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Abstract—Recent advances in IoT sensors and actuators and
smart home controllers allow us to collect real-time information
about the state of the home and take intelligent actions that
maximize the user’s goals with respect to comfort, convenience,
environmental awareness and cost. While thermal comfort is one
of the primary concerns of many users, many homes use a
very simple, energy inefficient approach that blankets the home
with constant temperature air conditioning. Such systems do not
take advantage of more energy efficient and environment friendly
natural ways to manage the temperature, such as opening and
closing windows, window shades and interior doors. In this paper
we develop a deep neural network based model that predicts the
temperature in various rooms of the home function of the state of
the actuators. We also describe a scaled model of a four room home
which allows us to control the doors and windows and collect data
using IoT devices. We train and validate our temperature models
on both data collected from the scaled model as well as from
publicly available datasets from two real-world smart homes.

I. INTRODUCTION

Cyber-physical systems (CPS) integrate computational and
physical processes with communication capabilities to interact
with the physical world [1]. Although the devices in a smart
home are interconnected, they do not work together to adjust
comfort parameters, such as a heater or fan, while simultane-
ously capitalizing on environmental friendly opportunities, such
as opening or closing doors and windows. To take advantage of
these economical and environmental opportunities, integrating a
smart home as a CPS is a desired choice. To keep the comfort
level of a smart home ideal, while lowering energy costs, it is
important to be able to predict temperature based on previous
and current states of a smart home.

Monitoring the outside and inside weather conditions such as
temperature and humidity make it possible to predict them based
on other current and past measurements. This prediction system
can be integrated into the air conditioner for a better energy
efficiency by deciding to increase or decrease the temperature
beforehand. This also allows the air conditioner to work in
a more stable manner, less prone to usage spikes due to
unexpected temperature and humidity differences.

One of the challenges of predicting the indoor temperature is
the lack of extensive datasets based on which a predictor can
be trained. The predictor will clearly need to be specialized to
the specific architecture and environment of each home. Even
if we collect data from a real-world smart home, this data will

be sparse, only considering the specific weather conditions and
user action that appear during that specific time period.

In this paper, we describe a technique for predicting the
temperature of a smart home using the outside and inside,
current and past weather values. To facilitate data collection,
we created a scaled-down model home. We collected data by
experimenting with remotely controlled doors and windows in
various configurations. We collected temperature and humidity
data for each room as well as the immediate environment outside
the home. In another set of experiments, we also used an
academic smart home dataset, to predict the indoor temperature
at a specific timestamp from indoor and outdoor historical tem-
perature values. The proposed prediction engines were based on
two variants of deep neural networks: fully connected networks
and long short term memory (LSTM) networks.

The rest of the paper is organized as follows. We present the
related work in Section II. We provide a detailed description
of our smart home prototype and methods in Section III. We
evaluate our deep learning model on collected and real-world
data in Section IV, and finally conclude in Section V.

II. RELATED WORK

Machine learning methods and neural networks have been
used to forecast temperature in buildings.

Lin et al. [2] examined the correlation between smart home
features and indoor air quality. They collected data in two smart
home testbeds and analyzed the impact of the overall smart
home behavior and also individual groups of features of the
smart home on indoor air quality. To quantify the relationship
between these features and the air quality, they used machine-
learning methods such as Random Forest, Linear Regression,
and Support Vector Regression. The authors found that the
temperature features are more frequently selected than other
specific activities occurring in the smart homes.

Pubill et al. [3] harvesting energy from indoor artificial light
to achieve energy neutral wireless sensor network devices. Lee
et al. [4] presented a simulator that creates a 3D virtual smart
house and an intelligent agent that can interact with the house
by executing different behaviours based on different motivations.
Then, they recorded environmental information including tem-
perature via virtual sensors in the house. In their smart house,
temperature changes based on interactions between the agent
and the house. For example, they increase the temperature when



a heater is turned on, a window is closed, or the agent engages
in sports or cooking. These long-term simulated data can help
the researchers to reduce the testing costs associated with the
evaluation of the smart home architecture.

Serra et al. [5] proposed an energy scheduling method that
minimizes energy consumption for a specific time interval
according to the user’s preferences. Coming up with a good
model for prediction can help improve planning for different
purposes purposes as well. Jin et al. [6] used prediction to
optimize energy consumption alongside user comfort in a smart
home. They used a pre-collected dataset for achieving maximum
user comfort with minimum energy consumption.

Mateo et al. [7] used machine learning methods to predict
temperature of buildings. This study, however, does not apply it
to smart home and does not consider door or window actuators.
Chen and Irwin [8] proposed a model where they can guess the
location of a place by analyzing the weather data. The authors
found that anonymous datasets might be analyzed to get the
source location of the data. While not directly about temperature
prediction in a smart home, this work is notable because of
the analysis on weather and solar energy generation of a house
dataset.

Teich et al. [9] use neural networks in a smart home environ-
ment, there is no use of door and window actuators. There will
be more efficiency with lowering energy costs if windows and
doors are controllable; therefore, knowing the state of doors and
windows is important data for training a neural network.

Serra et al. in [10] introduced a collaborative platform to
analyze IoT data which relies on machine learning techniques
and centralized and global management of virtual networking
and computing. Kim et al. [11] compared different machine
learning models for detecting actions of people in a house.
Cook et al. [12] proposed a prediction algorithm using a back
propagation network to predict the actions of the person in a
smart house based on past history.

We have created a smart home prototype that has actuators
that control doors and windows, while keeping track of temper-
ature and humidity on the rooms inside the prototype. We also
trained a fully connected neural network and long short term
memory network with a smart home data set to show that it
applies to real world applications.

III. SMART HOME PROTOTYPE

Predicting the temperature in different areas of a smart home
provides useful information for future planning and optimizing
energy consumption. We use deep learning techniques to achieve
this goal. We design a smart home prototype with different
rooms and sensors to collect data. Furthermore, in order to
evaluate the effectiveness of our method we apply the same
method on two real-world datasets. In the following, we discuss
the details of each step of our method.

A. Scaled-down Smart Home

To study the relationship between internal and external factors
on the temperature of a home, we created a scaled down

Fig. 1. The scaled-down model home. Two doors and two windows are actuator
controlled. The remove controllable heat lamp models the effect of sunlight,
while the controllable fan models the effect of the wind.

model home instrumented with IoT sensors and actuators. The
implemented model, shown in Fig. 1, contains four rooms with
the following window and door configurations:

e Room A: a permanently open window and a controllable
door.

« Room B: a controllable door and controllable window.

e Room C: a controllable window and a permanently closed
door.

e« Room D: a permanently closed door and a permanently
closed window.

SG90 Micro Servo motors are used as window and door
actuators to adjust the door and window positions. To measure
temperature and humidity, the DHT11 sensors are placed inside
the rooms and outside of the smart home. In order to simulate
the rise and fall of temperature, the SRD-05VDC-SL-C relay is
used to control a heating lamp and a fan.

B. Data Collection

We collected data from our smart home prototype for 38
hours by triggering the actuators and sensors connected to
the controllable doors and windows. Every 30 seconds, we
randomly select the target door or window to send commands.
Similarly, we chose our command (open or close) to the motors
on a random basis.

The actuators and sensors are triggered through randomly
generated inputs. Consequently, as they are triggered, the state of
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Fig. 2. Architecture of our temperature prediction model with Fully connected
neural network

the smart home is stored for further use within a neural network
to predict the temperature for the next timestep. We store the
position of a door and window through binary representation; 0
and 1 representing closed and open positions respectively. We
also store the status of the heating lamp and fan as binary. The
temperature and humidity values for each room are stored as a
floating point number given by the DHT11 sensor. Through this
method, we collected approximately 4,500 timesteps.

C. Real-world Dataset

To evaluate the generalization of our approaches for pre-
dicting the temperature in different smart homes, we used the
UMassTraceRepository dataset [13] collected in two real homes
(Home A and Home B). The data types collected for Home A
and Home B and their description are as follows:

o Inside humidity: in-house humidity as percentage

o Outside humidity: outside house humidity as percentage
o Outside temperature: as Fahrenheit

« Wind speed: in miles/hour

« Wind direction degrees: in radians

o Wind gust: sudden increase in wind speed in miles/hour
o Wind gust direction degrees: in radians

o Wind chill: felt temperature related with wind speed

o Heat index: felt temperature related with humidity

D. Fully Connected Neural Network

We trained the real-world dataset with a Fully Connected
Neural Network (FC-NN) (See Fig 2). In FC-NN, each neuron
in a layer is connected to every neuron in the next layer. The
backpropagation algorithm allows us to train FC-NN to learn
the patterns in data by optimizing a loss function with respect
to its parameters.

E. Long Short Term Memory

Next, we used a recurrent neural network, more specifically,
a Long Short-Term Memory (LSTM) network [14] to train the
real-world dataset. LSTMs are well known for their ability to
learn complex, long term sequential patterns in data and are

widely used. They also have the ability to handle different
input sizes, although for our purpose we fix the input size to T
timesteps.

The architecture of the LSTM configuration we used is shown
in Fig. 3. The input features are the state of the doors, the state of
the windows, the state of the fan, the state of the heating lamp,
and the temperature and humidity of each room at timesteps
from ¢t = 1to ¢t =T fed to the network sequentially and the
output is the temperature of each room at timestep t = 7" + 1.

F. Implementation Details

We implemented the hardware controllers in Python and
utilized multiple libraries to obtain complete functionality of
the smart home. We use the RPi.GPIO packages, which is used
to access the input/output (I0) pins within the Raspberry Pi. The
DHT11 sensors make use of the Adafruit Unified Sensor Library
to collect temperature and humidity data. The DHT11 sensors
operate within a temperature range of 0°C to 50°C, which is
within the range of our experiments. They also provide a £5
RH humidity accuracy range and a £2°C temperature accuracy
range, which is respectable [15].

The neural network estimators were implemented using the
TensorFlow open source software library [16]. We use scikit-
learn to shuffle the data for training and set a constant random
seed for reproducibility [17]. The accuracy is determined by
examining the error of the predicted temperature versus the
actual temperature; if the error is less than ¢ = ||y — ¢||, where
y is the actual temperature and ¢ is the predicted temperature
at timestep 1"+ 1. If € < 0.2 in our experiments, then we
declare the prediction to be accurate. Due to the sizable amount
of data provided, we utilized Google’s Colaboratory project for
the training of the neural networks on our own data due to its
GPU optimization and accelerated computation time, and one
GeForce GTX 1080 GPU for training on UMassTraceRepository
dataset.

IV. EXPERIMENTS

We have three sets of experiments to test the generalization of
the method and compare LSTM and FC-NN algorithms. Experi-
ment one involves applying LSTM on the dataset collected with
our smart home prototype (which is described in section III). In
the second and third experiments, we apply FC-NN and LSTM
algorithms on UMassTraceRepository datasets respectively. We
provide details on each set of experiments in the following
subsections.

A. LSTM on collected dataset in smart home prototype

The experiments are performed on dataset collected from our
smart home prototype. We fed the training data into the LSTM.
We kept track of the temperature of each room and determined
each room’s accuracy separately.

The network consists of one LSTM layer and we used 80%
of the data for training, and 20% of the data for testing. We kept
track of the order of the inputs in order to model the problem as
a time series problem. The activation function we used is tanh.
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Fig. 3. Architecture of our temperature prediction model with LSTM
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Fig. 4. Prediction accuracy on test dataset collected from smart home prototype

To train our model, we used batch training with each batch being
size of 16. The number of timesteps we kept track of at a single
time is 10.

As it can be seen in Fig. 4 that the accuracy of each room
increases significantly during epochs 5 to 20. The graph shows
that the LSTM is a good model for temperature prediction for
a smart home environment.

B. FC-NN on Home A and Home B

To organize our dataset, we separate the dataset into a training
set and testing set. 80% of the entire dataset is used for training
while 20% is used for testing. We use batch training, each layer
uses Rectified Linear Units (ReLU) as the activation function.
As the neural network is trained, we kept track of the cost using
the Huber Loss function. For the optimization algorithm, we
used the Adam optimizer.

As you can see in Fig. 5, the accuracy converges on training
for both houses.
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Fig. 5. Accuracy on train and test sets based on FC-NN for Home A and home
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In training neural networks, hyperparameters play an impor-
tant role. We compare the accuracy of FC-NN on different
hyperparameters in table I for home A and table II for home B.

C. LSTM on Home A and Home B

Similar to FC-NN, we divide the dataset into a training set
and testing set. The LSTM accuracy on train and test sets for
home A and home B are shown in Fig. 6.

Tables III and IV present the results which are on test data
for Home A and Home B. We examined different settings for
LSTM network. Based on these experiments, we can fix our
hyperparameters and use 64 for size of the LSTM, 10 for the
length of input sequence, and 16 for the batch size.



No. of hidden layers hidden layers Batch size | Accuracy
1 64 16 0.6214
2 64 16 0.7737
3 64 16 0.7934
5 64 16 0.7748
3 8 16 0.7533
3 128 16 0.8101
3 512 16 0.7412
3 64 2 0.6571
3 64 64 0.7656
3 64 256 0.5181
TABLE I

FULLY CONNECTED NN APPROACH RESULTS WITH DIFFERENT SETTINGS ON
HOME A TEST DATA (MAXIMUM ACCURACY)

Size of LSTM Input sequence length | Batch size | Accuracy
8 10 16 0.8165
64 10 16 0.8661
512 10 16 0.8087
64 2 16 0.7919
64 4 16 0.7983
64 16 16 0.8409
64 50 16 0.8365
64 10 2 0.8596
64 10 64 0.8634
64 10 256 0.8000

LSTM APPROACH RESULTS WITH DIFFERENT SETTINGS ON HOME A TEST

TABLE III

DATA (MAXIMUM ACCURACY)

Size of LSTM Input sequence length | Batch size | Accuracy
8 10 16 0.8165
64 10 16 0.8859
512 10 16 0.7116
64 2 16 0.8145
64 4 16 0.7392
64 16 16 0.7940
64 50 16 0.8750
64 10 2 0.8734
64 10 64 0.8829
64 10 256 0.8609

No. of hidden layers hidden layers Batch size | Accuracy
1 64 16 0.6327
2 64 16 0.8029
3 64 16 0.8443
5 64 16 0.8298
3 8 16 0.8228
3 128 16 0.8464
3 512 16 0.7282
3 64 2 0.7717
3 64 64 0.7448
3 64 256 0.3589
TABLE II

FULLY CONNECTED NN APPROACH RESULTS WITH DIFFERENT SETTINGS ON
HOME B TEST DATA (MAXIMUM ACCURACY)
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Fig. 6. Accuracy on train and test sets based on LSTM for Home A and Home
B (Smoothed)

D. LSTM versus FC-NN

We compare LSTM and FC-NN for the temperature predic-
tions. While both methods can achieve good performance, FC-
NNs are expensive in terms of memory (number of parameters)
and computation (connections). In addition, generally networks
which have large number of parameters, have slower training
time and higher chances of overfitting.

Our results show that LSTM is a better fit as it reaches to

TABLE IV
LSTM APPROACH RESULTS WITH DIFFERENT SETTINGS ON HOME B TEST
DATA (MAXIMUM ACCURACY)

desired performance sooner (See Fig. 7). They are also getting
better results in terms of accuracy. We believe that the ability
to handle sequential data while using fewer parameters is the
reason for this result which in turn makes LSTM a better choice
for our purpose.

Fig. 7 shows how the accuracy on train set for home A and
home B differ from each other.

Similar to the LSTM based prediction results on collected
data from scaled-down Smart Home which is shown in Fig. 4,
the graphs in Fig. 7 show that an LSTM is a good model for
temperature prediction. We can see that LSTM converges after
a few iteration and the training accuracy is 1.0, while FC-NN
is not as fast as LSTM in terms of convergence.

V. CONCLUSION

In this paper, we described a technique for predicting the
temperature in an [oT augmented smart home based on historical
sensor readings of indoor and outdoor data, as well as the
configuration of open doors and windows. We have evaluated
the approach on both a scaled-down model home as well as
a publicly available smart home dataset. We found that both
fully connected and LSTM neural networks are applicable, but
that latter performs more accurately and reaches the desired
performance sooner. Future work includes extending this work
to implement smart home temperature controllers that can
maintain the desired temperature range with lower energy usage
and environmental impact.
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