to be very efficient in allocating tasks
to free commodity service providers.
Our future work will include a more extensive, queueing

theory based analysis of the algorithm. For a practical de-

ployment it is of a particular interest to develop protocols
for controlling the task arrival rate. This will likely raise
interesting problems regarding the fairness towards the cus-
tomers. Another natural extension is to allow for some level
of heterogeneity in the grid both in terms of the providers as
in terms of the tasks.

REFERENCES
[1] D. P. Anderson. Public computing: Reconnecting people to science. In

Proceedings of the Conference on Shared Knowledge and the Web, Nov
2003.

[2] T. E. Anderson, D. E. Culler, D. A. Patterson, and the NOW team. A
case for NOW (networks of workstations). IEEE Micro, 15(1):54-64,
1995.

[3] M. Baker. Ian Foster on recent changes in the grid community. URL
http://dsonline.computer.org/O402/d/o2004a.htm.

[4] B.Liljeqvist and L.Bengtsson. Grid computing distribution using net-
work processors. In Proc. of the 14th IASTED Parallel and Distributed
Comnputing Conference, Nov 2002.

[51 A. R. Butt, R. Zhang, and Y. C. Hu. A self-organizing flock of Condors.
In In Proceedings of IEEE/ACM Sutpercomptiting 2003. Phoenix, AZ,
November 2003.

[6] I. Foster and C. Kesselman, editors. The Comnputational Grid: Blueprint
to a New Computer Infrastructure. Morgan-Kauffman, 1998.

[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An open grid services ar-
chitecture for distributed systems integration. URL
http: / /www . globus . org/research/papers/ogsa . pdf.

[8] 1. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. International Jouirnal of SIt-
percomnputer Applications, 15(3), 2001.

[9] A. lamnitchi and I. Foster. On fully decentralized resource discovery
in grid environments. In Proceedings of the International Workshop on
Grid Coomputing, Denver, CO, November 2001.

[10] D. C. Marinescu and Y. Ji. A computational framework for the 3d
structure determination of viruses with unknown symmetry. Journal of
Parallel and Distributed Computing, 63(7-8):738-758, 2003.

[111 S. Ratnasany, P. Francis, M. Handley, R. Karp, and S. Schenker.
A scalable content-addressable network. In Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols
for Comnputer Commutnications (SIGCOMM'01), pages 161-172, 2001.

[121 A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes
in Cotnpuiter Science, 2218:329-350, 2001.

[13] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectutres, and Protocols for Computer Comnmunications
(SIGCOMM'01), pages 149-160, 2001.

[141 D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In
F. Berman, G. Fox, and T. Hey, editors, Grid Comnputing: Making the
Global Inifrastructutre a Realitv. John Wiley & Sons Inc., December
2002.

[15] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A global-scale overlay for rapid service
deployment. IEEE Journal on Selected Areas in Com,nunications, 22(1),
January 2004.

[16] D. Zhou and V. Lo. Cluster computing on the fly: Resource discovery in
a cycle sharing peer to peer system. In Proceedings of the 2004 IEEE
International Symposium on Cluster Computing and the Grid, pages
66-73, 2004.

[171 Berkeley Open Infrastructure for Network Computing. URL http://
boinc.berkeley.edu/.

[18] RSA Challenge. URL http://www.rsasecurity.com
/rsalabs/challenges/.

[19] SETI@Home project. URLhttp: //setiathome. ssl.berkeley.
edu/.

[20] The Wire Speed Grid project. URL http://www.ce.
chalmers.se/staff/labe/Wire Speed Grid
Project.htm.

[21] YAES: Yet Another Extensible Simulator. URL http://
netmoc . cpe . ucf . edu/Yaes/Yaes .html.

622

