A Sequence Learning Model with Recurrent Neural
Networks for Taxi Demand Prediction

Jun Xu, Rouhollah Rahmatizadeh, Ladislau B616ni and Damla Turgut
Department of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL
Email: {junxu,rrahmati,lboloni,turgut} @eecs.ucf.edu

Abstract—In this paper, we focus on an application of recurrent
neural networks for learning a model that predicts taxi demand
based on the requests in the past. A model that can learn time
series data is necessary here since taxi requests in the future relate
to the requests in the past. For instance, someone who requests
a taxi to a movie theater, may also request a taxi to return home
after few hours. We use Long Short Term Memory (LSTM), one
of the best models for learning time series data. For training
the network, we encode the historical taxi requests from the
official New York City taxi trip dataset and add date, day of the
week and time as impacting factors. Experimental results show
that our approach outperforms the prediction heuristics based
on feed-forward neural networks and naive statistic average.

Index Terms— taxi demand prediction; time series regression;
recurrent neural networks; mixture density networks; Internet
of things.

I. INTRODUCTION

Taxi plays an important role in public transportation system
in cities. Taxi drivers and passengers prefer to find each
other as soon as possible. In addition, drivers want to spend
minimum fuel for finding the next passenger. In order to
minimize the wait time for passengers and drivers, drivers
need to evaluate the city areas in which the probability of
a passenger requesting a taxi is higher. They usually gather
some intuition by observing the density of requests in different
areas of the city. For instance, on Saturday late nights more
people request taxis from downtown close to night clubs
compared to other nights of the week. However, this prediction
can be improved by considering all the past and also real-
time information from the entire city instead of only one
driver’s observations. If a model can predict the density of
taxi demand, it can be available for all the drivers even for
the ones who are not familiar with different areas of a city.
We can also look a bit ahead and consider the future where
self-driving taxis need to decide where to look for passengers
without a human help.

This explains the motivation behind our work which is train-
ing a model that takes into account all the taxi trip information
from the past to predict future taxi demands. Nowadays, many
taxis are equipped with systems providing taxi trip information
such as the pickup and drop-off GPS locations. Previous
studies [1-4] have shown that such historical taxi trip data can
provide us rich insights about how taxi demand varies from
area to area and how the demand evolves during the course of
a day and a week.

In this paper, we propose a taxi demand predictor that can
predict taxi demand in any target area of the city in the
next hours, days and weeks. For a given area, the past taxi
demand data can be treated as a sequence. Fig. 1 shows taxi
demands at two different places in New York City over a week.
We observe that in a specific area of the city, the historical
taxi demand shows a similar sequential pattern every week.
Motivated by this periodical taxi demand pattern, we design
a sequence learning model that learns the demand patterns
from the sequential data. In our work, we only focus on
designing such a predictive model. However, we can extend
this work and design a centralized Internet of Things (IoT)
application [5], [6] consists of a network of taxis aware of
each other and cooperatively and efficiently respond to the
taxi requests throughout the entire city.

70 a) A working area 350, b) An airport area

u
=)

N
o

N
=}
o

w
=]

Num of requests
=
G
o

Num of requests

N
=]

Y

—
o o

\ i Y] 0: 0 u \ j‘- u v
o < @ab Q& & © O < @@6 PRI

Fig. 1. Taxi demand patterns in two different areas.

We use Recurrent Neural Networks (RNNs) to predict
taxi demand density in the future. RNNs can be trained to
store all the relevant information in a sequence to predict
particular outcomes in the future. They have been widely
used in many applications such as unsegmented handwriting
generation [7] and natural language processing [8]. They can
process arbitrary-length sequences of inputs especially when
the elements of the sequence are not independent, i.e., there
exits some hidden relations among different elements of the
sequence. Currently, the most commonly used type of RNN
is Long Short Term Memory (LSTM) [9].

In this application, first we divide the whole city into small
areas, then for each area, we encode all the past taxi demands
into week-long sequences. Second, we feed the sequential
data to the LSTM neural network and make the network

learn the taxi demand patterns in each area. We also include
the date, day of the week and time information as impact-
ing factors to the training model. Rather than forecasting a
deterministic taxi demand number, we use mixture density
networks (MDNSs) [10], a stochastic model, that can predict
the entire probability distribution of taxi demands in different
areas. After training the model, the prediction can be made
continuously by inputting new taxi demands in real-time. The
model can remember the useful information and predict taxi
demand densities of the future based on both the new input and
the previously stored information. For example, taxi demand
prediction for time-step ¢ + 1 will be made based on inputs
at time-steps [1,¢ — 1] and the new input which is the current
taxi demand on time-step t.

We evaluate the performance of the proposed network model
with the New York taxi trip dataset [11], maintained by the
NYC Taxi & Limousine Commission, containing taxi trips
from January 2009 through June 2016. In this application, we
use its most recent 3.5 years data: from January 2013 through
June 2016, which contains over 600 million trips after data
filtering. In the experiments, we divide the entire city into
6500 areas and let the proposed model predict for all areas at
each time-step. We use 80% of the data for training and keep
the remaining 20% for validation. Compared to baselines, the
LSTM predictor can provide smaller prediction errors.

The remainder of this paper is organized as follows. Section
II introduces related works on taxi demand prediction and
sequence learning applications of LSTM. Section III shows
how we encode the huge number of GPS records and a
brief explanation of RNNs. Section IV describes the proposed
sequence learning model, as well as the training and testing
procedures. In Section V, we show the performance metrics
and present the testing results. Lastly, in Section VI we
conclude the paper.

II. RELATED WORK

There are few previous research works conducted on taxi
demand prediction. Zhang et al. [1] propose a passenger hot-
spots recommendation system for taxi drivers. By analyzing
the historical taxi data, they extract hot-spots in each time-step
and assign a hotness score to each of them. This hotness will
be predicted in each time-step and combined with the driver’s
location, the top—k hot-spots are recommended. Zhao et al. [2]
define a maximum predictability for the taxi demand at street
blocks level. They show the real entropy of past taxi demand
sequence which proves that taxi demand is highly predictable.
They also implement three prediction algorithms to validate
their maximum predictability theory. Moreira-Matias et al. [4]
propose a framework consists of three different prediction
models. In each time-step, the predicted demand is a weighted
ensemble of predictions from three models. The ensemble
weights are updated with individual prediction performances
of previous time-steps in a sliding-window. Their framework
can make short term demand prediction for the 63 taxi stands
in the city of Porto, Portugal. In addition, based on historical
and real-time taxi data, dispatching center has been modeled

in some studies. Zhang et al. [3] propose a real-time taxi dis-
patching application. In their system, two kinds of passengers
are defined to model real-time taxi demand: previously left-
behind passengers and future arriving passengers. Both left-
behind and arriving passengers can be simulated based on
the real-time GPS traces of each taxi. A demand inference
model called Dmodel is proposed using hidden Markov chain
to model the state changes of both left-behind and arriving
passengers. Miao et al. [5] propose a dispatching framework
for balancing taxi supply in a city. Their goal is to match taxi
demand and supply and minimize taxi idle driving distance.
In their work, the next time-step taxi demand is calculated by
the mean value of repeated samples from historical data.

For the sequential learning application using RNNs,
Graves [7] propose an online handwriting sequence generation
with RNNs. In this application, the data sequence consists of
x and y pen coordinates and the points in the sequence when
the pen is lifted off. His model can generate highly realistic
handwriting. Rahmatizadeh et al. [12] propose to use RNNs
to learn the sequential trajectories for a robot arm. Their goal
is to make the robot perform complex manipulation tasks in
real world such as pushing objects to a target area. Some
other successful applications include language modeling [13],
speech recognition [14] and visual recognition [15]. RNNs
perform very well in modeling and reproducing patterns in
sequential data.

Overall, aforementioned works on taxi demand prediction
motivated us to rely on historical taxi trip information to
predict future taxi demands. In terms of the prediction, most
existing works either use a weighted average method on
previous taxi demands or a time series fitting model to fit
the demand sequence. The problem is that when the data
sequence is very long, the performance is poor in both
approaches. Furthermore, time series fitting model has to be
trained separately for each area, hence, the patterns learned in
one area can not be used in other areas.

One of the differences between our work and the existing
works is that our model can capture long term dependencies
in a sequence that happen very far away from each other.
We train our network on sequences that are as long as a
week and this can be easily extended to a month or a year
if we have enough computational power to train the network.
Another advantage of our model is that we predict all the
areas of a city at once using a single model. With this
formulation, the pattern learned by the LSTM in one area
can be used in other areas. Additionally, our model predicts
the entire probability distribution of taxi demand instead of
deterministic-ally predicting the number of requests for each
area. This approach gives a more realistic prediction as it takes
into account the uncertainty while predicting.

III. MATHEMATICAL MODEL

In this section, first we describe how we convert the high
resolution GPS data into the number of taxi requests in
each small area of the city. Then, we briefly explain the
mathematical formulation of recurrent neural networks.

A. GPS data encoding

Table I shows some raw records of taxi pickups from the
NYC taxi trip dataset [11]. By using GPS data encoding, we
want to quickly convert 600 million raw GPS records into

TABLE I
GEOHASH PRECISION

demand sequences in each area.

TABLE I

PIECES OF RAW TAXI PICKUP DATA

Pickup_datetime

Pickup_latitude

Pickup_longitude

2016-06-01 02:46:38

40.695178985595703

-73.930580139160156

2016-06-01 02:55:26

40.792552947998047

-73.946929931640625

2016-06-01 02:50:36

40.823955535888672

-73.944534301757813

2016-06-01 02:57:04

40.823871612548828

-73.95220947265625

Precision Cell width Cell height
1 < | 5,000km X 5,000km
2 < | 1,250km X 625km
3 < | 156km X 156km
4 < | 39.1km X 19.5km
5 < | 4.89km X 4.89%km
6 < | 1.22km X 0.61km
7 < 153m X 153m

8 < | 38.2m X 19.1m

9 < | 477m X 4.77m
10 < | 1.19m X 0.596m
11 < | 149mm X 149mm
12 < | 37.2mm X 18.6mm

We first need to divide the entire city into small areas. There
are several ways for such division such as dividing based on
zip code. However, the resulting areas by this type of division
are too large. For instance, the area size of Brooklyn in New
York City is 180km?, while there are 37 different zip codes in
Brooklyn. This leads to an average of 4.86 km? for each zip
code area. It is desired to predict taxi demand in small areas
so that the drivers know exactly where to go. However, on the
other side, learning to predict taxi demand in very small areas
is difficult. So, we need to select an area size which is both
easy to predict and sufficiently accurate for the drivers.

In this application, we use the Geohash library [16] which
can divide a geographical area into smaller subareas with
arbitrary precision. Geohash is a geocoding system that has a
hierarchical spatial data structure which subdivides space into
buckets of grid shape. An example of using Geohash library
to encode different pairs of (latitude,longitude) data:

g.encode(lat, long, precision = (1 — 12)) (1)
g.encode(40.69517898, —73.93058013, 6)
40.69517898, —73.93058013, 7)
40.6951789801, —73.9305801301, 7)
40.6951789899, —73.9305801399, 7)

.encode
g @)

g.encode

PLP L Ly

g.encode

In Eq. 2, (latitude, longitude) pairs encoded with precision
7 will be converted to 'dr5rt8m’, and the one encoded with
precision 6 will be identified by code 'dr5rt8’. Table II
shows the size of divided areas at different precision levels. In
Geohash, each code represents a divided area. After encoding
all the taxi trip GPS information, coordinates locate in the
same area have the same geohash code - this can be seen
from the last three pairs in Eq. 2. In addition, neighboring
areas share the same code prefix.

In this way, we can quickly divide the entire city into areas
with arbitrary size and have the taxi demand sequence in each
area. In our experiment, we divide the entire city into around
6500 small areas with precision 7 and for each area, we count
the number of taxi pickups at each time-step. We also test our
model on precision 6 which divides the city into about 1000
areas. In this paper, we present precision 7 due to accuracy
and closeness to the street block level.

B. Recurrent neural networks

The sequential taxi demand pattern leads us to the choice
of a model that can handle time-series data. Recurrent neural
networks (RNNs) are one of the high performing models that
can process sequential data very well. The idea behind RNNs
is to store relevant parts of the input and use this information
while predicting the output in the future. Unlike feed-forward
neural networks that only predict the output based on the
current input, RNNs contain memory in which some important
information from the past inputs can be stored. For instance,
when we train RNNs on a language modeling task in which
we generate a text one character at each time-step, it is better
to store what characters the network has predicted since the
next character is dependent on the previous predictions.

RNNs are called recurrent because they perform the same
computation on every element of a sequence, with the output
being conditioned on the previous computations. Another way
to think about RNNs is that they are neural networks with
a “memory” which captures and stores relevant information
seen as input. In theory, RNNs can store and later use this
information in arbitrarily long sequences, but in practice they
can look back only a limited number of time-steps. A typical
RNN is given in Fig. 2.

As we can see, the RNN processes input z, stores hidden
state h and outputs y at each time-step t. A loop allows
information to be passed over from one step to the next. All
W' are the shared weights among different time steps. For
training these weights, we unroll the network for finite number
of time steps as shown in Fig. 3.

y

Wy

(h_)3 W

th

X

Fig. 2. The recurrent neural networks.

Why Why Why
[ho]__'[hy]' """""" ED
Whn Whn
th th th
Xo X Xe
Fig. 3. The unrolled recurrent neural networks.

When the network is unrolled, it is more clear why it is
being used for sequence learning and how the information is
being passed to the future. The computation at each time step
can be formulated as follows:

- x, is the input at time-step t.

- h; is the hidden state at time-step ¢. It is calculated based

on the previous hidden state and the current input.

-y is the output at time-step . We can decide how it looks
like according to the task. For example, in predicting next
word in a sentence, the output y; can be a probability
distribution over a vocabulary.

All parameters W, Wy, and W), are shared among each
unrolled time-step. So the network is actually performing
the same computation at each time-step, but with different
inputs x;. This greatly reduces the total number of parameters
in the network and avoids over-fitting on smaller datasets.
Hidden state h; is the main feature of RNNs. It works as
the network memory which captures useful information about
what happened in all the previous time-steps.

Currently, the most commonly used type of RNNs are Long
Short Term Memory networks (LSTMs). LSTMs are a special
kind of RNN, capable of learning long-term dependencies due
to their gating memory mechanism. They were introduced
by Hochreiter & Schmidhuber [9], and were refined and
popularized by many people in the following years. LSTMs
work tremendously well on a large variety of problems and
are now widely used.

IV. TAX1 DEMAND PREDICTION MODEL

In this section, we discuss the sequence learning model.
The number of taxi requests in each area depends on many
underlying factors unavailable to our model. This will naturally
cause uncertainty in the model. So, instead of forecasting
a deterministic taxi demand number, we use a stochastic
model that can predict the entire probability distribution of
taxi demand in different areas. We then use this probability
distribution to decide the number of requests for each area.

A. Mixture density networks

The most successful application of neural networks has
been achieved on classification tasks. When it comes to
predicting real-valued data, the choice of network structure
is very important. The idea of mixture density networks
(MDNs) [10] is to use the outputs of a neural network to
parametrize a mixture distribution. Unlike the model with
mean squared error (MSE) cost which is deterministic, MDNs

can model stochastic behaviors. They can be used in prediction
applications in which an output may have multiple possible
outcomes. In our application, rather than directly predicting
the number of taxi requests in each area, the neural network
outputs the parameters of the mixture model. These parameters
are the mean and variance of each Gaussian kernel and also the
mixing coefficient of each kernel which shows how probable
that kernel is. Given the parameters of the mixture distribution,
we can draw a sample from it and use this sample as the final
prediction.

B. LSTM-MDN sequence learning model

As described in Section III, we divide the entire city into
small areas and encode the past taxi pickup information into
week-long data sequences. Fig. 4 shows the structure of the
data sequence at one time-step. For each time-step ¢, the data
sequence consists of two parts: e; and d;. e; represents the
number of pickups in each area and its length is the number
of small areas in the entire city. d; represents date, day of the
week, hours, minutes and other impacting factors at time-step
t. The input to the network at each time-step is z; = {et, d;}
and the network will try to predict y; = e;41.

The sequence learning model is created based on an LSTM
recurrent neural network and the MDNs. Fig. 5 shows the
structure of the unrolled LSTM-MDN learning model. The
total unrolling length is a hyper-parameter that can be set
according to testing scenario. LSTM can encode the useful
information of the past in a single or multiple layers. The
input to each layer is the output of the previous layer con-
catenated with the network input. Each LSTM layer predicts
its output based on its current input and its internal state. The
concatenation of outputs of all layers will be used to predict
the output of the network which will be compared with y;, the
actual value from the dataset, to form the error signal. In our
application, we predict y;, the taxi demand in the next time-
step. This prediction can be repeated in a loop to predict taxi
demand for multiple time-steps. We use two LSTM layers in
which each layer contains 1500 — 2000 neurons based on the
specific testing scenario.

As shown in Fig. 5, the output of LSTM layers would
be mixture density parameters with the total number of

number of taxi pickups in
different areas at time-step t

e;: num of pickups
in each area

d;: date, time,
impacting factors

Fig. 4. The input data structure at one time-step.

Negative log
likelihood cost

Negative log
likelihood cost

A 1\
Softmax Exp Softmax Exp
) [%) g
Mixture density Mixture density

e

parameters parameters

Fig. 5. The LSTM-MDN learning model unrolled through time-steps.

M x (D +2) in which M is the number of Gaussian kernels,
and D is the number of areas in the city. For each Gaussian
kernel &, outputs from D number of neurons are combined for
the calculation of the mean (), one neuron for the variance
o (zx), and another neuron for the mixing coefficient wy ().
To satisfy the constraint nyzl wg(x) = 1, the corresponding
neurons are passed through a softmax function. The neurons
corresponding to the variances oy (x) are passed through an
exponential function and the neurons corresponding to the
means py(xz) are used without any further changes. The
probability density of the next output y, can be modeled using
a weighted sum of M Gaussian kernels:

M
plyila) =D wi(@)gr(vilo) 3)
k=1

where g (y:|z) is the k*" multivariate Gaussian kernel. Note
that both the mixing coefficient and the Gaussian kernels are
conditioned on the complete history of the inputs till current
time-step © = {x...x;}. The multivariate Gaussian kernel
can be represented as:

o 2
o)

inle) = e e { I

where the vector ju(z) is the center of the k" kernel. We
do not calculate the full covariance matrices for each kernel,
since this form of Gaussian mixture model is general enough
to approximate any density function [17].

Finally, we can define the error function in terms of negative
logarithm likelihood:

M
Ey = —In {Z wk(a?)gk(yt:v)} Q)
k=1

After the model is trained, we can make a prediction
for time-step ¢ + 1 by inputting taxi demand at time-step
t. As we can see in Fig. 6, we use the output which is
the mixture density parameters to parametrize a Gaussian
mixture distribution. A sample can then be drawn based on

Multivariate Mixture draw a sample

of Gaussians

the trained model

€r+1

Mixture density
parameters

Decode

Fig. 6. The LSTM-MDN model performs prediction for time-step ¢ 4 1.

this distribution and this sample would be the prediction of
the next time-step taxi demand. Fig. 7 shows a density map
of real and predicted taxi demands over the entire city.

V. EXPERIMENTAL STUDY

In this section, we evaluate our model on a dataset of taxi
requests and see how well it can predict the requests in the
future. In addition, we compare our model with two other
baselines and show that it outperforms both.

A. Experimental setup

We evaluate the performance of the proposed network model
with the New York City taxi trip dataset [11]. There are two
kinds of cabs in NYC: the yellow cabs, which operate mostly
in Manhattan, and the green cabs, which operate mostly in
the suburbs. The dataset contains taxi trips from January 2009
through June 2016 for both yellow and green cabs. Each taxi
trip contains a pickup time and the location information. In
this application, we use its most recent 3.5 years data: from
January 2013 through June 2016, which includes over 600
million taxi trips after data filtering. We use 80% of the data
for training and keep the remaining 20% for validation. The
network model is implemented in Blocks [18] framework that
is built on top of Theano [19]. We stop the training when the
validation error does not change for 20 epochs.

Theoretically, LSTM can accept arbitrary sequence length.
However, constrained by the computational power, we use
every one week data as a sequence and cut it into time-
steps with different lengths. For example, if the time-step
length is 60mins, the sequence length would be 24 x 7. If
the time-step length is 20mins, the sequence length would
be 24 x 3 x 7. For the 60mins case, the encoded input data
shape is (182,168,6494) in which 182 is the total number
of sequences in the dataset, i.e., number of weeks in the 3.5
years, 168 is the sequence length: 24 x 7, and 6494 is the
number of features consisting of number of areas, date, day
of the week and time information. Table III includes the list
of parameters in the experiments.

Real Demand
7/1/2015 10:00:00 AM to 7/1/2015 11:00:00 AM

Limsige parks

" HorthBergen

i~
&

Brooklyn

Fig. 7.

b, i

" Horth Bergen

- ~
— LY

Unian City |/

Predict Demand
7/1/2015 10:00:00 AM to 7/1/2015 11:00:00 AM

Cliffside Parki «

West Mew Yorks

& Brooklyn

The density map of real demand and the predicted demand. Red areas show high demand for taxis, yellow areas show lower demand, and there is

no demand in other areas. The figure illustrates that the difference between the prediction and the real demand is very small.

TABLE III
EXPERIMENTAL PARAMETERS

< 153m x 153m

1 week data
5/10/20/30/60 mins
2016/1008/504/336/168

Area/grid size

Data of each sequence
time-step length
Sequence length

Number of sequences 182
Number of areas (K) 6424
Number of features 6494

Number of hidden layers 2
Number of nodes in each hidden layer | 1500-2000
Number of mixture Gaussian kernels 10

B. Performance metrics and baselines

To systematically examine the performance of our predic-
tion approach, we include results with two error metrics:
Symmetric Mean Absolute Percentage Error (sMAPE) and
Root Mean Square Error (RMSE). Y}, ; is the real taxi demand
in area k at time-step ¢, while ?k,t is the predicted taxi demand.
The SMAPE and RMSE in area k over time [1,7] would be:

T .
1 Vit — Yt

sMAPE, = — = (6)
T ; Yt + Yt +c
1 & SN2
RMSE, = | 7> (Yer = Vi) @)
t=1

The constant ¢ in Eq. 6 is a small number (¢ = 1 in this
application) to avoid division by zero when both Y}, , and Y} ;
are 0. Similarly, when evaluating the prediction performance

over the entire city, the SMAPE and RMSE of all areas at
time-step ¢t would be:

K A~
1 Vi — Y
sSMAPE, = — Y it = Yiea] (8)
K iy Yee +Yis+c
1 & S 2
RMSE, = | = ; (Vi — Yir))

Here K is the total number of areas in the city. From the
statistic perspective, RMSE shows the mean deviation of the
predicted number from the real number while the sSMAPE
describes a percentile error.

To evaluate the performance of the proposed LSTM-MDN
predictor, we compare its outcomes with prediction approaches
based on another two strategies: the fully connected feed-
forward neural networks and naive statistic average.

1) Fully connected feed-forward neural network predic-
tor: Feed-forward neural networks are commonly used for
classification and regression problems. Feed-forward neurons
have connections from their input to their output. The main
difference between feed-forward neural networks and recurrent
neural networks is that in RNNs, the recurrent connection from
the output to the input at next time-step makes the network
capable of storing information. In this approach, the layers
are fully connected which means that neurons between two
adjacent layers are all connected together.

2) Naive statistic average predictor: This approach predicts
based on the mean value of past demands in a sliding-window.
For example, if it is 10:00 am on Monday, the predicted

0.20

0.16]%

0.14] %

sMAPE

0.12}

0.10}
A4 LSTM
0.8/ & eefC ||
*% Naive
0.06 ‘ ‘ ‘ ‘
L S & Q‘Q Q@ Q@ &
L L P I I P P
}\"Lv h‘ Q’- ’\'IL. u (b- ’\'"l’v

Fig. 8. Prediction performance of different approaches according to sMAPE.

demand would be the average of demands at 10:00 am in
the past 5 Mondays.

C. Performance results

First, we report sSMAPE and RMSE errors over the entire
city (all prediction areas). Second, we report the errors of some
specific areas as time passes. For the three different predictors
based on LSTM-MDN, fully connected feed-forward neural
networks and naive statistic average, we respectively use
LSTM, FC and Naive for short.

1) Performance over the entire city: To evaluate the pre-
diction performance over the entire city which includes about
6500 areas, we compare the performance of the LSTM pre-
dictor, the FC predictor and the Naive predictor in terms of
RMSE and sMAPE from Eq. 8 and Eq. 9.

We report SMAPE and RMSE over the entire city in Fig. 8
and Fig. 9. As we can see, though they are different prediction
error metrics, they share some common patterns. For instance,
both of them reach the minimum values at about 3am and peak
at about 8am and 10pm. In both figures, LSTM shows better
performance in prediction than the FC and Naive predictors.

In Fig. 8, sMAPE shows the mean percentage error, which
gives us a way to calculate the prediction accuracy and observe
that it is more than 80%. In Fig. 9, RMSE shows the mean
deviation of the predicted demands from the real demands. In
the real demands, we have min = 0, max = 535 and standard
deviation o = 12.0. The time-step length is 60 mins.

Fig. 10 reports the error bar of mean RMSE with the
standard deviation over the entire city. We show this RMSE
with different time-step lengths in the LSTM predictor. The
time length of data we are using here is one week. Basically,
smaller time-step length means smaller number of pickups in
each step, which does affect the final RMSE. To avoid this,
we sum the number of pickups every 60 mins. As we can see
in Fig. 10, the model has the minimum RMSE at time-step

5.5

5.0}

2.0} ®-9 FC
* % Naive
1.5 ‘ ‘ ‘
& & & Qé‘ Q@ Q@ L
Iy P P ® I I L
‘\:1’. ™ @ ’\j” ™ - »\:]r'

Fig. 9. Prediction performance of different approaches according to RMSE.

3.5

3.0

2.5}

2.0¢

RMSE

1.5}

1.0t

0.5}

0.0 5 10 20 30 60

Time-step length(mins)

Fig. 10. RMSE of different time-step lengths. With the real number of
pickups, min = 0, maz = 535 and standard deviation o = 12.0.

length either 10 or 20 mins. Overall, the RMSEs are very
close under different time-step lengths.

2) Performance at specific areas: We compare the predic-
tion performances between LSTM, FC and the Naive predic-
tors in specific areas. First of all, we select two areas whose
real demands in a week are shown in Fig. 11-a-1 and Fig. 11-
b-1. The first one is a working area, with regular patterns on
both weekdays and weekends. The other area is one of the
most popular areas in NYC, in terms of taxi requests. The
time-step length is 60 mins in both areas. The bottom part of
Fig. 11 shows the SMAPE performances in both areas. Each
error bar includes the standard deviation on that day.

In Fig. 11-a-2, LSTM outperforms FC and Naive models
in the regular working area because it is good at learning
sequential information, even though the sequence length is as
long as a week. FC sometimes results in larger errors than the

a-1. A working area b-1. A downtown area

60

Yo
o
50 250} poono
. cob
i
2 a0y £ 200 ;i 4
N E e N
=4 " 4 =4 R "
Zsofn ok | Sasofiay "
S ki m) 5 RN !
£ nov 3 £ v
220000 10 o 21000
oo " '
T 1 !
100 v ! 504
P :
a ' v
A 0
RN RN
0.25 a-2. prediction error
B LSTM
=N FC
‘- Naive

SMAPE
SMAPE

0.00 .
o 4 @ S Qg

0.00 "
o @S Qg

Fig. 11. Comparison in areas with different demand patterns.

Naive predictor due to the irregularities in sequence patterns.
In Fig. 11-b-2, even though the request numbers are large in
the downtown area, both LSTM and FC predictors show stable
prediction performances.

Overall, the experimental results shows that LSTM outper-
forms the other prediction approaches. This is because LSTM
can see and process information in the previous time-steps.
For instance, if a group of people request taxis to go to a
concert, it will remember it and use this information to predict
that after a couple of hours there would be almost the same
number of requests in the concert area from the participants
to return home. The FC network can find the best mapping
from the time and geographical information to the number of
requests without having access to the demand in the previous
time-steps. This limitation causes more error in its prediction.
Naive approach is even more restricted since it has access to
only a small history of the demand in one area unlike the FC
which is trained on all the historical data of all areas.

VI. CONCLUSION

We propose a sequence learning model based on recurrent
neural networks and mixture density networks to predict taxi
demand in different areas of a city. By learning sequential
patterns from historical taxi requests, the proposed model can
make taxi demand predictions for the future. We train our
model on a dataset consists of 3.5 years taxi trips in New York
City. Experimental results show that our predictor outperforms
the prediction models based on fully connected feed-forward
neural networks and naive statistic average. In addition, our
model can continuously make real-time prediction of taxi
demand for the entire city.

This work can be extended by adding more information to
the inputs such as where businesses, shops, restaurants, etc. are
located. In addition, we can organize the taxis in a city and
distribute them in real-time according to the demand prediction
by our model. This can help a lot in situations where in some
areas there is large demand but the taxi drivers are competing
with each other for having passengers in another area of the
city.

REFERENCES

[11 K. Zhang, Z. Feng, S. Chen, K. Huang, and G. Wang, “A framework for
passengers demand prediction and recommendation,” in Proc. of IEEE
SCC’16, June 2016, pp. 340-347.

[2] K. Zhao, D. Khryashchev, J. Freire, C. Silva, and H. Vo, “Predicting taxi
demand at high spatial resolution: Approaching the limit of predictabil-
ity,” in Proc. of IEEE BigData’16, December 2016, pp. 833-842.

[3] D.Zhang, T. He, S. Lin, S. Munir, and J. A. Stankovic, “Taxi-passenger-
demand modeling based on big data from a roving sensor network,”
IEEE Transactions on Big Data, vol. PP, no. 99, pp. 1-1, 2016.

[4] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi passenger demand using streaming data,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp- 1393-1402, 2013.

[5] F. Miao, S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir, H. Huang,
T. He, and G. J. Pappas, “Taxi dispatch with real-time sensing data
in metropolitan areas: A receding horizon control approach,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 2,
pp. 463478, 2016.

[6] F. Al-Turjman, M. Karakoc, and M. Gunay, “Path planning for mobile
des in future cities,” Annals of Telecommunications, vol. 72, no. 3-4, pp.
119-129, 2017.

[7]1 A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. of NIPS’14, December 2014, pp. 3104—
3112.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.

C. M. Bishop, Mixture density networks. Aston University, 1994.

NYC Taxi Limousine Commission. Taxi and limousine

commission (tlc) trip record data. [Online]. Available:

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

R. Rahmatizadeh, P. Abolghasemi, A. Behal, and L. B616ni, “Learning

real manipulation tasks from virtual demonstrations using Istm,” arXiv

preprint arXiv:1603.03833, 2016.

A. Karpathy, J. Johnson, and F.-F. Li, “Visualizing and understanding

recurrent networks,” arXiv preprint arXiv:1506.02078, 2015.

A. Graves, A. rahman Mohamed, and G. Hinton, “Speech recognition

with deep recurrent neural networks,” in Proc. of IEEE icassp’13, May

2013, pp. 6645-6649.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

G. Niemeyer. (2008) Tips & tricks about geohash. [Online]. Available:

http://geohash.org/site/tips.html

G. J. McLachlan and K. E. Basford, Mixture models: Inference and

applications to clustering. New York: Marcel Dekker, 1988, vol. 84.

B. Van Merrinboer, D. Bahdanau, V. Dumoulin, D. Serdyuk, D. Warde-

Farley, J. Chorowski and Y. Bengio, “Blocks and fuel: Frameworks for

deep learning,” arXiv preprint arXiv:1506.00619, 2015.

The Theano Development, “Theano: A python framework for fast com-

putation of mathematical expressions,” arXiv preprint arXiv:1605.02688,

2016.

[10]
(1]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]

