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Abstract—Short-term forecasting of the electric load in a
household received significant research interest, with applications
that include smart grid systems and the possibility to reduce the
energy cost to the homeowner. Most previous research focused
on forecasting the load at the level of the whole household. In
this paper, we propose a novel approach for forecasting the load
of individual electronic devices. Our approach uses a recurrent
deep neural network with Long Short Term Memory (LSTM)
cells. We train and validate the system using real-world datasets,
and show that the approach outperforms the baseline forecasting
approaches.

Index Terms—load forecasting, deep learning, LSTM

I. INTRODUCTION

Understanding and predicting the energy consumption pat-
terns in a household can provide benefits to all stakehold-
ers [1]. For the utility company, which might be using a smart
grid, the prediction of the load allows better management
of the energy generation and distribution resources, and can
inform dynamic pricing to reduce peak demand. For the indi-
vidual consumers, predicting the load allows the identification
of energy loads that can be shifted to off-peak hours, thereby
reducing the energy bill. Based on the prediction period, load
forecasting is classified as: 1) Very Short-Term Load Forecast
(vSTLF): forecasting the load for the next several minutes, 2)
Short-Term Load Forecast (STLF): predicting the load from
next several hours to a week ahead, 3) Medium-Term Load
Forecast (MTLF): predicting the load from a week to a year
ahead, 4) Long-Term Load Forecast (LTLF): predicting over
the timespan of several years.

Most previous work focused on forecasting the load at the
level of the whole household. Our work starts with the insight
that while the total load is of interest, individual energy saving
or load-shifting actions taken by the users, such as postponing
the operation of the dishwasher to the night hours, will usually
affect individual appliances. Thus, our work focuses on the
appliance-level short-term load forecasting model for residen-
tial homes. We take advantage of the recent developments in
deep learning techniques to create recurrent neural network, in
particular Long Short-Term Memory (LSTM) based predictor.
We train the network based on historical data on residential
home appliances’ energy usage and estimate energy usage for
a given appliance in the short term. This problem is more
complicated than simply training a number of LSTM-based

models for each household appliance, and training a single
model for all appliances together is more robust and scalable.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. We present our proposed
deep learning-based appliance-level load forecasting model
in Section III. Section IV describes the experimental setup
and we discuss the results in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

Most literature use one of the following methods of load
forecasting: 1) machine learning methods (e.g., Linear Regres-
sion, Support Vector Regression, AutoRegressive Integrated
Moving Average (ARIMA)); 2) deep learning algorithms (e.g.,
Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs)); 3) probabilistic forecasting (e.g., Quantile
Regression, Density Regression). Probabilistic forecasts may
provide more comprehensive information on potential uncer-
tainties rather than predicting the expected load throughout
time.
Machine learning-based load forecasting. Wu et al. [2]
present a gradient boosting-based multiple-kernel learning
framework with the help of transfer learning to forecast
electrical load with scarce data. Peng et al. [3] explore load
predictability Small-and-Medium Enterprise comparing to res-
idential homes by Approximate Entropy measure (ApEn).
Deep learning-based load forecasting. Tang et al. [4] forecast
energy consumption combining two ARIMA and two LSTM
models with a fully connected layer as the last layer to
estimate energy consumption based on the outcome of these
submodels. Kong et al. [5] used VGG-16 CNN network to
learn the patterns for different brands and models of appliances
and another CNN for post-processing the results of the first
network to predict and disaggregate energy consumption for
home appliances without sub-meter information.
Probabilistic load forecasting. Wang et al. [6] have combined
Quantile Regression Neural Network (QRNN), Quantile Re-
gression Random Forests (QRRF), and Quantile Regression
Gradient Boosting (QRGB) methods and choose the process
with the most optimized weights. Feng et al. [7] introduced
STLF-QMS, a mixture of deterministic and probabilistic load
forecasting models with Q-learning dynamic model selection
(QMS).
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Fig. 1: Framework for the proposed appliance-level load
forecasting deep learning-based model.

III. APPLIANCE-LEVEL LOAD FORECASTING WITH DEEP
LEARNING

In this paper, we propose an LSTM recurrent neural
network-based model to predict home appliances energy con-
sumption for the upcoming hours. After pre-processing the
data collected from the smart meter, we feed it into a deep
neural network to produce the predictive load consumption of
the appliances. Fig. 1 displays the framework of the proposed
model. This section describes the pre-processing steps of the
data and the LSTM-based load forecasting model.

A. Data Preprocessing

Different appliances may be in use in any residential house-
hold, and the consumer behavior of utilizing home appliances
is highly reliant on the consumer lifestyle. Several appliances
can be in service multiple times a day, while some may be
off for an entire week. Therefore, to forecast the future energy
consumption of household appliances, it is necessary to extract
certain features indicating the likelihood of using an appliance
at a given time.

Several papers use deep learning models or statistical meth-
ods to forecast a household’s total energy consumption for
an entire day; however, more accurate details would provide
further insights into the occupants, and they would be more
valuable for improved energy-saving plans. We aim to predict
appliance-level load consumption at different time intervals
throughout the day. This time interval can vary, like every
minute, every ten minutes, every fifteen minutes, every half
hour. However, as we increase the time between periods, the
more difficult it becomes to measure the energy usage for
devices with working time duration less than the period.

For this purpose following information would be helpful:
(1) hour (2) minute (3) day of week (4) Last Seen On: the
last time step appliance was running (5) Last Seen Off : the
last time step appliance was off. Considering that the data has
date and time details, it is simple to split date information into
features such as “hour,” “minute,” and “day of the week.” We
can save them as categorical vectors for making the training
of the model more straightforward.

We normalize the energy utilization data for each home ap-
pliance within the spectrum of maximum use to minimum use
of the same appliance to prevent large numbers or anomalies
impacting the network’s learning process. The minimum and
maximum energy consumption for each electrical device is
unique to its specifications and differs from other appliances.
Thus, if we scale it to the same scope for all appliances,
the network’s output range is identified and would ultimately
produce more reliable results.

With pre-processing data, we have introduced two new
features: Last Seen On and Last Seen Off, to make it simpler
for the model to learn consumption pattern for appliances with
less repeated energy consumption pattern. We observe that the
energy consumption is at the lowest level, and it goes up as
the residents of a home decide to use the appliance except for
the appliances running continuously, such as the fridge, AC,
and heater. These two features are measured according to the
historical data at each time step and help the model construct
a view of the trend of consumption.

Having energy usage information of each appliance per
minute, we can predict the future energy consumption with
various time intervals. One solution is to consider the average
energy used over the time interval for the input data, but it
may shrink the dataset size. On the other hand, we know that
the more data we have, the better the model can learn the
behavioral patterns of using appliances. Instead of estimating
average consumption over time intervals, we generate input
sequence, as shown in Fig. 2, having data with 1

60 Hz
frequency for an entire day, but generating input sequence
with 1

60×time interval Hz frequency ( 1
600 Hz for 10-minute

time intervals). Fig. 2 displays each data point in a day by
its time and also demonstrates that we can construct different
input sequences with data points within two-time intervals,
and we can have more input data for the training process that
is not augmented or duplicated.

B. LSTM-based Load Forecasting

Recurrent neural networks are a form of feed-forward neural
networks that rely on the previous stage output to produce new
outputs. In other words, RNNs perform the same input calcula-
tion at each stage, taking into account feedback obtained from
previous stage results, thereby generate associations with the
input feature with its internal memory.

The problem we are investigating here is estimating future
load consumption patterns for each home appliance having
historical data and using multiple variants that affect output.
We assume that the output is a continuous value depending on
the previous value and other factors. We believe that LSTM
recurrent neural networks are more suitable than standard feed-
forward neural networks as LSTM can learn the long-term
dependencies in the input features due to the memory cells
built into its architecture design.

Table I displays the hyper-parameters used to train the
LSTM model for predicting future appliances loads with 10-
minutes intervals, with the strongest performance for the ones
in bold text. When the LSTM model is trained, it can forecast
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Fig. 2: Generating input sequences for training with time interval = 10 minutes and sequence length = 12.

TABLE I: LSTM model hyper-parameters.

Parameters Value
Number of layers 2, 3, 4
Learning Rate 0.0001, 0.001, 0.1
Number of hidden neurons 128, 256
Sequence length 12, 18, 36, 72, 144
Batch size 128, 512, 1024, 2048, 4096
Optimizer GSD, Adam
Interval 10, 15

the load consumption for a given appliance, hour, minute, day
of the week, and other inputs. In general, the model can predict
future energy usage for each home appliance at various time
intervals for the following days over a week. The LSTM-based
model architecture is displayed in Fig. 3.

IV. EXPERIMENTS

In the experiments, we have used a publicly available
dataset, DRED [8], collected in a household from July to De-
cember 2015. This dataset has appliance level and aggregated
energy consumption, with a sampling frequency of 1Hz of 12
different home appliances. We used the top six most energy-
consuming appliances for our experiments: television, fridge,
laptop computer, electric heater, microwave, cooker, and the
overall house energy consumption. After data pre-processing,
there are around 218880 rows of data (152 days) for each
appliance. With 60%, 30%, and 10% ratio, we split data into
three-part as train, validation, and test sets.

We have implemented our model on a NVIDIA GeForce
GTX 1070/PCIe/SSE2 with 15.6 GB memory and 3.6 GHz
core clock hardware configuration and used Pytorch library
and Python for software implementation.

We used two other load forecasting methods as the baseline
for evaluating the performance of the proposed model:

• Random Forest (RF): Most of the previous studies
use ARIMA model [4] for load forecasting; however,
ARIMA essentially implies a linear relationship between
input variables that may be dependent or independent
which is not always true for multivariate problems [9].
Random Forest [10] algorithm, on the other hand, has
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Fig. 3: LSTM-based and FNN-based architectures used to
predict appliance-level load.

more promising results in a multivariate load forecasting
problem.

• FeedForward Neural Network (FNN): We implemented
a basic feed-forward network with three fully connected
layers to compare its results against the LSTM model
(See Fig. 3). The FNN has three fully connected layers
with a ReLU activation function [11] as the last layer. The
fully connected layers have 128 hidden neurons each, the
same as LSTM layers.

• Long Short-Term Memory Neural Network (LSTM):
As described in Section III-B.

We used Root Mean Square Error (RMSE) (Equation 1) and
Normalized Root Mean Square Error (NRMSE) (Equation 2)
to compare the performance of all three models where n is the
total number of samples, yj is the target value and ŷj is the
predicted value, max (yj ) and min(yj ) refer to the maximum
and minimum electrical usage recorded for the appliance j .
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The RMSE is an excellent metric to demonstrate how far the
predictions are from the target value. Since we have different
appliances and each has its spectrum of energy usage to
compare the results against each other, we have computed
NRMSE metric which normalizes the RMSE values with the
relative load spectrum.

V. EVALUATION RESULTS

In the first stage of our experiments, we explored the effect
of using two newly introduced features, Last Seen On and
Last Seen Off. To this end, we have trained our LSTM-
based model on time, taking into account these two features
and without considering these two features. The NRMSE
metric was used to compare the forecasting results of the two
models. Fig. 4 demonstrates that the NRMSE score for the
LSTM-based model taking into account Last Seen On and
Last Seen Off is considerably lower compared to the model
that does not use these features specifically in appliance-level
load forecasting.

Tables II and III present the outcomes of RMSE and
NRMSE for the three load forecasting algorithms with ten and
15-minute intervals. The appliances used include TV, fridge,
laptop, electric heater, microwave, and cooker. We also show
the total load.

The first conclusion we can draw from these numbers is that
the LSTM network is a suitable architecture for this multi-
variate load forecasting problem. The memory cells in the
LSTM architecture help the network properly learn the long-
term dependencies between the input variable, which regular
feed-forward networks can not.

The other noticeable result is that for some appliances such
as the laptop, the results of RMSE and NRMSE for FNN-
based and LSTM-based models are quite close. As shown
in Fig. 5.c, the LSTM-based model reaches the target value
nearest in each step, while FNN and Random Forest models
produce an average sequence value during the day to reduce
the difference between target and predicted values and RMSE
metric However, for particular applications such as energy-
saving scheduling, it is essential to know the precise load
consumption at each time step nearest to the real value.

The last but not the least conclusion is that all three fore-
casting models can catch the total load consumption pattern
over the day (Fig. 5.g); however, the LSTM-based model is
better at learning sudden changes.

Figures 5.a–5.g compare the forecasting performance of
the three load forecasting models for TV, fridge, laptop, mi-
crowave, cooker and total load consumption of the household.
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Fig. 4: NRMSE results for LSTM-based model with and
without taking into account Last Seen Off and Last Seen On.

VI. CONCLUSION

In this paper, we proposed an appliance-level load fore-
casting model for residential homes. This model uses LSTM
recurrent neural networks to learn energy consumption patterns
for individual electrical appliances in a smart home and predict
a given appliance’s potential load consumption over different
time intervals. We evaluated our model on a public dataset
comparing with Random Forest and FFN network models. The
RMSE and NRMSE results indicate the superior performance
and the lowest error rate of the proposed model against the
other two models.
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Fig. 5: Energy consumption prediction for 24 hours with 10 minutes intervals.

TABLE II: Evaluation Results for 10-minutes intervals.

Model TV Fridge Laptop Electrical Heater Microwave Cooker Total

RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE

RF 13.947 0.217 47.775 0.319 13.233 0.202 20.084 0.224 57.649 0.042 86.016 0.161 153.439 0.094

FNN 10.042 0.156 33.755 0.226 13.343 0.203 16.268 0.181 64.149 0.046 69.638 0.131 139.349 0.085

LSTM 3.849 0.060 11.373 0.076 8.575 0.131 9.091 0.101 33.461 0.024 25.648 0.048 128.665 0.079

TABLE III: Evaluation Results for 15-minutes intervals.

Model TV Fridge Laptop Electrical Heater Microwave Cooker Total

RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE

RF 13.775 0.214 46.275 0.331 12.908 0.205 22.643 0.256 60.748 0.043 78.302 0.148 173.118 0.092

FNN 9.945 0.154 34.094 0.244 10.764 0.171 18.861 0.213 81.402 0.057 60.914 0.115 317.915 0.170

LSTM 4.214 0.065 12.008 0.086 9.627 0.153 9.786 0.111 32.516 0.023 33.036 0.062 152.543 0.081


